Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;186(2):426–434. doi: 10.1016/0042-6822(92)90007-C

Cloning and sequencing of the matrix protein (M) gene of turkey rhinotracheitis virus reveal a gene order different from that of respiratory syncytial virus

Q Yu 1, PJ Davis 1, J Li 1, D Cavanagh 1,1
PMCID: PMC7131020  PMID: 1733097

Abstract

Several biochemical properties and the sequence of the fusion glycoprotein (F) have indicated that turkey rhinotracheitis virus (TRTV) is a pneumovirus, subfamily Pneumovirinae of the Paramyxoviridae family. As TRTV was known to generate polycistronic mRNAs, cDNA was generated from TRTV strain U K/3 BV/85-infected Vero cell mRNAs using an oligonucleotide primer corresponding to a region of the F gene. Sequencing of four cDNAs revealed that the gene adjacent to the beginning (3′ end) of the F gene was that for the matrix (M) protein, i.e., that TRTV had the partial gene order 3′-M-F-5′. This was unexpected as human respiratory syncytial (RS) virus, the type species of the genus Pneumovirus, has the partial gene order 3′-M-SH-G-F-5′, where SH and G are the small hydrophobic protein and attachment glycoprotein, respectively. Instead TRTV resembled the Morbillivirus and Paramyxovirus genera of the Paramyxoviridae (subfamily Paramyxoviridae) which have the partial gene order 3′-M-F-5′. Two further oligonucleotides, one corresponding to a sequence near the end of the M gene and the other (oligo B) to a sequence near the beginning of the F gene, with their 5′ ends spaced 300 nucleotides apart on the basis of the cDNA sequence, were used in a polymerase chain reaction (PCR) using genomic RNA as template. Only a PCR product of 0.3 kb was obtained. The same sized product was also obtained using these oligonucleotides and genomic RNA from three other TRTV strains (SA/91 /78, UK/8544/85, and SA/2381/88) which had been grown in chicken tracheal organ cultures. In addition PCR was performed using genomic RNA from TRTV-3BV and SA/2381/88 with oligo B and another oligonucleotide near the 5′ end of the gene upstream from M, spaced 1141 nucleotides apart on the basis of the sequence data. Only a 1.14-kb PCR product was obtained. Larger products would have been expected if another gene had been situated between M and F. The absence of such larger products, plus the demonstration that infected cells contained M-F dicistronic mRNAs, supported the conclusion that in the TRTV genome the M gene is adjacent to the F gene in the order 3'-M-F-5′. The 5′ termini of the M and F mRNAs were confirmed by mRNA mapping. The TRTV M gene encoded a protein of 254 amino acids, very similar to that of RS virus (256 residues; 37% amino acid identity) but very different from that of the morbilliviruses and paramyxoviruses (approximately 350 residues). Thus, on the basis of the sequences of both the M and the F genes, TRTV is more closely related to the pneumoviruses than to the paramyxoviruses and morbilliviruses.

References

  1. Afzal M.A., Elliott G.D., Rima B.K., Orvell C. Virus and host cell-dependent variation in transcription of the mumps virus genome. J. Gen. Virol. 1990;71:615–619. doi: 10.1099/0022-1317-71-3-615. [DOI] [PubMed] [Google Scholar]
  2. Bellini W.J., Englund G., Richardson C.D., Rozenblatt S., Lazzarini R.A. Matrix genes of measles virus and canine distemper virus: Cloning, nucleotide sequences, and deduced amino acid sequences. J. Virol. 1986;58:408–416. doi: 10.1128/jvi.58.2.408-416.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumberg B.M., Rose K., Simona M.G., Roux L., Colomba G., Kolakofsky D. Analysis of the Sendai virus M gene and protein. J. Virol. 1984;52:656–663. doi: 10.1128/jvi.52.2.656-663.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  5. Boechi M., Bachi Th. Microscopy of internal structures of Sendai virus associated with the cytoplasmic surface of host membranes. Virology. 1982;120:349–359. doi: 10.1016/0042-6822(82)90036-8. [DOI] [PubMed] [Google Scholar]
  6. Caldwell S.E., Lyles D.S. Dissociation of newly synthesized Sendai viral proteins from the cytoplasmic surface of isolated plasma membranes of infected cells. J. Biol. 1986;57:678–683. doi: 10.1128/jvi.57.2.678-683.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cavanagh D., Barrett T. Pneumovirus-like characteristics of the mRNA and proteins of turkey rhinotracheitis virus. Virus Res. 1988;11:241–256. doi: 10.1016/0168-1702(88)90086-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cavanagh D., Davis P.J. Evolution of avian coronavirus IBV: Sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J. Gen. Virol. 1988;69:621–629. doi: 10.1099/0022-1317-69-3-621. [DOI] [PubMed] [Google Scholar]
  9. Chambers P., Millar N.S., Platt S.G., Emmerson P.T. Nucleotide sequence of the gene encoding the matrix protein of Newcastle disease virus. Nucleic Acids Res. 1986;14:9051–9061. doi: 10.1093/nar/14.22.9051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chambers P., Barr J., Pringle C.R., Easton A.J. Molecular cloning of pneumonia virus of mice. J. Virol. 1990;64:1869–1872. doi: 10.1128/jvi.64.4.1869-1872.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  12. Collins M.S., Gough R.E. Characterization of a virus associated with turkey rhinotracheitis. J. Gen. Virol. 1988;69:909–916. doi: 10.1099/0022-1317-69-4-909. [DOI] [PubMed] [Google Scholar]
  13. Collins P.L., Huang Y.T., Wertz G.W. Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes. J. Virol. 1984;49:572–578. doi: 10.1128/jvi.49.2.572-578.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cook J.K.A., Darbyshire J.H., Peters R.W. The use of chicken tracheal organ cultures for the isolation and assay of avian infectious bronchitis virus. Arch. Virol. 1976;50:109–118. doi: 10.1007/BF01318005. [DOI] [PubMed] [Google Scholar]
  15. Elango N. Complete nucleotide sequence of the matrix protein mRNA of mumps virus. Virology. 1989;168:426–428. doi: 10.1016/0042-6822(89)90288-2. [DOI] [PubMed] [Google Scholar]
  16. Elliott G.D., Afzal M.A., Martin S.J., Rima B.K. Nucleotide sequence of the matrix, fusion and putative SH protein genes of mumps virus and their deduced amino acid sequences. Virus Res. 1989;12:61–75. doi: 10.1016/0168-1702(89)90054-3. [DOI] [PubMed] [Google Scholar]
  17. Faaberg K.S., Peeples M.E. Association of soluble matrix protein of Newcastle disease virus with liposomes is independent of ionic conditions. Virology. 1988;166:123–132. doi: 10.1016/0042-6822(88)90153-5. [DOI] [PubMed] [Google Scholar]
  18. Galinski M.S., Mink M.A., Lambert D.M., Wechsler S.L., Pons M.W. Molecular cloning and sequence analysis of the human parainfluenza 3 virus gene encoding the matrix protein. Virology. 1987;157:24–30. doi: 10.1016/0042-6822(87)90309-6. [DOI] [PubMed] [Google Scholar]
  19. Giuffre R.L.M., Tovell D.R., Kay C.M., Tyrrell D.L.J. Evidence for an interaction between the membrane protein of a paramyxovirus and actin. J. Virol. 1982;42:963–968. doi: 10.1128/jvi.42.3.963-968.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gough R.E., Collins M.S., Cox W.J., Chettle N.J. Experimental infection of turkeys, chickens, ducks, geese, guinea fowl, pheasants and pigeons with turkey rhinotracheitis virus. Vet. Rec. 1988;123:58–59. doi: 10.1136/vr.123.2.58. [DOI] [PubMed] [Google Scholar]
  21. Heggeness M.H., Smith P.R., Choppin P.W. Vol. 79. 1982. In vitro assembly of the nonglycosylated membrane protein (M) of Sendai virus; pp. 6232–6236. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones R.C., Baxter-Jones C., Savage C.E., Kelly D.F., Wilding G.P. Experimental infection of chickens with a ciliostatic agent isolated from turkeys with rhinotracheitis. Vet. Rec. 1987;120:301–302. doi: 10.1136/vr.120.13.301. [DOI] [PubMed] [Google Scholar]
  23. Jorgensen E.D., Collins P.L., Lomedico P.T. Cloning and nucleotide sequence of Newcastle disease virus hemagglutinin-neuraminidase mRNA: Identification of a putative sialic acid binding site. Virology. 1987;156:12–24. doi: 10.1016/0042-6822(87)90431-4. [DOI] [PubMed] [Google Scholar]
  24. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  25. Ling R., Pringle C.R. Turkey rhinotracheitis virus: In vivo and in vitro polypeptide synthesis. J. Gen. Virol. 1988;69:917–923. doi: 10.1099/0022-1317-69-4-917. [DOI] [PubMed] [Google Scholar]
  26. Limo M., Yilma T. Molecular cloning of the rinderpest virus matrix gene: Comparative sequence analysis with other paramyxoviruses. Virology. 1990;175:323–327. doi: 10.1016/0042-6822(90)90216-e. [DOI] [PubMed] [Google Scholar]
  27. Luk D., Masters P.S., Sanchez A., Banerjee A.K. Complete nucleotide sequence of the matrix protein mRNA and three intergenic junctions of human parainfluenza virus type 3. Virology. 1987;156:189–192. doi: 10.1016/0042-6822(87)90453-3. [DOI] [PubMed] [Google Scholar]
  28. Marx P.A., Portner A., Kingsbury D.W. Sendai virion transcriptase complex: Polypeptide composition and inhibition by virion envelope proteins. J. Virol. 1974;13:107–112. doi: 10.1128/jvi.13.1.107-112.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McDougall J.S., Cook J.K.A. Turkey rhinotracheitis: Preliminary investigations. Vet. Rec. 1986;118:206–207. doi: 10.1136/vr.118.8.206. [DOI] [PubMed] [Google Scholar]
  30. McGinnes L.W., Morrison T.G. The nucleotide sequence of the gene encoding the Newcastle disease virus membrane protein and comparisons of membrane protein sequences. Virology. 1987;156:221–228. doi: 10.1016/0042-6822(87)90401-6. [DOI] [PubMed] [Google Scholar]
  31. Mountcastle W.E., Compans R.W., Lackland H., Choppin P.W. Proteolytic cleavage of subunits of the nucleocapsid of the paramyxovirus simian virus 5. J. Biol. 1974;14:1253–1261. doi: 10.1128/jvi.14.5.1253-1261.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peeples M.E., Bratt M.A. Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein incorporation into particles and decreased infectivity. J. Virol. 1984;51:81–90. doi: 10.1128/jvi.51.1.81-90.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pringle C.R. Paramyxoviridae. Arch. Virol. Supplement. 1991;2:242–246. [Google Scholar]
  34. Rima B.K. Comparison of amino acid sequences of the major structural proteins of paramyxo-and morbilliviruses. In: Kolakofsky D., Mahy B.W.J., editors. Genetics and Pathogenicity of Negative Strand Viruses. Elsevier; Amsterdam: 1989. pp. 254–263. [Google Scholar]
  35. Sakai Y., Suzu S., Shioda T., Shibuta H. Nucleotide sequence of the bovine parainfluenza 3 virus genome: Its Tend and the genes of NP, P, C and M proteins. Nucleic Acids Res. 1987;15:2927–2944. doi: 10.1093/nar/15.7.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sambrook J., Fritsch E.F., Mamatis T. 2nd ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1989. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  37. Satake M., Venkatesan S. Nucleotide sequence of the gene encoding respiratory syncytial virus matrix protein. J. Virol. 1984;50:92–99. doi: 10.1128/jvi.50.1.92-99.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sato H., Oh-Hira M., Ishida N., Imamura Y., Hattori S., Kawakita M. Molecular cloning and nucleotide sequence of P, M and F genes of Newcastle disease virus avirulent strain D26. Virus Res. 1987;7:241–255. doi: 10.1016/0168-1702(87)90031-1. [DOI] [PubMed] [Google Scholar]
  39. Sheshberadaran H., Lamb R.A. Sequence characterization of the membrane protein gene of paramyxovirus simian virus 5. Virology. 1990;176:234–243. doi: 10.1016/0042-6822(90)90248-p. [DOI] [PubMed] [Google Scholar]
  40. Shimizu K., Ishida N. The smallest protein of Sendai virus: Its candidate function of binding nucleocapsid to envelope. Virology. 1975;67:427–437. [PubMed] [Google Scholar]
  41. Spriggs M.K., Johnson P.R., Collins P.L. Sequence analysis of the matrix protein gene of human parainfluenza virus type 3: Extensive sequence homology among paramyxoviruses. J. Gen. Virol. 1987;68:1491–1497. doi: 10.1099/0022-1317-68-5-1491. [DOI] [PubMed] [Google Scholar]
  42. Ward K.A., Lamden P.R., Ogilvie M.M., Watt P.J. Antibodies to respiratory syncytial virus polypeptides and their significance in human infection. J. Gen. Virol. 1983;64:1867–1876. doi: 10.1099/0022-1317-64-9-1867. [DOI] [PubMed] [Google Scholar]
  43. Yoshida T., Nagai Y., Yoshii S., Maeno K., Matsumoto T. Membrane (M) protein of HLV (Sendai virus): Its role in virus assembly. Virology. 1976;71:143–161. doi: 10.1016/0042-6822(76)90101-x. [DOI] [PubMed] [Google Scholar]
  44. Yu Q., Davis P.J., Barrett T., Binns M.M., Boursnell M.E.G., Cabanagh D. Deduced amino acid sequence of the fusion (F) glycoprotein of turkey rhinotracheitis virus has greater identity with that of human respiratory syncytial virus, a pneumovirus, than that of paramyxoviruses and morbilliviruses. J. Gen. Virol. 1991;72:75–81. doi: 10.1099/0022-1317-72-1-75. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES