Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;142(2):378–388. doi: 10.1016/0042-6822(85)90345-9

Attenuation of murine coronavirus infection by ammonium chloride

Lee Mizzen 1,1, Anne Hilton 1, Steve Cheley 1,2, Robert Anderson 1,3,1
PMCID: PMC7131027  PMID: 2997991

Abstract

Ammonium chloride at a concentration of 20 mM delayed by 4–5 hr the production of virus progeny in mouse L-2 cells infected at high multiplicity with mouse hepatitis virus (MHV). This delay was seen in the production of both intracellular and extracellular virus. However, the final titers were similar to those produced by MHV-infected cells maintained in normal medium. The manifestation of virus-induced cell fusion was similarly found to be delayed, but not otherwise decreased in severity, when ammonium chloride was present in the culture medium. Ammonium chloride caused similar delays in production of virus-specific, positive-sense RNAs and of viral polypeptides. The relative proportions and apparent molecular weights of viral RNAs and polypeptides were similar to those found in MHV-infected cells cultured in normal medium. In vitro translation of endogenously produced viral RNAs in cell extracts, prepared from MHV-infected cells, was not inhibited by ammonium chloride. Thus, ammonium chloride has no specific, inhibitory effect on viral protein synthesis. Ammonium chloride did not reduce the number of virus-infected cells in culture, as monitored by infectious center assay. Analysis of early events in MHV infection showed that ammonium chloride did not affect adsorption or internalization of MHV by L-2 cells. However, the subsequent eclipse phase, as monitored by decline in infectivity of internalized virus inoculum proceeded less efficiently in the presence of ammonium chloride. On the basis of the known inhibitory effects of ammonium chloride on lysosomal/endosomal functions, the results suggest an endosomal mechanism of MHV uncoating. Thus the primary effect of ammonium chloride on MHV infection of L-2 cells is to attenuate virus uncoating, thereby chronologically displacing all subsequent virus-encoded functions.

References

  1. Chasey D., Alexander D.J. Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells. Arch. Virol. 1976;52:101–111. doi: 10.1007/BF01317869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheley S., Anderson R. Cellular synthesis and modification of murine hepatitis virus polypeptides. J. Gen. Virol. 1981;54:301–311. doi: 10.1099/0022-1317-54-2-301. [DOI] [PubMed] [Google Scholar]
  3. Cheley S., Anderson R. A reproducible, microanalytical method for the detection of specific RNA sequences by dot-blot hybridization. Anal. Biochem. 1984;137:15–19. doi: 10.1016/0003-2697(84)90339-7. [DOI] [PubMed] [Google Scholar]
  4. Cheley S., Anderson R., Cupples M.J., Lee Chan E.C.M., Morris V.L. Intracellular murine hepatitis virus-specific RNAs contain common sequences. Virology. 1981;112:596–604. doi: 10.1016/0042-6822(81)90305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choppin P.W., Compans R.W. Reproduction of paramyxoviruses. In: Fraenkel-conrat H., Wagner R.R., editors. Vol. 4. Plenum; New York: 1975. pp. 95–178. (Comprehensive Virology). [Google Scholar]
  6. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dales S. Early events in cell-animal virus interactions. Bacteriol Rev. 1973;37:103–135. doi: 10.1128/br.37.2.103-135.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. David-Ferreira J.F., Manaker R.A. An electron microscope study of the development of a mouse hepatitis virus in tissue culture cells. J. Cell Biol. 1965;24:57–78. doi: 10.1083/jcb.24.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dickson R.B., Willingham M.C., Pastan I. α2-Macroglobulin adsorbed to colloidal gold: A new probe in the study of receptor-mediated endocytosis. J. Cell Biol. 1981;89:29–34. doi: 10.1083/jcb.89.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ducatelle R., Hoorens J. Significance of lysosomes in the morphogenesis of coronaviruses. Arch. Virol. 1984;79:1–12. doi: 10.1007/BF01314299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards J., Mann E., Brown D.T. Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. J. Virol. 1983;45:1090–1097. doi: 10.1128/jvi.45.3.1090-1097.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fan D.P., Sefton B.M. The entry into host cells of Sindbis virus, vesicular stomatitis virus and Sendai virus. Cell. 1978;15:985–992. doi: 10.1016/0092-8674(78)90282-9. [DOI] [PubMed] [Google Scholar]
  13. Fischer I., Moldave K. Preparation and characterization of a cell-free system from Chinese hamster ovary cells that translates natural messenger ribonucleic acid and analysis of intermediary reactions. Anal. Biochem. 1981;113:13–26. doi: 10.1016/0003-2697(81)90038-5. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J.L., Anderson R.G.W., Brown M.S. Coated pits, coated vesicles and receptor-mediated endocytosis. Nature (London) 1979;279:679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  15. Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Helenius A., Marsh M. “Membrane Recycling,” Ciba Foundation Symposium 92. Pitman; London: 1982. Endocytosis of enveloped animal viruses; pp. 59–76. [DOI] [PubMed] [Google Scholar]
  17. Helenius A., Marsh M., White J. Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J. Gen. Virol. 1982;58:47–61. doi: 10.1099/0022-1317-58-1-47. [DOI] [PubMed] [Google Scholar]
  18. Holland T.C., Person S. Ammonium chloride inhibits cell fusion induced by syn mutants of herpes simplex virus type 1. J. Virol. 1977;23:213–215. doi: 10.1128/jvi.23.1.213-215.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kato N., Eggers H.J. Inhibition of uncoating of Fowl-plague virus by 1-adamantanamine hydrochloride. Virology. 1969;37:632–641. doi: 10.1016/0042-6822(69)90281-5. [DOI] [PubMed] [Google Scholar]
  20. Kondor-Koch C., Riedel H., Soderberg K., Garoff H. Vol. 79. 1982. Expression of the structural proteins of Semliki Forest virus from cloned cDNA microinjected into the nucleus of baby hamster kidney cells; pp. 4525–4529. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kousoulas K.G., Bzik D.J., DeLuca N., Person S. The effect of ammonium chloride and, tunicamycin on the glycoprotein content and infectivity of herpes simplex virus type 1. Virology. 1983;125:468–474. doi: 10.1016/0042-6822(83)90217-9. [DOI] [PubMed] [Google Scholar]
  22. Kousoulas K.G., Person S., Holland T.C. Herpes simplex virus type 1 cell fusion occurs in the presence of ammonium chloride-inhibited glycoproteins. Virology. 1982;123:257–263. doi: 10.1016/0042-6822(82)90259-8. [DOI] [PubMed] [Google Scholar]
  23. Krzystyniak K., Dupuy J.M. Entry of mouse hepatitis virus 3 into cells. J. Gen. Virol. 1984;65:227–231. doi: 10.1099/0022-1317-65-1-227. [DOI] [PubMed] [Google Scholar]
  24. Lucas A., Flintoff W., Anderson R., Percy D., Coulter M., Dales S. In vivo and in vitro models of demyelinating diseases: Tropism of the JHM strain of murine hepatitis virus for cells of filial origin. Cell. 1977;12:553–560. doi: 10.1016/0092-8674(77)90131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maeda T., Kawasaki K., Ohnishi S. Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc NatL Acad. Sci. USA. 1981;78:4133–4137. doi: 10.1073/pnas.78.7.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mallucci L. Effect of chloroquine on lysosomes and on growth of mouse hepatitis virus (MHV-3) Virology. 1966;28:355–362. doi: 10.1016/0042-6822(66)90046-8. [DOI] [PubMed] [Google Scholar]
  27. Marsh M., Helenius A. Adsorptive endocytosis of Semliki Forest virus. J. MoL Biol. 1980;142:439–454. doi: 10.1016/0022-2836(80)90281-8. [DOI] [PubMed] [Google Scholar]
  28. Marsh M., Bolzau E., Helenius A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell. 1983;32:931–940. doi: 10.1016/0092-8674(83)90078-8. [DOI] [PubMed] [Google Scholar]
  29. Martin K.S., Reggio H., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 1981;91:601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maxfield F.R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J. Cell Biol. 1982;95:676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mizzen L., Cheley S., Rao M., Wolf R., Anderson R. Fusion resistance and decreased infectability as major host cell determinants of coronavirus persistence. Virology. 1983;128:407–417. doi: 10.1016/0042-6822(83)90266-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ohkuma S., Poole B. Vol. 75. 1978. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents; pp. 3327–3331. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ohkuma S., Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J. Cell Biol. 1981;90:656–664. doi: 10.1083/jcb.90.3.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pazmino N.H., Yuhas J.M., Tennant R.W. Inhibition of murine RNA tumor virus replication and oncogenesis by chloroquine. Int. J. Cancer. 1974;14:379–385. doi: 10.1002/ijc.2910140312. [DOI] [PubMed] [Google Scholar]
  35. Poste G., Allison A.C. Membrane fusion. Biochim. Biophys Acta. 1973;300:421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  36. Rothfels K.H., Axelrad A.A., Siminovitch L., McCulloch E.A., Parker R.C. Vol. 3. 1959. The origin of altered cell lines from mouse, monkey and a man as indicated by chromosome and transplantation studies; pp. 189–214. (Canad. Cancer Conf.). [Google Scholar]
  37. Schlegel R., Dickson R.B., Willingham M.C., Pastan I.H. Vol. 79. 1982. Amantadine and dansylcadaverine inhibit vesicular stomatitis virus and receptor-mediated endocytosis of α2macroglobulin; pp. 2291–2295. (Proc. Natl. Acad Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shimizu Y., Yamamoto S., Homma M., Ishida N. Effect of chloroquine on the growth of animal viruses. Arch. Ges Virusforsch. 1972;36:93–104. doi: 10.1007/BF01250299. [DOI] [PubMed] [Google Scholar]
  39. Siddell S.G., Anderson R., Cavanaugh D., Fujiwara K., Klenk H.D., Macnaughton M.R., Pensaert M., Stohlman S.A., Sturman L., Van Der Zeijst B.A.M. Coronaviridae. Intervirology. 1983;20:181–189. doi: 10.1159/000149390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Simpson R.W., Hauser R.E., Dales S. Viropexis of vesicular stomatitis virus by L cells. Virology. 1969;37:285–290. doi: 10.1016/0042-6822(69)90209-8. [DOI] [PubMed] [Google Scholar]
  41. Skehel J.J., Bayley P.M., Brown E.B., Martin S.R., Waterfield M.D., White J.M., Wilson I.A., Wiley D.C. Vol. 79. 1982. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion; pp. 968–972. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. White J., Mattin K., Helenius A. Cell fusion by Semliki Forest virus, influenza and vesicular stomatitis viruses. J. Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wibo M., Poole B. Protein degradation in cultured cells II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J. Cell Biol. 1974;63:430–440. doi: 10.1083/jcb.63.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Willingham M.C., Pastan I. The receptosome: An intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts. Cell. 1980;21:67–77. doi: 10.1016/0092-8674(80)90115-4. [DOI] [PubMed] [Google Scholar]
  45. Young M.R., D'Arcy Hart P., Geiow M.J. Action of weak bases on phagosomes of cultured macrophages. Suppression by ammonium ions of an early increase in phagosomal pH. Exp. Cell Res. 1981;135:442–445. doi: 10.1016/0014-4827(81)90187-7. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES