Abstract
Murine carcinoembryonic antigens serve as receptors for the binding and entry of the enveloped coronavirus mouse hepatitis virus (MHV) into cells. Numerous receptor isoforms are now known, and each has extensive differences in its amino terminal immunoglobulin-like domain (NTD) to which MHV binds via its protruding spike proteins. Some of these receptor alterations may affect the ability to bind viral spikes. To identify individual residues controlling virus binding differences, we have used plasmid and vaccinia virus vectors to express two forms of MHV receptor differing only in their NTD. The two receptors, designated biliary glycoproteins (Bgp) 1aand 1bNTD, varied by 29 residues in the 107 amino acid NTD. When expressed from cDNAs in receptor-negative HeLa cells, these two Bgp molecules were displayed on cell surfaces to equivalent levels, as both were equally modified by a membrane-impermeant biotinylation reagent. Infectious center assays revealed that the 1aisoform was 10 to 100 times more effective than 1bNTDin its ability to confer sensitivity to MHV (strain A59) infection. Bgp1awas also more effective than Bgp1bNTDin comparative virus adsorption assays, binding 6 times more MHV (strain A59) and 2.5 times more MHV (strain JHMX). Bgp1awas similarly more effective in promoting the capacity of viral spikes to mediate intercellular membrane fusion as judged by quantitation of syncytia following cocultivation of spike and receptor-bearing cells. To identify residues influencing these differences, we inserted varying numbers of 1bresidues into the Bgp1abackground via restriction fragment exchange and site-directed mutagenesis. Analysis of the resulting chimeric receptors showed that residues 38 to 43 of the NTD were key determinants of the binding and fusion differences between the two receptors. These residues map to an exposed loop (C-C′ loop) in a structural model of the closely related human carcinoembryonic antigen.
Footnotes
E. Wimmer, Ed.
References
REFERENCES
- 1.A. Aiyar, J. Leis, 1993, Modification of the megaprimer method of PCR mutagenesis: Improved amplification of the final product, 14, 366, 368 [PubMed]
- 2.Aoki J., Koike S., Ise I., Yoshida Y.S., Nomoto A. Amino acid residues on human poliovirus receptor involved in interaction with poliovirus. J. Biol. Chem. 1994;269:8431–8438. [PubMed] [Google Scholar]
- 3.Barthold S.W. Host age and genotypic effects on enterotropic mouse hepatitis virus infection. Lab. Anim. Sci. 1987;37:36–40. [PubMed] [Google Scholar]
- 4.Barthold S.W., Beck D.S., Smith A.L. Mouse hepatitis virus nasoencephalopathy is dependent upon virus strain and host genotype. Arch. Virol. 1986;91:247–256. doi: 10.1007/BF01314284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Bates P.A., Luo J., Sternberg M.J.E. A predicted three-dimensional structure of the carcinoembryonic antigen (CEA) FEBS Lett. 1992;301:207–214. doi: 10.1016/0014-5793(92)81249-l. [DOI] [PubMed] [Google Scholar]
- 6.Bos E.C.W., Heijnen L., Luytjes W., Spaan W.J.M. Mutational analysis of the murine coronavirus spike protein: Effect on cell-to-cell fusion. Virology. 1995;214:453–463. doi: 10.1006/viro.1995.0056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Boyle J.F., Weismiller D.G., Homes K.V. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. J. Virol. 1987;61:185–189. doi: 10.1128/jvi.61.1.185-189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Broder C.C., Kennedy P.E., Michaels F., Berger E.A. Expression of foreign genes in cultured human primary macrophages using recombinant vaccinia virus vectors. Gene. 1994;142:167–174. doi: 10.1016/0378-1119(94)90257-7. [DOI] [PubMed] [Google Scholar]
- 9.Chen D.S., Asanaka M., Yokomori K., Wang F.-I., Hwang S.B., Li H.P., Lai M.M.C. A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus. Proc. Natl. Acad. Sci. USA. 1995;92:12095–12099. doi: 10.1073/pnas.92.26.12095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Chen W., Baric R.S. Molecular anatomy of mouse hepatitis virus persistence: Coevolution of increased host cell resistance and virus virulence. J. Virol. 1996;70:3947–3960. doi: 10.1128/jvi.70.6.3947-3960.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Choe H.R., Sodroski J. Contribution of charged amino acids in the CDR2 region of CD4 to HIV-1 gp120 binding. J. Acquired Immune Defic. Syndr. 1992;5:204–210. [PubMed] [Google Scholar]
- 12.Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Compton S.R. Enterotropic strains of mouse coronavirus differ in their use of murine carcinoembryonic antigen-related glycoprotein receptors. Virology. 1994;203:197–201. doi: 10.1006/viro.1994.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Dveksler G.S., Pensiero M.N., Cardellichio C.B., Williams R.K., Jiang G.-S., Holmes K.V., Dieffenbach C.W. Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 1991;65:6881–6891. doi: 10.1128/jvi.65.12.6881-6891.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Dveksler G.S., Dieffenbach C.W., Cardellichio C.B., McCuaig K., Pensiero M.N., Jiang G.-S., Beauchemin N., Holmes K.V. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 1993;67:1–8. doi: 10.1128/jvi.67.1.1-8.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Dveksler G.S., Pensiero M.N., Dieffenbach C.W., Cardellichio C.B., Basile A.A., Elia P.E., Holmes K.V. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc. Natl. Acad. Sci. USA. 1993;90:1716–1720. doi: 10.1073/pnas.90.5.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Dveksler G.S., Basile A.A., Cardellichio C.B., Holmes K.V. Mouse hepatitis virus receptor activities of an MHVR/mph chimera and MHVR mutants lacking N-linked glycosylation of the N-terminal domain. J. Virol. 1995;69:543–546. doi: 10.1128/jvi.69.1.543-546.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Elroy-Stein O., Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc. Natl. Acad. Sci. USA. 1990;87:6743–6747. doi: 10.1073/pnas.87.17.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Falkner F.G., Moss B. Escherichia coli. J. Virol. 1988;62:1849–1854. doi: 10.1128/jvi.62.6.1849-1854.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Felgner P.L., Gadek T.R., Holm M., Roman R., Chan H.W., Wenz M., Northrop J.P., Ringold G.M., Danielsen M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA. 1987;84:7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Fuerst T.R., Niles E.G., Studier F.W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA. 1986;83:8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Gallagher T.M., Buchmeier M.J., Perlman S. Cell receptor-independent infection by a neurotropic murine coronavirus. Virology. 1992;191:517–522. doi: 10.1016/0042-6822(92)90223-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Gallagher T.M. Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. J. Virol. 1996;70:4683–4690. doi: 10.1128/jvi.70.7.4683-4690.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Gallagher T.M. A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor. J. Virol. 1997 doi: 10.1128/jvi.71.4.3129-3137.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Gombold J.L., Hingley S.T., Weiss S.R. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J. Virol. 1993;67:4504–4512. doi: 10.1128/jvi.67.8.4504-4512.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA. 1992;89:5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Harrison S.C. Cellular Receptors for Animal Viruses. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1994. CD4: The receptor for HIV. p. 33–48. [Google Scholar]
- 28.Hingley S.T., Gombold J.L., Lavi E., Weiss S.R. MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology. 1994;200:1–10. doi: 10.1006/viro.1994.1156. [DOI] [PubMed] [Google Scholar]
- 29.Hirano N., Murakami T., Fujiwara K., Matsumoto M. Utility of mouse cell line DBT for propagation and assay of mouse hepatitis virus. Jpn. J. Exp. Med. 1978;48:71–75. [PubMed] [Google Scholar]
- 30.James W., Weiss R.A., Simon J.H.M. The receptor for HIV: Dissection of CD4 and studies on putative accessory factors. In: Littman D.R., editor. The CD4 Molecule. Springer-Verlag; Berlin/Heidelberg: 1996. [DOI] [PubMed] [Google Scholar]
- 31.Kawasaki E.S. Amplification of RNA. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols. Academic Press; San Diego: 1990. pp. 21–27. [Google Scholar]
- 32.Lavi E., Gilden D.H., Highkin M.K., Weiss S.R. The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab. Anim. Sci. 1986;36:130–135. [PubMed] [Google Scholar]
- 33.Lifson J.D., Hwang K.M., Nara P.L., Fraser B., Padgett M., Dunlop N.M., Eiden L.E. Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathicity. Science. 1988;241:712–716. doi: 10.1126/science.2969619. [DOI] [PubMed] [Google Scholar]
- 34.MacGregor G.R., Nolan G.P., Fiering S., Roederer M., Herzenberg L. Use ofE. coli. In: Murray E.B., Walker J.M., editors. Gene Expression in Vivo, Methods in Molecular Biology. Humana Press; Cliffon: 1989. [Google Scholar]
- 35.Makino S., Taguchi F., Hirano N., Fujiwara K. Analysis of genomic and intracellular viral RNAs of small plaque mutants of mouse hepatitis virus, JHM strain. Virology. 1984;139:138–151. doi: 10.1016/0042-6822(84)90335-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.McCuaig K., Rosenberg M., Nedellec P., Turbide C., Beauchemin N. Expression of the Bgp gene and characterization of mouse colon biliary glycoprotein isoforms. Gene. 1993;127:173–183. doi: 10.1016/0378-1119(93)90716-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Moebius U., Clayton L.K., Abraham S., Harrison S.C., Reinherz E.L. The HIV gp120 binding site on CD4: Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high resolution CD4 atomic structure. J. Exp. Med. 1992;176:507–517. doi: 10.1084/jem.176.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Morrison M.E., He Y.-J., Wien M.W., Hogle J.M., Racaniello V.R. Homolog-scanning mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J. Virol. 1994;68:2578–2588. doi: 10.1128/jvi.68.4.2578-2588.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Moss B., Elroy-Stein O., Mizukami T., Alexander W.A., Fuerst T.R. New mammalian expression vectors. Nature. 1990;348:91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
- 40.Nash T.C., Buchmeier M.J. Spike glycoprotein-mediated fusion in biliary glycoprotein-independent cell-associated spread of mouse hepatitis virus infection. Virology. 1996;223:68–78. doi: 10.1006/viro.1996.0456. [DOI] [PubMed] [Google Scholar]
- 41.Nedellec P., Dveksler G.S., Daniels E., Turbide C., Chow B., Basile A.A., Holmes K.V., Beauchemin N. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J. Virol. 1994;68:4525–4537. doi: 10.1128/jvi.68.7.4525-4537.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Nussbaum O., Broder C.C., Berger E.A. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J. Virol. 1994;68:5411–5422. doi: 10.1128/jvi.68.9.5411-5422.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Nussbaum O., Broder C.C., Moss B., Stern L.B., Rozenblatt S., Berger E.A. Functional and structural interactions between measles virus hemagglutinin and CD46. J. Virol. 1995;69:3341–3349. doi: 10.1128/jvi.69.6.3341-3349.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Robb J.A., Bond C.W. Pathogenic murine coronaviruses. I. Characterization of biological behavior in vitro and virus-specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses. Virology. 1979;94:352–370. doi: 10.1016/0042-6822(79)90467-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1989. [Google Scholar]
- 46.Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Scharf S.J. Cloning with PCR. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols. Academic Press; San Diego: 1990. pp. 84–91. [Google Scholar]
- 48.Siddell S.G. The coronaviridae: An introduction. In: Siddell S.G., editor. The Coronaviridae. Plenum Press; New York: 1995. pp. 1–10. [Google Scholar]
- 49.Sturman L.S., Takemoto K.K. Enhanced growth of a murine coronavirus in transformed mouse cells. Infect. Immun. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Truneh A., Buck D., Cassatt D.R., Juszczak R., Kassis S., Ryu S.-E., Healey D., Sweet R., Sattentau Q. A region in domain 1 of CD4 distinct from the primary gp120 binding site is involved in HIV infection and virus-mediated fusion. J. Biol. Chem. 1991;266:5942–5948. [PubMed] [Google Scholar]
- 51.Wilson G.A.R., Dales S. In vivo and in vitro models of demyelinating disease: Efficiency of virus spread and formation of infectious centers among glial cells is genetically determined by the murine host. J. Virol. 1988;62:3371–3377. doi: 10.1128/jvi.62.9.3371-3377.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Yokomori K., Lai M.M.C. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 1992;66:6194–6199. doi: 10.1128/jvi.66.10.6194-6199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Yokomori K., Lai M.M.C. The receptor for mouse hepatitis virus in the resistant mouse strain SJL is functional: Implications for the requirement of a second factor for viral infection. J. Virol. 1992;66:6931–6938. doi: 10.1128/jvi.66.12.6931-6938.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Yokomori K., Asanaka M., Stohlman S.A., Lai M.M.C. A spike protein-dependent cellular factor other than the viral receptor is required for mouse hepatitis virus entry. Virology. 1993;196:45–56. doi: 10.1006/viro.1993.1453. [DOI] [PubMed] [Google Scholar]