Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;143(1):104–118. doi: 10.1016/0042-6822(85)90100-X

Effect of tunicamycin and monensin on biosynthesis, transport, and maturation of bovine herpesvirus type-1 glycoproteins

Sylvia Van Drunen Littel-Van Den Hurk 1, LA Babiuki 1,1
PMCID: PMC7130974  PMID: 2997997

Abstract

The effect of tunicamycin and monensin on the biosynthesis, intracellular transport, and maturation of bovine herpesvirus type-1 (BHV-1) glycoproteins was examined. Tunicamycin completely inhibited the production of infectious virus particles and significantly reduced the incorporation of [3H]glucosamine into viral glycoproteins. In the presence of monensin, reduced amounts of infectious virus particles were produced, which was mainly due to inhibition of virus release, rather than virus production. Monensin only slightly inhibited viral glycoprotein synthesis. The effects of these compounds on infectivity indicated that glycosylation is required for the production of infectious virus, though complete processing of the glycoproteins is not essential. In addition, egress of the virions from infected cells probably requires a functional Golgi complex. In the presence of tunicamycin or monensin various degrees of glycosylation of the major glycoproteins occurred, consequently their rates of migration differed from that of the normal glycoproteins. Tunicamycin completely blocked glycosylation of GVP 6/11a/16 and GVP 7. In contrast, GVP 3/9 and GVP 11b were partially glycosyaated in the presence of tunicamycin. These results indicated that GVP 6/11a/16 and GVP 7 are N-linked glycoproteins, but GVP 3/9 and GVP 11b contain both N- and O-linked oligosaccharide side chains. Tunicamycin blocked the transport of all viral glycoproteins to the cell surface, suggesting that glycosylation is required for this process. In the presence of monensin, the viral glycoproteins were transported and expressed on the cell surface indicating that transport does not require complete processing of the glycoproteins and may occur via a Golgi-independent pathway. In addition, monensin-treated BHV-1 infected cells could act as target cells in an antibody-dependent cell cytotoxicity assay. Thus, complete glycosylation may not be essential for maintenance of antigenicity and participation in immune destruction.

References

  1. Alonso F.V., Compans R.W. Differential effect of monensin on enveloped viruses that form at distinct plasma domains. J. Cell Biol. 1981;89:700–705. doi: 10.1083/jcb.89.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babiuk L.A., Wardley R.C., Rouse B.T. Defense mechanisms against bovine herpesvirus: Relationship of virus-host cell events to susceptibility to antibody-complement lysis. Infect. Immun. 1975;12:958–963. doi: 10.1128/iai.12.5.958-963.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basu S.K., Goldstein J.L., Anderson R.G.W., Brown M.S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981;24:493–502. doi: 10.1016/0092-8674(81)90340-8. [DOI] [PubMed] [Google Scholar]
  4. Berger E.G., Buddecke E., Kamerling J.P., Kobata A., Paulson J.C., Vliegenthart J.F.G. Structure, biosynthesis and functions of the glycoprotein glycans. Experientia. 1982;38:1129–1258. doi: 10.1007/BF01959725. [DOI] [PubMed] [Google Scholar]
  5. Campadelli-Fiume G., Poletti L., Dall'olio F., Serafini-Cessi F. Infectivity and glycoprotein processing of herpes simplex type-1 grown in a virus-resistant cell line deficient in Nacetyl-glucosaminyl transferase I. J. Virol. 1982;43:1061–1071. doi: 10.1128/jvi.43.3.1061-1071.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chatterjee S., Bradac J.A., Hunter E. Effect of monensin on Mason-Pfizer monkey virus glycoprotein synthesis. J. Virol. 1982;44:1003–1012. doi: 10.1128/jvi.44.3.1003-1012.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diggelman H. Biosynthesis of an unglycosylated envelope glycoprotein of Rous sarcoma virus in the presence of tunicamycin. J. Virol. 1979;30:799–804. doi: 10.1128/jvi.30.3.799-804.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghosh H.P. Synthesis and maturation of glycoproteins of enveloped animal viruses. Rev. Infec. Dis. 1980;2:26–39. doi: 10.1093/clinids/2.1.26. [DOI] [PubMed] [Google Scholar]
  9. Gibson R., Schlesinger S., Kornfield S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
  10. Glorioso J.C., Smith J.W. Immune interactions with cells infected with herpes simplex virus: Antibodies to radioiodinated surface antigens. J. Immunol. 1977;1:114–121. [PubMed] [Google Scholar]
  11. Glorioso J., Szczesiul M.S., Martin S.D., Levine M. Inhibition of glycosylation of herpes simplex virus glycoproteins: Identification of antigenic and immunogenic partially glycosylated glycopeptides on the cell surface membrane. Virology. 1983;26:1–18. doi: 10.1016/0042-6822(83)90458-0. [DOI] [PubMed] [Google Scholar]
  12. Grewal A.S., Carpio M., Babiuk L.A. Polymorphonuclear neutrophil-mediated antibodydependent cell cytotoxicity of herpesvirus-infected cells: Ultrastructural studies. Canad. J. Microbiol. 1980;26:427–435. doi: 10.1139/m80-071. [DOI] [PubMed] [Google Scholar]
  13. Grewal A.S., Rouse B.T., Babiuk L.A. Mechanisms of resistance of different cell types in mediating antibody-dependent cell-mediated cytotoxicity. Infect. Immun. 1977;15:698–703. doi: 10.1128/iai.15.3.698-703.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hubbard S.C., Ivatt R.J. Synthesis and processing of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  16. Johnson D.C., Schlesinger M.J. Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  17. Johnson D.C., Spear P.G. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface and the egress of virions from the infected cells. J. Virol. 1982;43:1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson C., Spear P.G. O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell. 1983;32:987–997. doi: 10.1016/0092-8674(83)90083-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Leavitt R., Schlesinger S., Kornfeld S. Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J. Biol. Chem. 1977;252:9018–9023. [PubMed] [Google Scholar]
  21. Manservigi R.P., Spear P.G., Buchan A. Vol. 74. 1977. Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins; pp. 3913–3917. (Proc. Natl. Acad Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Misra V., Blumenthal R.M., Babiuk L.A. Proteins specified by bovine herpesvirus type-1 (infectious bovine rhinotracheitis virus) J. Virol. 1981;40:367–378. doi: 10.1128/jvi.40.2.367-378.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Misra V., Gilchrist J.E., Weinmaster G., Qualtiere L., Van Den Hurk S., Babiuk L.A. Herpesvirus-induced “earl” glycoprotein: Characterization and possible role in immune cytolysis. J. Virol. 1982;43:1046–1054. doi: 10.1128/jvi.43.3.1046-1054.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morrison T.G., McQuain C.O., Simpson D. Assembly of viral membranes: Maturation of the vesicular stomatitis glycoprotein in the presence of tunicamycin. J. Virol. 1978;28:368–374. doi: 10.1128/jvi.28.1.368-374.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakamura K., Compans R.W. Effects of glucosamine, 2-deoxyglucose and tunicamycin, on sulfation and assembly of influenza viral proteins. Virology. 1978;84:303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  26. Norrild B., Pederson B. Effect of tunicamycin on the synthesis of herpes simplex virus type-1 glycoproteins and their expression on the cell surface. J. Virol. 1982;43:395–402. doi: 10.1128/jvi.43.2.395-402.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Norrild B., Shore S.L., Cromeans T.L., Nahmias A.J. Participation of three major glycoprotein antigens of herpes simplex virus type-1 early in the infectious cycle as determined by antibody-dependent cell-mediated cytotoxicity. Infect. Immun. 1980;28:38–44. doi: 10.1128/iai.28.1.38-44.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Norrild B., Shore S.L., Nahmias A.J. Herpes simplex glycoproteins: Participation of individual HSV-1 glycoprotein antigens in immune cytolysis and their correlation with previously identified glycopeptides. J. Virol. 1979;32:741–748. doi: 10.1128/jvi.32.3.741-748.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oloffson S., Blomberg J., Lycke E. O-glycosidic carbohydrate-peptide linkages of herpes simplex virus glycoproteins. Arch. Virol. 1981;70:321–329. doi: 10.1007/BF01320247. [DOI] [PubMed] [Google Scholar]
  30. Payne L.G., Kristensson K. Effect of glycosylation inhibitors on the release of enveloped vaccinia virus. J. Virol. 1982;41:367–375. doi: 10.1128/jvi.41.2.367-375.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peaks M.L., Nystrom P., Pizer L.I. Herpesvirus glycoprotein synthesis and insertion of plasma membranes. J. Virol. 1982;42:678–690. doi: 10.1128/jvi.42.2.678-690.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pizer L.I., Cohen G.H., Eisenberg R.J. Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. J. Virol. 1980;34:142–153. doi: 10.1128/jvi.34.1.142-153.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pressman B.C. Biological applications of ionophores. Annu. Rev. Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  34. Roizman B., Spear P.G. Herpes virus antigens on cell membranes detected by centrifugation of membrane-antibody complexes. Science (Washington, D. C.) 1971;171:298–300. doi: 10.1126/science.171.3968.298. [DOI] [PubMed] [Google Scholar]
  35. Rottier P.J.M., Horzinek M.C., van Der Zeyst B.A.M. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: Effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rouse B.R., Babiuk L.A. Host responses to infectious bovine rhinotracheitis. III. Isolation and immunological activities of bovine T lymphocytes. J. Immunol. 1974;113:1391–1398. [PubMed] [Google Scholar]
  37. Rouse B.T., Babiuk L.A. Mechanisms of recovery from herpesvirus infections. Canad. J. Comp. Med. 1978;42:414–427. [PMC free article] [PubMed] [Google Scholar]
  38. Rouse B.T., Wardley R.C., Babiuk L.A. Antibody-dependent cell-mediated cytotoxicity in cows: Comparison of effector cell activity against heterologous erythrocytes and herpesvirusinfected bovine target cells. Infect. Immun. 1976;13:1433–1441. doi: 10.1128/iai.13.5.1433-1441.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sarmiento M., Haffey M., Spear P.G. Membrane proteins specified by herpes simplex viruses. III. Role of glycoproteins VP 7 (B2) in virion infectivity. J. Virol. 1979;29:1149–1158. doi: 10.1128/jvi.29.3.1149-1158.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwarz R.T., Datema R. Inhibitors of protein glycosylation. Trends Biochem. Sci. 1980;5:65–67. [Google Scholar]
  41. Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, influenza and avian sarcoma virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sharon N., Lis H. Glycoproteins: research booming on long-ignored ubiquitous compounds. Chem. Eng. News. 1981;59:21–44. doi: 10.1007/BF00238511. [DOI] [PubMed] [Google Scholar]
  43. Shida H., Dales S. Biogenesis of vaccinia: Carbohydrate of the haemagglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  44. Spear P.G. Glycoproteins specified by herpes simplex virus type-1: Their synthesis, processing and antigenic relatedness to HSV-2 glycoproteins. Int Agency Res. Cancer Sci. Publ. 1975;11:49–61. [PubMed] [Google Scholar]
  45. Spear P.G. Membrane proteins specified by herpes simplex viruses. I. Identification of four glycoprotein precursors and their products in type1 infected cells. J. Virol. 1976;17:991–1008. doi: 10.1128/jvi.17.3.991-1008.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stallcup K.C., Fields B.N. The replication of measles virus in the presence of tunicamycin. Virology. 1981;108:391–404. doi: 10.1016/0042-6822(81)90447-5. [DOI] [PubMed] [Google Scholar]
  47. Stohrer R., Hunter E. Inhibition of Rouse sarcomavirus replication by 2-deoxyglucose and tunicamycin: Identification of an unglycosylated env gene product. J. Virol. 1979;32:412–419. doi: 10.1128/jvi.32.2.412-419.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Strous G.J.A.M., Lodish H.F. Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus. Cell. 1980;22:709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
  49. Tartakoff A.M., Vasalli P. Plasma cell immunoglobulin secretion: Arrest is accompanied by alteration of the Golgi complex. J. Exp. Med. 1977;146:1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Uchida N., Similowitz N., Ledger P.W., Tanner M.L. Kinetic studies of the intracellular transport of procollagen and fibronectin in human fibroblasts; effect of the monovalent ionophore monensin. J. Biol. Chem. 1980;255:8638–8644. [PubMed] [Google Scholar]
  51. van Drunen Littel-Van Den Hurk S., van Den Hurk J.V., Gilchrist J.E., Misra V., Babiuk L.A. Interactions of monoclonal antibodies and bovine herpesvirus type-1 (BHV-1) glycoproteins: Characterization of their biochemical and immunological properties. Virology. 1984;135:466–479. doi: 10.1016/0042-6822(84)90201-0. [DOI] [PubMed] [Google Scholar]
  52. Vestergaard B.F., Norrild B. Crossed immunoelectrophoretic analysis and viral neutralizing activity of five monospecific antisera against five different herpes simplex virus glycoproteins. Int. Agency Res. Cancer Sci. Publ. 1979;24:225–234. [PubMed] [Google Scholar]
  53. Waechter C.J., Lennarz W.J. The role of propenol-linked sugars in glycoprotein synthesis. Annu. Rev. Biochem. 1976;45:95–112. doi: 10.1146/annurev.bi.45.070176.000523. [DOI] [PubMed] [Google Scholar]
  54. Wenske E., Bratton M.W., Courtney R.J. Endo-β-N-acetyl glucosaminidase H sensitivity of precursors to herpes simplex type 1 glycoproteins gB and gC. J. Virol. 1982;44:241–248. doi: 10.1128/jvi.44.1.241-248.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wilcox D.K., Kitson R.P., Widnell C.C. Inhibition of pinocytosis in rat embryo fibroblasts treated with monensin. J. Cell Biol. 1982;92:859–864. doi: 10.1083/jcb.92.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES