Abstract
CS31A fibrillae are thin, flexible, heteropolymeric proteinaceous appendages exposed as a capsule-like material around the cell surface of certain Escherichia coli strains. Two antigenic peptides of the S spike glycoprotein (TGEV-S) amino acids (aa) 363–371 and 521–531 of the transmissible gastroenteritis virus (TGEV) were tandemly introduced in the loop-structured, variable region aa 202–218 of the major ClpG subunit protein composing the bulk of CS31A. The resulting hybrid fibrillae with a 25 aa heterologous peptide were produced at the cell surface. Using a monoclonal antibody (Mab) specific for the TGEV epitopes, purified hybrid fibrillae were analysed in Western blotting under native conditions, which showed that the two viral epitopes were recognized immunologically as an integral part of the hybrid fibrillae, and therefore that they were antigenically active. The immunogenicity of the fusion construct was evaluated with live recombinant bacteria, purified hybrid ClpG monomers, and purified chimeric CS31A polymers. Whatever the form of hybrid used as antigen, intraperitoneally immunized outbred mice elicited serum anti-TGEV peptides antibodies (Abs) with significant titres and capable of recognizing native TGEV particles, indicating that the epitopes are exposed in an immunogenic conformation in all cases. However, virus neutralization titres were only obtained after immunization with either purified polymers or monomers. Furthermore, 4 months after an ultimate immunization with 20 μg of hybrid fibrillae mice developed a strong anamnestic Ab response against the two TGEV peptides following booster inoculation with virions. We conclude that CS31A fibrillae carrying a combination of TGEV epitopes as insert can induce an immunological memory in outbred animals infected with TGEV, and therefore that hybrid CS31A fibrillae may prove efficient as components of a subunit vaccine.
Keywords: CS31A fibrillae, TGEV coronavirus, recombinant DNA, carrier-delivery system, immune responses
References
- 1.Girardeau J.P., Der Vartanian M., Ollier J.L., Contrepois M. CS31A, a new K88 related fimbrial antigen on bovine enterotoxigenic and septicemic Escherichia coli strains. Infect. Immun. 1988;56:2180–2188. doi: 10.1128/iai.56.8.2180-2188.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Contrepois M., Fairbrother J.M., Kaura Y.K., Girardeau J.P. Prevalence of CS31A and F16s surface antigens in Escherichia coli isolates from animals in France, Canada and India. FEMS Microbiol. Lett. 1989;59:319–324. doi: 10.1016/0378-1097(89)90439-4. [DOI] [PubMed] [Google Scholar]
- 3.Chérifi A., Contrepois M., Picard P. Factors and marker of virulence in Escherichia coli from human septicemia. FEMS Microbiol. Lett. 1990;70:279–284. doi: 10.1111/j.1574-6968.1990.tb13989.x. [DOI] [PubMed] [Google Scholar]
- 4.Méchin M.C., Bertin Y., Girardeau J.P. Hydrophobic cluster analysis and secondary structure predictions revealed that major and minor structural subunits of K88-related adhesins of Escherichia coli share a common overall fold and differ structurally from other fimbrial subunits. FEBS Lett. 1995;364:319–324. doi: 10.1016/0014-5793(95)00417-8. [DOI] [PubMed] [Google Scholar]
- 5.Bousquet F., Martin C., Girardeau J.P. CS31A capsulelike antigen as an exposure vector for heterologous antigenic determinants. Infect. Immun. 1994;62:2553–2561. doi: 10.1128/iai.62.6.2553-2561.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Saif L.J., Bohl E.H. Transmissible gastroenteritis. In: Leman A.D., Glock R.D., Mengeling W.K., Peny R.H.C., Scholl E., Straw B., editors. Diseases of Swine. Iowa State University Press; Ames: 1986. pp. 255–274. [Google Scholar]
- 7.Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- 8.Godet M., Grosclaude J., Delmas B., Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J. Virol. 1994;68:8008–8016. doi: 10.1128/jvi.68.12.8008-8016.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Suñé C., Jimenez G., Correa I. Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology. 1990;177:559–569. doi: 10.1016/0042-6822(90)90521-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Saif L.J., van Cott J.L., Brim T.A. Immunity to transmissible gastroenteritis virus and porcine respiratory coronavirus infections in swine. Vet. Immun. Immunopathol. 1994;43:89–97. doi: 10.1016/0165-2427(94)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Der Vartanian M., Méchin M.C., Jaffeux B., Bertin Y., Félix I., Gaillard-Martinie B. Permissible peptide insertions surrounding the signal peptide-mature protein junction of the ClpG prepilin: CS31A fimbriae of Escherichia coli as carriers of foreign sequences. Gene. 1994;148:23–32. doi: 10.1016/0378-1119(94)90229-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein. J. Gen. Virol. 1990;71:1313–1323. doi: 10.1099/0022-1317-71-6-1313. [DOI] [PubMed] [Google Scholar]
- 13.Correa I., Gebauer F., Bullido M.J. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J. Gen. Virol. 1990;71:271–279. doi: 10.1099/0022-1317-71-2-271. [DOI] [PubMed] [Google Scholar]
- 14.Gebauer F., Posthumus W.P.A., Correa I. Residues involved in the formation of the antigenic sites of the S protein of transmissible gastroenteritis coronavirus. Virology. 1991;183:225–238. doi: 10.1016/0042-6822(91)90135-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Sanchez C.M., Jimenez G., Laviada M.D. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990;174:410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.De Diego M., Laviada M.D., Enjuanes L., Escribano J.M. Epitope specificity of protective lactogenic immunity against swine transmissible gastroenteritis virus. J. Virol. 1992;66:6502–6508. doi: 10.1128/jvi.66.11.6502-6508.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Martin C., Boeuf C., Bousquet F. Escherichia coli CS31A fimbriae: molecular cloning, expression and homology with the K88 determinant. Microb. Pathog. 1991;10:429–442. doi: 10.1016/0882-4010(91)90108-m. [DOI] [PubMed] [Google Scholar]
- 18.Takeshïta S., Sato M., Toba M., Masahashi W., Hashimoto T. High-copy number and low-copy number plasmid vector for lacZ α-complementation and chloramphenicol or kanamycin resistance selection. Gene. 1987;61:63–74. doi: 10.1016/0378-1119(87)90365-9. [DOI] [PubMed] [Google Scholar]
- 19.Girardeau J.P., Bertin Y., Martin C., Der Vartanian M., Boeuf C. Sequence analysis of the clpG gene, which codes for surface antigen CS31A subunit: evidence of an evolutionary relationship between CS31A, K88 and F41 subunit genes. J. Bacteriol. 1991;173:7676–7683. doi: 10.1128/jb.173.23.7673-7683.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Sambrook J., Fritsch E.F., Maniatis T. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1989. Molecular Cloning: A Laboratory Manual. [Google Scholar]
- 21.Sanger F., Nicklen S., Coulson A.R. 3rd Edn. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Towbin H., Staehelin T., Gordon J. 3rd Edn. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications; pp. 4350–4354. (Proc. Natl Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Laude H., Chapsal J.M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I—Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
- 24.Hockney R.C. Recent developments in heterologous protein production in Escherichia coli. TIBTECH. 1994;12:456–463. doi: 10.1016/0167-7799(94)90021-3. [DOI] [PubMed] [Google Scholar]
- 25.Van der Zee A., Noordegraaf C.V., Van den Bosch H. P-fimbriae of Escherichia coli as carriers for gonadotropin releasing hormone: development of a recombinant contraceptive vaccine. Vaccine. 1995;13:753–758. doi: 10.1016/0264-410x(94)00039-p. [DOI] [PubMed] [Google Scholar]
- 26.Broeckhuysen M.P., Van Rijn J.M.M., Blom A.J.M. Fusion proteins with multiple copies of the major antigenic determinant of foot-and-mouth disease virus protect both the natural host and laboratory animals. J. Gen. Virol. 1987;68:31–37. doi: 10.1099/0022-1317-68-12-3137. [DOI] [PubMed] [Google Scholar]
- 27.Krogfelt K.A. Bacterial adhesion: Genetics, biogenesis, and role in pathogenesis of fimbrial adhesins of Escherichia coli. Rev. Infect. Dis. 1991;13:721–735. doi: 10.1093/clinids/13.4.721. [DOI] [PubMed] [Google Scholar]
- 28.Leclerc C., Sedlik C., Lo-Man R., Charlot B., Rojas M., Deriaud E. Stimulation of a memory B cell response does not require primed helper T cells. Eur. J. Immun. 1995;25:2533–2538. doi: 10.1002/eji.1830250919. [DOI] [PubMed] [Google Scholar]