Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;242(1):170–183. doi: 10.1006/viro.1997.8993

Expression of Hemagglutinin/Esterase by a Mouse Hepatitis Virus Coronavirus Defective–Interfering RNA Alters Viral Pathogenesis

Xuming Zhang a,1, David R Hinton a,b, Sungmin Park c, Beatriz Parra c, Ching-Len Liao c,2, Michael MC Lai a,c,d, Stephen A Stohlman a,c
PMCID: PMC7131006  PMID: 9501044

Abstract

A defective-interfering (DI) RNA of mouse hepatitis virus (MHV) was developed as a vector for expressing MHV hemagglutinin/esterase (HE) protein. The virus containing an expressed HE protein (A59-DE-HE) was generated by infecting cells with MHV-A59, which does not express HE, and transfecting thein vitro-transcribed DI RNA containing the HE gene. A similar virus (A59-DE-CAT) expressing the chloramphenicol acetyltransferase (CAT) was used as a control. These viruses were inoculated intracerebrally into mice, and the role of the HE protein in viral pathogenesis was evaluated. Results showed that all mice infected with parental A59 or A59-DE-CAT succumbed to infection by 9 days postinfection (p.i.), demonstrating that inclusion of the DI did not by itself alter pathogenesis. In contrast, 60% of mice infected with A59-DE-HE survived infection. HE- or CAT-specific subgenomic mRNAs were detected in the brains at days 1 and 2 p.i. but not later, indicating that the genes in the DI vector were expressed only in the early stage of viral infection. No significant difference in virus titer or viral antigen expression in brains was observed between A59-DE-HE- and A59-DE-CAT-infected mice, suggesting that virus replication in brain was not affected by the expression of HE. However, at day 3 p.i. there was a slight increase in the extent of inflammatory cell infiltration in the brains of the A59-DE-HE-infected mice. Surprisingly, virus titers in the livers of A59-DE-HE-infected mice were 3 log10lower than that of the A59-DE-CAT-infected mice at day 6 p.i. Also, substantially less necrosis and viral antigen were detected in the livers of the A59-DE-HE-infected mice. This may account for the reduced mortality of these mice. The possible contribution of the host immune system to this difference in pathogenesis was analyzed by comparing the expression of four cytokines. Results showed that both tumor necrosis factor-α and interleukin-6 mRNAs increased in the brains of the A59-DE-HE-infected mice at day 2 p.i., whereas interferon-γ and interleukin-1α mRNAs were similar between A59-DE-HE- and A59-DE-CAT-infected mice. These data suggest that the transient expression of HE protein enhances an early innate immune response, possibly contributing to the eventual clearance of virus from the liver. This study indicates the feasibility of the DI expression system for studying roles of viral proteins during MHV infection.

References

REFERENCES

  • 1.Bergmann C.C., Yao Q., Lin M., Stohlman S.A. The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J. Gen. Virol. 1996;77:315–325. doi: 10.1099/0022-1317-77-2-315. [DOI] [PubMed] [Google Scholar]
  • 2.Bos E.C., Luytjes W., van der Meulen H.V., Koerten H.K., Spaan W.J. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology. 1996;218:52–60. doi: 10.1006/viro.1996.0165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cua D.J., Hinton D.R., Stohlman S.A. Self-antigen-induced TH2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. J. Immunol. 1995;155:4052–4059. [PubMed] [Google Scholar]
  • 4.Deregt D., Babiuk L.A. Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology. 1987;161:410–420. doi: 10.1016/0042-6822(87)90134-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Fleming J.O., Stohlman S.A., Harmon R.C., Lai M.M.C., Frelinger J.A., Weiner L.P. Antigenic relationships of murine coronaviruses: Analysis using monoclonal antibodies to JHM (MHV-4) virus. Virology. 1983;131:296–307. doi: 10.1016/0042-6822(83)90498-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Gagneten S., Gout O., Dubois-Dalcq M., Rottier P., Rossen J., Holmes K.V. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J. Virol. 1995;69:889–895. doi: 10.1128/jvi.69.2.889-895.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Herrler G., Rott R., Klenk H.D., Muller H.P., Shukla A.K., Schauer R. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J. 1985;4:1503–1506. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Herrler G., Durkop I., Becht H., Klenk H.D. The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. J. Gen. Virol. 1988;69:839–846. doi: 10.1099/0022-1317-69-4-839. [DOI] [PubMed] [Google Scholar]
  • 9.Hirano N., Fujiwara K., Hino S., Matsumoto M. Replication and plaque formation of mouse hepatitis virus (MHV-2) in mouse cell line DBT culture. Arch. Gesamte Virusforsch. 1974;44:298–302. doi: 10.1007/BF01240618. [DOI] [PubMed] [Google Scholar]
  • 10.Joseph J., Grun J.L., Lublin F.D., Knobler R.L. Interleukin-6 induction in vitro in mouse brain endothelial cells and astrocytes by exposure to mouse hepatitis virus (MHV-4, JHM) J. Neuroimmunol. 1993;42:47–52. doi: 10.1016/0165-5728(93)90211-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kopf M., Baumann H., Freer G., Freudenberg M., Lamers M., Kishimoto T., Zinkernagel R., Bluethmann H., Kohler G. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature. 1994;368:339–342. doi: 10.1038/368339a0. [DOI] [PubMed] [Google Scholar]
  • 12.La Monica N., Yokomori K., Lai M.M.C. Coronavirus mRNA synthesis: Identification of novel transcription initiation signals which are differentially regulated by different leader sequences. Virology. 1992;188:402–407. doi: 10.1016/0042-6822(92)90774-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59: Messenger RNA structure and genetic localization of the sequence divergence from the hepatotropic strain MHV3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Lai M.M.C., Cavanagh D. The molecular biology of coronaviruses. Adv. Virus Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Lai M.M.C., Patton C.D., Baric R.S., Stohlman S.A. Presence of leader sequences in the mRNA of mouse hepatitis virus. J. Virol. 1983;46:1027–1033. doi: 10.1128/jvi.46.3.1027-1033.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc. Natl. Acad. Sci. USA. 1984;81:3626–3630. doi: 10.1073/pnas.81.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Lavi E., Gilden D.H., Highkin M.K., Weiss S.R. The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab. Anim. Sci. 1986;36:130–135. [PubMed] [Google Scholar]
  • 18.Lavi E., Gilden D.H., Wroblewska Z., Rorke L.B., Weiss S.R. Experimental demyelination produced by the A59 strain of mouse hepatitis virus. Neurology. 1984;34:597–603. doi: 10.1212/wnl.34.5.597. [DOI] [PubMed] [Google Scholar]
  • 19.Lee H.J., Shieh C.K., Gorbalenya A.E., Koonin E.V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M.M.C. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991;180:567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Leibowitz J.L., Wilhemsen K.C., Bond C.W. The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:39–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Liao C.-L., Lai M.M.C. Requirement of the 5′-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. J. Virol. 1994;68:4727–4737. doi: 10.1128/jvi.68.8.4727-4737.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Liao C.-L., Zhang X.M., Lai M.M.C. Coronavirus defective-interfering RNA as an expression vector: The generation of a pseudorecombinant mouse hepatitis virus expressing hemagglutinin-esterase. Virology. 1995;208:319–327. doi: 10.1006/viro.1995.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Luytjes W., Bredenbeek P.J., Noten A.F., Horzinek M.C., Spaan W.J. Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Makino S., Fujioka N., Fujiwara K. Structure of the intracellular defective viral RNAs of defective interfering particles of mouse hepatitis virus. J. Virol. 1985;54:329–336. doi: 10.1128/jvi.54.2.329-336.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Makino S., Joo M., Makino J.K. A system for study of coronavirus mRNA systhesis: A regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J. Virol. 1991;65:6031–6041. doi: 10.1128/jvi.65.11.6031-6041.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Makino S., Lai M.M.C. Evolution of the 5′-end of genomic RNA of murine coronaviruses during passages in vitro. Virology. 1989;169:227–232. doi: 10.1016/0042-6822(89)90060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Makino S., Shieh C.-K., Keck J.G., Lai M.M.C. Defective interfering particles of murine coronavirus: Mechanism of transcription of defective viral RNA. Virology. 1988;163:104–111. doi: 10.1016/0042-6822(88)90237-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Makino S., Shieh C.-K., Soe L.H., Baker S.C., Lai M.M.C. Primary structure and translation of a defective-interfering RNA of murine coronavirus. Virology. 1988;166:550–560. doi: 10.1016/0042-6822(88)90526-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Parr R.L., Fung L., Reneker J., Myers-Mason N., Leibowitz J.L., Levy G.A. Association of mouse fibrinogen-like protein with murine hepatitis virus-induced prothrombinase activity. J. Virol. 1995;69:5033–5038. doi: 10.1128/jvi.69.8.5033-5038.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Parra B., Hinton D.R., Lin M.T., Cua D.J., Stohlman S.A. Kinetics of cytokine mRNA expression in the central nervous system following lethal and nonlethal coronavirus-induced acute encephalomyelitis. Virology. 1997;233:260–270. doi: 10.1006/viro.1997.8613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Pearce B.D., Hobbs M.V., McGraw T.S., Buchmeier M. Cytokine induction during T-cell mediated clearance of mouse hepatitis virus from neurons in vivo. J. Virol. 1997;68:5483–5495. doi: 10.1128/jvi.68.9.5483-5495.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Romano M., Sironi M., Toniatti C., Polentarutti N., Fruscella P., Ghezzi P., Faggioni R., Luini W., van Hinsbergh V., Sozzani S., Bussolino F., Poli V., Ciliberto G., Mantovani A. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997;6:315–325. doi: 10.1016/s1074-7613(00)80334-9. [DOI] [PubMed] [Google Scholar]
  • 33.Shieh C.K., Lee H.J., Yokomori K., La M.N., Makino S., Lai M.M.C. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 1989;63:3729–3736. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Stohlman S.A., Hinton D.R., Cua D., Dimacali E., Sensintaffar J., Hofman F.M., Tahara S.M., Yao Q. Tumor necrosis factor expression during mouse hepatitis virus-induced demyelinating encephalomyelitis. J. Virol. 1995;69:5898–5903. doi: 10.1128/jvi.69.9.5898-5903.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Van der Veen R.C. Immunogenicity of JHM virus proteins: Characterization of a CD4+ Virology. 1996;225:339–346. doi: 10.1006/viro.1996.0608. [DOI] [PubMed] [Google Scholar]
  • 37.Van Snick J. Interleukin-6: An overview. Annu. Rev. Immunol. 1990;8:253–278. doi: 10.1146/annurev.iy.08.040190.001345. [DOI] [PubMed] [Google Scholar]
  • 38.Vennema H., Godeke G.J., Rossen J.W., Voorhout W.F., Horzinek M.C., Opstelten D.J., Rottier P. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996;15:2020–2028. doi: 10.1002/j.1460-2075.1996.tb00553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Vlasak R., Luytjes W., Lieder J., Spaan W.J.M., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Yokomori K., Asanaka M., Stohlman S.A., Makino S., Shubin R.A., Gilmore W., Weiner L.P., Wang F.-I., Lai M.M.C. Neuropathogenicity of mouse hepatitis virus JHM isolates differing in hemagglutinin-esterase protein expression. J. Neurovirol. 1995;1:330–339. doi: 10.3109/13550289509111022. [DOI] [PubMed] [Google Scholar]
  • 41.Yokomori K., Baker S.C., Stohlman S.A., Lai M.M.C. Hemagglutinin-esterase specific monoclonal antibodies alter the neuropathogenicity of mouse hepatitis virus. J. Virol. 1992;66:2865–2874. doi: 10.1128/jvi.66.5.2865-2874.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Yokomori K., Banner L., Lai M.M.C. Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology. 1991;183:647–657. doi: 10.1016/0042-6822(91)90994-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Yokomori K., La Monica N., Makino S., Shieh C.-K., Lai M.M.C. Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology. 1989;173:683–691. doi: 10.1016/0042-6822(89)90581-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zhang X.M., Hinton D.R., Cua D.J., Stohlman S.A., Lai M.M.C. Expression of interferon-gamma by a coronavirus defective-interfering RNA vector and its effect on viral replication, spread, and pathogenicity. Virology. 1997;233:327–338. doi: 10.1006/viro.1997.8598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Zhang X.M., Lai M.M.C. Unusual heterogeneity of leader-mRNA fusion in a murine coronavirus: Implications for the mechanism of RNA transcription and recombination. J. Virol. 1994;68:6626–6633. doi: 10.1128/jvi.68.10.6626-6633.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Zhang X.M., Liao C.-L., Lai M.M.C. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both intranscis. J. Virol. 1994;68:4738–4746. doi: 10.1128/jvi.68.8.4738-4746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES