Abstract
This chapter discusses in vitro and in vivo antiviral activities of antibody. Since experimentation is far easier in vitro, researchers have been sought to develop in vitro assays that are expected to predict activity in vivo. This could be important in both vaccine design and in passive antibody administration. The proposed mechanisms of in vitro neutralization range from those requiring binding of a single antibody molecule to virus to those requiring substantially complete antibody coating of virus. In vitro, antiviral activity can be separated into activity against virions and activity against infected cells. The activity against virions most often considered is neutralization that can be defined as the loss of infectivity, which ensues when antibody molecule(s) bind to a virus particle, and occurs without the involvement of any other agency. In vivo, it is conventional to distinguish phenomenologically between two types of antibody antiviral activity. One of them is the ability of antibody to protect against infection when it is present before or immediately following infection. Evidence for a number of viruses in vitro indicates that lower antibody concentrations are required to inhibit infection propagated by free virus than are required to inhibit infection propagated by cell-to-cell spread.
References
- Arthos J., Deen K.C., Chaikin M.A., Fornwald J.A., Sathe G., Sattentau Q.J., Clapham P.R., Weiss R.A., McDougal J.S., Pietropaolo C., Axel R., Truneh A., Maddon P.J., Sweet R.W. Identification of the residues in human CD4 critical for the binding of HIV. Cell. 1989;57:469–481. doi: 10.1016/0092-8674(89)90922-7. [DOI] [PubMed] [Google Scholar]
- Arthur L.O., Bess J.W., Jr., Sowder R.C., II, Benveniste R.E., Mann D.L., Chermann J.-C., Henderson L.E. Cellular proteins bound to immunodeficiency viruses: Implications for pathogenesis and vaccines. Science. 1992;258:1935–1938. doi: 10.1126/science.1470916. [DOI] [PubMed] [Google Scholar]
- Arthur L.O., Bess J.W., Jr., Urban R.G., Strominger J.L., Morton W.R., Mann D.L., Henderson L.E., Benveniste R.E. Macaques immunized with HLA-DR are protected from challenge with simian immunodeficiency virus. J. Virol. 1995;69:3117–3124. doi: 10.1128/jvi.69.5.3117-3124.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashe W.K., Notkins A.L. Kinetics of sensitization of herpes simplex virus and its relationship to the reduction in the neutralization rate constant. Virology. 1967;33:613–617. doi: 10.1016/0042-6822(67)90061-x. [DOI] [PubMed] [Google Scholar]
- Ashe W.K., Mage M., Notkins A.L. Kinetics of neutralization of sensitized herpes simplex virus with antibody fragments. Virology. 1969;37:290–293. doi: 10.1016/0042-6822(69)90210-4. [DOI] [PubMed] [Google Scholar]
- Baba T.W., Liska V., Hofmann-Lehmann R., Vlasak J., Xu W., Ayehunie S., Cavacini L.A., Posner M.R., Katinger H., Stiegler G., Bernacky B.J., Rizvi T.A., Schmidt R., Hill L.R., Keeling M.E., Lu Y., Wright J.E., Chou T.-C., Ruprecht R.M. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 2000;6:200–206. doi: 10.1038/72309. [DOI] [PubMed] [Google Scholar]
- Bachmann M.F., Kalinke U., Althage A., Freer G., Burkhart C., Roost H.-P., Aguet M., Hengartner H., Zinkernagel R.M. The role of antibody concentration and avidity in antiviral protection. Science. 1997;276:2024–2027. doi: 10.1126/science.276.5321.2024. [DOI] [PubMed] [Google Scholar]
- Balachandran N., Bacchetti S., Rawls W.E. Protection against lethal challenge of balb/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex type 2. Infect. Immun. 1982;37:1132–1137. doi: 10.1128/iai.37.3.1132-1137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldridge J.R., Buchmeier M.J. Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: Mother-to-baby transfer of humoral protection. J. Virol. 1992;66:4252–4257. doi: 10.1128/jvi.66.7.4252-4257.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bedinger P., Moriarty A., von Borstel R.C., Donovan N.J., Steimer K.S., Littman D.R. Internalization of the human immunodeficiency virus does not require the cytoplasmic domain of CD4. Nature. 1988;334:162–165. doi: 10.1038/334162a0. [DOI] [PubMed] [Google Scholar]
- Beijerinck M.W. Over een Contagium vivum fluidum als oorzaak van de vlekziekte der tabaksbladen. Versl. Gew. Verg. Wis en Natuurk. Afd., Kon. Acad. Wetensch. Amsterdam VII. 1898:229–235. [Google Scholar]
- Belnap D.M., McDermott B.M., Jr., Filman D.J., Cheng N., Trus B.L., Zuccola H.J., Racaniello V.R., Hogle J.M., Steven A.C. Vol. 97. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus; pp. 73–78. (Proc. Natl. Acad. Sci.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger E.A. HIV entry and tropism: The chemokine receptor connection. AIDS. 1997;11(Suppl A):S3–S16. [PubMed] [Google Scholar]
- Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binley J.M., Clas B., Gettie A., Vesanen M., Montefiori D.C., Sawyer L., Booth J., Lewis M., Marx P.A., Bonhoeffer S., Moore J.P. Passive infusion of immune serum into simian immunodeficiency virus-infected rhesus macaques undergoing a rapid disease course has minimal effect on plasma viremia. Virology. 2000;270:237–249. doi: 10.1006/viro.2000.0254. [DOI] [PubMed] [Google Scholar]
- Blasco R., Moss B. Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. J. Virol. 1992;66:4170–4179. doi: 10.1128/jvi.66.7.4170-4179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blondel B., Crainic R., Fichot O., Dufraisse G., Candrea A., Diamond D., Girard M., Horaud F. Mutations conferring resistance to neutralization with monoclonal antibodies in type 1 poliovirus can be located outside or inside the antibody-binding site. J. Virol. 1986;57:81–90. doi: 10.1128/jvi.57.1.81-90.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boere W.A.M., Benaissa-Trouw B.J., Harmsen T., Erich T., Kraaijeveld C.A., Snippe H. Mechanisms of monoclonal antibody-mediated protection against virulent Semliki Forest virus. J. Virol. 1985;54:546–551. doi: 10.1128/jvi.54.2.546-551.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bomsel M., Heyman M., Hocini H., Lagaye S., Belec L., Dupont C., Desgranges C. Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dlgA or IgM. Immunity. 1998;9:277–287. doi: 10.1016/s1074-7613(00)80610-x. [DOI] [PubMed] [Google Scholar]
- Booy F.P., Roden R.B.S., Greenstone H.L., Schiller J.T., Trus B.L. Two antibodies that neutralize papillomavirus by different mechanisms show distinct binding patterns at 13 Å resolution. J. Mol. Biol. 1998;281:95–106. doi: 10.1006/jmbi.1998.1920. [DOI] [PubMed] [Google Scholar]
- Boyer V., Delibrias C., Noraz N., Fischer E., Kazatchkine M.D., Desgranges C. Complement receptor type 2 mediates infection of the human CD4-negative Raji B-cell line with opsonized HIV. Scand. J. Immunol. 1992;36:879–883. doi: 10.1111/j.1365-3083.1992.tb03150.x. [DOI] [PubMed] [Google Scholar]
- Brioen P., Thomas A.A.M., Boeye A. Lack of quantitative correlation between the neutralization of poliovirus and the antibody-mediated pI shift of the virions. J. Gen. Virol. 1985;66:609–613. doi: 10.1099/0022-1317-66-3-609. [DOI] [PubMed] [Google Scholar]
- Britt W.J., Chesebro B. Use of monoclonal anti-gp70 antibodies to mimic the effects of the Rfv-3 gene in mice with Friend virus-induced leukemia. J. Immunol. 1983;130:2363–2367. [PubMed] [Google Scholar]
- Buchmeier M.J., Lewicki H.A., Talbot P.J., Knobler R.L. Murine hepatitis virus-4 (strain JHM)-induced neurologic disease is modulated in vivo by monoclonal antibody. Virology. 1984;132:261–270. doi: 10.1016/0042-6822(84)90033-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnet F.M., Keogh E.V., Lush D. The immunological reactions of the filterable viruses. Austral. J. Exp. Biol. Med. Sci. 1937;15:227–368. [Google Scholar]
- Burns J.W., Siadat-Pajouh M., Krishnaney A.A., Greenberg H.G. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science. 1996;272:104–107. doi: 10.1126/science.272.5258.104. [DOI] [PubMed] [Google Scholar]
- Burton D.R., Barbas C.F. Human antibodies from combinatorial libraries. Adv. Immunol. 1994;57:191–280. doi: 10.1016/s0065-2776(08)60674-4. [DOI] [PubMed] [Google Scholar]
- Burton D.R., Parren P.W.H.I. Vaccines and the induction of functional antibodies: Time to look beyond the molecules of natural infection? Nat. Med. 2000;6:123–125. doi: 10.1038/72200. [DOI] [PubMed] [Google Scholar]
- Burton D.R., Williamson R.A., Parren P.W.H.I. Antibody and virus: Binding and neutralization. Virology. 2000;270:1–3. doi: 10.1006/viro.2000.0239. [DOI] [PubMed] [Google Scholar]
- Burton D.R., Woof J.M. Human antibody effector function. Adv. Immunol. 1992;51:1–84. doi: 10.1016/s0065-2776(08)60486-1. [DOI] [PubMed] [Google Scholar]
- Capobianchi M.R., Fais S., Castilletti C., Gentile M., Ameglio F., Dianzani F. A simple and reliable method to detect cell membrane proteins on infectious human immunodeficiency virus type 1 particles. J. Infect. Dis. 1994;169:886–889. doi: 10.1093/infdis/169.4.886. [DOI] [PubMed] [Google Scholar]
- Chanock R.M., Crowe J.E., Jr., Murphy B.R., Burton D.R. Human monoclonal antibody Fab fragments cloned from combinatorial libraries: Potential usefulness in prevention and/or treatment of major human viral diseases. Infect. Agents Dis. 1993;2:118–131. [PubMed] [Google Scholar]
- Che Z., Olson N.H., Leippe D., Lee W.-M., Mosser A.G., Rueckert R.R., Baker T.S., Smith T.J. Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus-Fab complexes. J.Virol. 1998;72:4610–4622. doi: 10.1128/jvi.72.6.4610-4622.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Li K., Rowland R.R., Plagemann P.G. Selective antibody neutralization prevents neuropathogenic lactate dehydrogenase-elevating virus from causing paralytic disease in immunocompetent mice. J. Neurovirol. 1999;5:200–208. doi: 10.3109/13550289909022003. [DOI] [PubMed] [Google Scholar]
- Chesebro B., Wehrly K., Doig D., Nishio J. Vol. 76. 1979. Antibody-induced modulation of Friend virus cell surface antigens decreases virus production by persistent erythroleukemia cells: Influnce of the Rfv-3 gene; pp. 5784–5788. (Proc. Natl. Acad. Sci. USA). [Google Scholar]
- Collins J.J., Sackie D.M., Johnson G.R. Immunotherapy of murine leukemia. IX. The requirement for the Fc portion of antibody for successful passive serum therapy of Friend leukemia virus-induced disease. Virology. 1983;126:259–266. doi: 10.1016/0042-6822(83)90477-4. [DOI] [PubMed] [Google Scholar]
- Colonno R.J., Callahan P.L., Leippe D.M., Rueckert R.R., Tomassini J.E. Inhibition of rhinovirus attachment by neutralizing monoclonal antibodies and their Fab fragments. J. Virol. 1989;63:36–42. doi: 10.1128/jvi.63.1.36-42.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor R.I., Dinces N.B., Howell A.L., Romet-Lemonne J.-L., Pasquali J.-L., Fanger M.W. Vol. 88. 1991. Fc receptors for IgG (FcγRs) on human monocytes and macrophages are not infectivity receptors for human immunodeficiency virus type 1 (HIV-1): Studies using bispecific antibodies to target HIV-1 to various myeloid cell surface molecules, including the FcγR; pp. 9593–9597. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbeil S., Seguin C., Trudel M. Involvement of the complement system in the protection of mice from challenge with respiratory syncytial virus Long strain following passive immunization with monoclonal antibody 18A2B2. Vaccine. 1996;14:521–525. doi: 10.1016/0264-410X(95)00222-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbin A., Prats A.C., Darlix J.L., Sitbon M. A nonstructural gag-encoded glycoprotein precursor is necessary for efficient spreading and pathogenesis of murine leukemia viruses. J. Virol. 1994;68:3857–3867. doi: 10.1128/jvi.68.6.3857-3867.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crainic R., Couillin P., Blondel B., Cabau N., Boue A., Horodniceanu F. Natural variation of poliovirus neutralization epitopes. Infect. Immun. 1983;41:1217–1225. doi: 10.1128/iai.41.3.1217-1225.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowe J.E., Jr., Murphy B.R., Chanock R.M., Williamson R.A., Barbas C.F., Burton D.R. Vol. 91. 1994. Human RSV monoclonal antibody Fab is effective therapeutically when introduced directly into the lungs of RSV-infected mice; pp. 1386–1390. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalziel R.G., Lampert P.W., Talbot P.J., Buchmeier M.J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels C.A. Viral Immunology and Immunopathology. Academic Press; New York: 1975. Mechanisms of viral neutralization; pp. 79–97. [Google Scholar]
- Della-Porte A.J., Westaway E.G. A multi-hit model for the neutralization of animal viruses. J. Gen. Virol. 1977;38:1–19. doi: 10.1099/0022-1317-38-1-1. [DOI] [PubMed] [Google Scholar]
- Diamond D.C., Jameson B.A., Bonin J., Kohara M., Abe S., Itoh H., Komatsu T., Arita M., Kuge S., Nomoto A., Osterhaus A.D.M.E., Crainic R., Wimmer E. Antigenic variation and resistance to neutralization in poliovirus Type 1. Science. 1985;229:1090–1093. doi: 10.1126/science.2412292. [DOI] [PubMed] [Google Scholar]
- Dietzschold B., Kao M., Zhen Y.M., Chen Z.Y., Maul G., Fu Z.F., Rupprecht C.E., Koprowski H. Vol. 89. 1992. Delineation of putative mechanisms involved in antibody-mediated clearance of rabies virus from the central nervous system; pp. 7252–7256. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimmock N.J. Neutralization of animal viruses. Curr. Top. Microbiol. Immunol. 1993;183:1–149. doi: 10.1007/978-3-642-77849-0. [DOI] [PubMed] [Google Scholar]
- Dimmock N.J. Update on the neutralization of animal viruses. Rev. Med. Virol. 1995;5:165–179. [Google Scholar]
- Dittmer U., Brooks D.M., Hasenkrug K.J. Characterization of a live-attenuated retroviral vaccine demonstrates protection via immune mechanisms. J. Virol. 1998;72:6554–6558. doi: 10.1128/jvi.72.8.6554-6558.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dittmer U., Brooks D.M., Hasenkrug K.J. Requirement for multiple lymphocyte subsets in protection by a live-attenuated vaccine against retroviral infection. Nat. Med. 1999;5:189–193. doi: 10.1038/5550. [DOI] [PubMed] [Google Scholar]
- Dittmer U., Race B., Hasenkrug K.J. Kinetics of the development of protective immunity in mice vaccinated with a live-attenuated retrovirus. J. Virol. 1999;73:8435–8440. doi: 10.1128/jvi.73.10.8435-8440.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix R.D., Pereira L., Baringer J.R. Use of monoclonal antibody directed against herpes simplex virus glycoproteins to protect mice against acute virus-induced neurological disease. Infect. Immun. 1981;34:192–199. doi: 10.1128/iai.34.1.192-199.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubay J.W., Dubay S.R., Shin H.-J., Hunter E. Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: Requirement of precursor cleavage for glycoprotein incorporation. J. Virol. 1995;69:4675–4682. doi: 10.1128/jvi.69.8.4675-4682.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dulbecco R., Vogt M., Strickland A.G.R. A study of the basic aspects of neutralization of two animal viruses, Western equine encephalitis virus and poliomyelitis virus. Virology. 1956;2:162–205. doi: 10.1016/0042-6822(56)90017-4. [DOI] [PubMed] [Google Scholar]
- Emini E.A., Kao S.-Y., Lewis A.J., Crainic R., Wimmer E. Functional basis of poliovirus neutralization determined with monospecific neutralizing antibodies. J. Virol. 1983;46:466–474. doi: 10.1128/jvi.46.2.466-474.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emini E.A., Ostapchuk P., Wimmer E. Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization. J. Virol. 1983;48:547–550. doi: 10.1128/jvi.48.2.547-550.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelstad M., Howard S.T., Smith G.L. A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology. 1992;188:801–810. doi: 10.1016/0042-6822(92)90535-w. [DOI] [PubMed] [Google Scholar]
- Fazekas de St. Groth S. The neutralization of viruses. Adv. Virus Res. 1962;9:1–125. [Google Scholar]
- Fischer R., Liao Y.C., Hoffman K., Schillberg S., Emans N. Molecular farming of recombinant antibodies in plants. Biol. Chem. 1999;380:825–839. doi: 10.1515/BC.1999.102. [DOI] [PubMed] [Google Scholar]
- Flamand A., Raux H., Gaudin Y., Ruigrok R.W. Mechanisms of rabies virus neutralization. Virology. 1993;194:302–313. doi: 10.1006/viro.1993.1261. [DOI] [PubMed] [Google Scholar]
- Flynn D.C., Olmsted R.A., Mackenzie J.M.J., Johnston R.E. Antibody-mediated activation of Sindbis virus. Virology. 1988;166:82–90. doi: 10.1016/0042-6822(88)90149-3. [DOI] [PubMed] [Google Scholar]
- Fodor W.L., Rollins S.A., Bianco-Caron S., Rother R.P., Guilmette E.R., Burton W.V., Albrecht J.C., Fleckenstein B., Squinto S.P. The complement control protein homolog of herpesvirus saimiri regulates serum complement by inhibiting C3 convertase activity. J. Virol. 1995;69:3889–3892. doi: 10.1128/jvi.69.6.3889-3892.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forthal D.N., Landucci G., Katz J., Tilles J.G. Comparison of measles virus-specific antibodies with antibody-dependent cellular cytotoxicity and neutralizing functions. J. Infect. Dis. 1993;168:1020–1023. doi: 10.1093/infdis/168.4.1020. [DOI] [PubMed] [Google Scholar]
- Fujinami R.S., Oldstone M.B. Alterations in expression of measles virus polypeptides by antibody: Molecular events in antibody-induced antigenic modulation. J. Immunol. 1980;125:78–85. [PubMed] [Google Scholar]
- Fujinami R.S., Oldstone M.B.A. Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature. 1979;279:529–530. doi: 10.1038/279529a0. [DOI] [PubMed] [Google Scholar]
- Fujinami R.S., Rosenthal A., Lampert P.W., Zurbriggen A., Yamada M. Survival of athymic (nu/nu) mice after Theiler's murine encephalomyelitis virus infection by passive administration of neutralizing monoclonal antibody. J. Virol. 1989;63:2081–2087. doi: 10.1128/jvi.63.5.2081-2087.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujioka H., Emancipator S.N., Aikawa M., Huang D.S., Blatnik F., Karban T., Defife J., Manzanec M.B. Immunocytochemical colocalization of specific immunoglobulin A with sendai virus protein in infected polarized epithelium. J. Exp. Med. 1998;188:1223–1229. doi: 10.1084/jem.188.7.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gauduin M.-C., Parren P.W.H.I., Weir R., Barbas C.F., Burton D.R., Koup R.A. Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nature Med. 1997;3:1389–1393. doi: 10.1038/nm1297-1389. [DOI] [PubMed] [Google Scholar]
- Gelderblom H., Reupke H., Winkel T., Kunze R., Pauli G. MHC-antigens: Constituents of the envelopes of human and simian immunodeficiency viruses. Z. Naturforsch. 1987;42c:1328–1334. doi: 10.1515/znc-1987-11-1230. [DOI] [PubMed] [Google Scholar]
- Gelderblom H.R. Assembly and morphology of HIV: Potential effect of structure on viral function. AIDS. 1991;5:617–637. [PubMed] [Google Scholar]
- Gould E.A., Buckley A., Barrett A.D., Cammack N. Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. J. Gen. Virol. 1986;67:591–595. doi: 10.1099/0022-1317-67-3-591. [DOI] [PubMed] [Google Scholar]
- Green L.L., Hardy M.C., Maynard-Currie C.E., Tsuda H., Louie D.M., Mendez M.J., Abderrahim H., Noguchi M., Smith D.H., Zeng Y., David N.E., Sasai H., Garza D., Brenner D.G., Hales J.F., McGuinness R.P., Capon D.J., Klapholz S., Jakobovits A. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nature Genetics. 1994;7:13–21. doi: 10.1038/ng0594-13. [DOI] [PubMed] [Google Scholar]
- Halstead S.B. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 1979;140:527–533. doi: 10.1093/infdis/140.4.527. [DOI] [PubMed] [Google Scholar]
- Halstead S.B. Immune enhancement of viral infection. Progr. Allergy. 1982;31:301–364. [PubMed] [Google Scholar]
- Harris L.J., Larson S.B., Hasel K.W., McPherson A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry. 1997;36:1581–1597. doi: 10.1021/bi962514+. [DOI] [PubMed] [Google Scholar]
- Hasenkrug K.J., Brooks D.M., Chesebro B. Vol. 92. 1995. Passive immunotherapy for retroviral disease: Influence of major histocompatibility complex type and T-cell responsiveness; pp. 10492–10495. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkes R.A., Lafferty K.J. The enhancement of virus infectivity by antibody. Virology. 1967;33:250–261. doi: 10.1016/0042-6822(67)90144-4. [DOI] [PubMed] [Google Scholar]
- Hayashida I., Nagafuchi S., Hayashi Y., Kino Y., Mori R., Oda H., Ohtomo N., Tashiro A. Mechanism of antibody-mediated protection against herpes simplex virus infection in athymic nude mice: Requirement of Fc portion of antibody. Microbiol. Immunol. 1982;26:497–509. doi: 10.1111/j.1348-0421.1982.tb00203.x. [DOI] [PubMed] [Google Scholar]
- He Y., Bowman V.D., Mueller S., Bator C.M., Bella J., Peng X., Baker T.S., Wimmer E., Kuhn R.J., Rossman M.G. Vol. 97. 2000. Interaction of the poliovirus receptor with poliovirus; pp. 79–84. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healey D., Dianda L., Moore J.P., McDougal J.S., Moore M.J., Estess P., Buck D., Kwong P.D., Beverley P.C., Sattentau Q.J. Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4 +cells from virus binding. J. Exp. Med. 1990;172:1233–1242. doi: 10.1084/jem.172.4.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath A.W., Martins M.S., Hudson L. Monoclonal antibodies mediating viable immunofluorescence and protection against Trypanosoma cruzi infection. Trop. Med. Parasitol. 1990;41:425–428. [PubMed] [Google Scholar]
- Hemming V.G., Prince G.A., Horswood R.L., London W.T., Murphy B.R., Walsh E.E., Fischer G.W., Weisman L.E., Baron P.A., Chanock R.M. Studies of passive immunotherapy for infections of respiratory syncytial virus in the respiratory tract of a primate model. J. Infect. Dis. 1985;152:1083–1087. doi: 10.1093/infdis/152.5.1083. [DOI] [PubMed] [Google Scholar]
- Hewat E., Blaas D. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO J. 1996;15:1515–1523. [PMC free article] [PubMed] [Google Scholar]
- Hewat E., Blaas D. Structural studies on antibody interacting with viruses. Curr. Top. Microbiol. Immunol. 2001 doi: 10.1007/978-3-662-05783-4_2. (in press) [DOI] [PubMed] [Google Scholar]
- Homsy J., Meyer M., Tateno M., Clarkson S., Levy J. The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science. 1989;244:1357–1360. doi: 10.1126/science.2786647. [DOI] [PubMed] [Google Scholar]
- Hooks J.J., Burns W., Hayashi K., Geis S., Notkins A.L. Viral spread in the presence of neutralization antibody: Mechanisms of persistence in foamy virus infection. Infect. Immun. 1976;14:1172–1178. doi: 10.1128/iai.14.5.1172-1178.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoxie J.A., Fitzharris T.P., Youngbar P.R., Matthews D.M., Rackowski J.L., Radka S.F. Nonrandom association of cellular antigens with HTLV-III virions. Hum. Immunol. 1987;18:39–52. doi: 10.1016/0198-8859(87)90111-x. [DOI] [PubMed] [Google Scholar]
- Icenogle J., Shiwen H., Duke G., Gilbert S., Rueckert R., Anderegg J. Neutralization of poliovirus by a monoclonal antibody: Kinetics and stoichiometry. Virology. 1983;127:412–425. doi: 10.1016/0042-6822(83)90154-x. [DOI] [PubMed] [Google Scholar]
- Ichihashi Y. Extracellular enveloped vaccinia virus escapes neutralization. Virology. 1996;217:478–485. doi: 10.1006/viro.1996.0142. [DOI] [PubMed] [Google Scholar]
- Iorio R.M., Bratt M.A. Monoclonal antibodies to newcastle disease virus: Delineation of four epitopes on the HN Glycoprotein. J. Virol. 1983;48:440–450. doi: 10.1128/jvi.48.2.440-450.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iorio R.M., Bratt M.A. Neutralization of Newcastle disease virus by monoclonal antibodies to the Hemagglutinin-Neuraminidase Glycoprotein: Requirement for antibodies to four sites for complete neutralization. J. Virol. 1984;51:445–451. doi: 10.1128/jvi.51.2.445-451.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaacs S., Wolffe E.J., Payne L.G., Moss B. Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 1992;66:7217–7224. doi: 10.1128/jvi.66.12.7217-7224.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishizaka S.T., Piacente P., Silva J., Mishkin E.M. IgG subtype is correlated with efficiency of passive protection and effector function of anti-herpes simplex virus glycoprotein D monoclonal antibodies. J. Infect. Dis. 1995;172:1108–1111. doi: 10.1093/infdis/172.4.1108. [DOI] [PubMed] [Google Scholar]
- Jerne N.K., Avegno P. The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: Reversible and irreversible inactivation. J. Immunol. 1956;76:200–208. [PubMed] [Google Scholar]
- Johnson S., Griego S.D., Pfarr D.S., Doyle M.L., Woods R., Carlin D., Prince G.A., Koenig S., Young J.F., Dillon S.B. A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies: MEDI-493 and RSHZ19. J. Infect. Dis. 1999;180:35–40. doi: 10.1086/314846. [DOI] [PubMed] [Google Scholar]
- Karlsson G.B., Gao F., Robinson J., Hahn B., Sodroski J. Increased envelope spike density and stability are not required for the neutralization resistance of primary human immunodeficiency viruses. J. Virol. 1996;70:6136–6142. doi: 10.1128/jvi.70.9.6136-6142.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato H., Kato R., Fujihashi K., McGhee J.R. Role of mucosal antibodies in viral infections. Curr. Top. Microbiol. Immunol. 2000 doi: 10.1007/978-3-662-05783-4_11. (in press) [DOI] [PubMed] [Google Scholar]
- Kilbourne E.D., Laver W.G., Schulman J.L., Webster R.G. Antiviral activity of antiserum specific for an influeza virus neuraminidase. J. Virol. 1968;2:281–288. doi: 10.1128/jvi.2.4.281-288.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura Y. Phenotypic mixing of vesicular stomatitis virus with HVJ (Sendai Virus) Japan. J. Microbiol. 1973;17:373–381. doi: 10.1111/j.1348-0421.1973.tb00788.x. [DOI] [PubMed] [Google Scholar]
- Kingsford L. Enhanced neutralization of La Crosse Virus by the binding of specific pairs of monoclonal antibodies to the G1 glycoprotein. Virology. 1984;136:265–273. doi: 10.1016/0042-6822(84)90163-6. [DOI] [PubMed] [Google Scholar]
- Klasse P.J., Moore J.P. Quantitative model of antibody- and soluble CD4-mediated neutralization of primary isolates and T-cell line-adapted strains of human immunodeficiency virus type 1. J. Virol. 1996;70:3668–3677. doi: 10.1128/jvi.70.6.3668-3677.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kotwal G.J., Isaacs S.N., McKenzie R., Frank M.M., Moss B. Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science. 1990;250:827–830. doi: 10.1126/science.2237434. [DOI] [PubMed] [Google Scholar]
- Kreil T.R., Eibl M.M. Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. J. Virol. 1997;71:2921–2927. doi: 10.1128/jvi.71.4.2921-2927.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krummel W.M., Uhr J.W. A mathematical and experimental study of the kinetics of neutralization of bacteriophage X 174 by antibodies. J. Immunol. 1969;102:772–785. [PubMed] [Google Scholar]
- Lafferty K.J. The interaction between virus and antibody. Virology. 1963;21:61–75. doi: 10.1016/0042-6822(63)90305-2. [DOI] [PubMed] [Google Scholar]
- Lafferty K.J. The interaction between virus and antibody II. Mechanism of the reaction. Virology. 1963;21:76–90. doi: 10.1016/0042-6822(63)90306-4. [DOI] [PubMed] [Google Scholar]
- Lamarre A., Talbot P.J. Protection from lethal coronavirus infection by immunoglobulin fragments. J. Immunol. 1995;154:3975–3984. [PubMed] [Google Scholar]
- Lamarre A., Yu M.W., Chagnon F., Talbot P.J. A recombinant single chain antibody neutralizes coronavirus infectivity but only slightly delays lethal infection of mice. Eur. J. Immunol. 1997;27:3447–3455. doi: 10.1002/eji.1830271245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb R.A., Krug R.M. Orthomyxoviridiae: The viruses and their replication. In: Fields B.N., Knipe D.M., Howley P.M., Chanock R.M., Melnick J.L., Monath T.P., Roizman B., Straus S.E., editors. Lippincott-Raven Publishers; Philadelphia, PA: 1996. pp. 1353–1395. (Fields Virology). [Google Scholar]
- Lamon E.W., Powell T.J., Jr., Walia A.S., Lidin B.I., Srinivas R.V., Baskin J.G., Kearney J.F. Monoclonal IgM antibodies that inhibit primary Moloney murine sarcoma growth. J. Natl. Cancer. Inst. 1987;78:547–556. [PubMed] [Google Scholar]
- Lecomte J., Cainelli-Gebara V., Mercier G., Mansour S., Talbot P.J., Lussier G., Oth D. Protection from mouse hepatitis virus type 3-induced acute disease by an anti-nucleoprotein monoclonal antibody. Arch. Virol. 1987;97:123–130. doi: 10.1007/BF01310740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledbetter J., Nowinski R.C. Identification of the Gross cell surface antigen associated with murine leukemia virus-infected cells. J. Virol. 1977;23:315–322. doi: 10.1128/jvi.23.2.315-322.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lederman M.M., Purvis S.F., Walter E.I., Carey J.T., Medof M.E. Vol. 86. 1989. Heightened complement sensitivity of acquired immunodeficiency syndrome lymphocytes related to diminished expression of decay-accelerating factor; pp. 4205–4209. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee B., Sharron M., Blanpain C., Doranz B.J., Vakili J., Setoh P., Berg E., Liu G., Guy H.R., Durell S.R., Parmentier M., Nan Chang C., Price K., Tsang M., Doms R.W. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J. Biol. Chem. 2000;274:9617–9626. doi: 10.1074/jbc.274.14.9617. [DOI] [PubMed] [Google Scholar]
- Lee T.H., Essex M., De Noronha F., Azocar J. Neutralization of feline leukemia virus with feline antisera to leukocyte alloantigens. Cancer. Res. 1982;42:3995–3999. [PubMed] [Google Scholar]
- Lefrancois L. Protection against lethal viral infection by neutralizing and nonneutralizing monoclonal antibodies: Distinct mechanisms of action in vivo. J. Virol. 1984;51:208–214. doi: 10.1128/jvi.51.1.208-214.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemon S.M., Binn L.N. Incomplete neutralization of hepatitis A virus in vitro due to lipid-associated virions. J. Gen. Virol. 1985;66:2501–2505. doi: 10.1099/0022-1317-66-11-2501. [DOI] [PubMed] [Google Scholar]
- Letchworth G.J.I., Appleton J.A. Passive protection of mice and sheep against bluetongue virus by a neutralizing monoclonal antibody. Infect. Immun. 1983;39:208–212. doi: 10.1128/iai.39.1.208-212.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine B., Hardwick J.M., Trapp B.D., Crawford T.O., Bollinger R.C., Griffins D.E. Antibody mediated clearance of Sindbis encephalomyelitis in SCID mice: A novel mechanism for recovery from viral infection. FASEB J. 1991;5 (Abstract) [Google Scholar]
- Li L., Coelingh K.L., Britt W.J. Human cytomegalovirus neutralizing antibody-resistant phenotype is associated with reduced expression of glycoprotein. H. J. Virol. 1995;69:6047–6053. doi: 10.1128/jvi.69.10.6047-6053.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liebert U.G., Schneider-Schaulies S., Baczko K., Ter Meulen V. Antibody-induced restriction of viral gene expression in measles encephalitis in rats. J. Virol. 1990;64:706–713. doi: 10.1128/jvi.64.2.706-713.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lonberg N., Taylor L.D., Harding F.A., Trounstine M., Higgins K.M., Schramm S.R., Kuo C.-C., Mashayekh R., Wymore K., McCabe J.G., Munoz-O'Regan D., O'Donnell S.L., Lapachet E.S.G., Bengoechea T., Fishwild D.M., Carmack C.E., Kay R.M., Huszar D. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature. 1994;368:856–859. doi: 10.1038/368856a0. [DOI] [PubMed] [Google Scholar]
- Lubinski J., Nagashunmugam T., Fridman H.M. Viral interference with antibody and complement. Semin. Cell. Dev. Biol. 1998;9:329–337. doi: 10.1006/scdb.1998.0242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund O., Hansen J., Sørensen A.M., Mosekilde E., Nielsen J.O., Hansen J.E. Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection. J. Virol. 1995;69:2393–2400. doi: 10.1128/jvi.69.4.2393-2400.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel B. Reversibility of the reaction between poliovirus and neutralizing antibody of rabbit origin. Virology. 1961;14:316–328. doi: 10.1016/0042-6822(61)90317-8. [DOI] [PubMed] [Google Scholar]
- Mandel B. Neutralization of poliovirus: A hypothesis to explain the mechanism and the one-hit character of the neutralization reaction. Virology. 1976;69:500–510. doi: 10.1016/0042-6822(76)90480-3. [DOI] [PubMed] [Google Scholar]
- Manzanec M.B., Coudret C.L., Fletcher D.R. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol. 1995;69:1339–1343. doi: 10.1128/jvi.69.2.1339-1343.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manzanec M.B., Lamm M.E., Lyn D., Porter A., Bedrud J.G. Comparison of IgA versus IgG monoclonal antibodies for passive immunization of the murine respiratory tract. Virus. Res. 1992;23:1–12. doi: 10.1016/0168-1702(92)90063-f. [DOI] [PubMed] [Google Scholar]
- Maruyama T., Rodriguez L.L., Jahrling P.B., Sanchez A., Khan A., Nichol S.T., Peters C.J., Parren P.W.H.I., Burton D.R. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J. Virol. 1999;73:6024–6030. doi: 10.1128/jvi.73.7.6024-6030.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mascola J.R., Lewis M.G., Stiegler G., Harris D., Van Cott T.C., Hayes D., Louder M.K., Brown C., Sapan C.V., Frankel S.S., Lu Y., Robb M.L., Katinger H., Birx D.L. Protection of macaques against pathogenic SHIV-89.6PD by passive transfer of neutralizing antibodies. J. Virol. 1999;73:4009–4018. doi: 10.1128/jvi.73.5.4009-4018.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mascola J.R., Mathieson B.J., Zack P.M., Walker M.C., Halstead S.B., Burke D.S. Summary report: Workshop on the potential risks of antibody-dependent enhancement in human HIV vaccine trials. AIDS Res. Hum. Retroviruses. 1993;9:1175–1184. doi: 10.1089/aid.1993.9.1175. [DOI] [PubMed] [Google Scholar]
- Mascola J.R., Stiegler G., Vancott T.C., Katinger H., Carpenter C.B., Hanson C.E., Beary H., Hayes D., Frankel S.S., Birx D.L., Lewis M.G. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 2000;6:207–210. doi: 10.1038/72318. [DOI] [PubMed] [Google Scholar]
- Massey R.J., Schochetman G. Viral epitopes and monoclonal antibodies: Isolation of blocking antibodies that inhibit virus neutralization. Science. 1981;213:447–449. doi: 10.1126/science.6264601. [DOI] [PubMed] [Google Scholar]
- Mathews J.H., Roehrig J.T., Trent D.W. Role of complement and the Fc portion of immunoglobulin G in immunity to Venezuelan equine encephalomyelitis virus infection with glycoprotein-specific monoclonal antibodies. J. Virol. 1985;55:594–600. doi: 10.1128/jvi.55.3.594-600.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mbow M.L., Gilmore R.D., Jr., Titus R.G. An OspC-specific monoclonal antibody passively protects mice from tick-transmitted infection by Borrelia burgdorferi B31. Infect. Immun. 1999;67:5470–5472. doi: 10.1128/iai.67.10.5470-5472.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCullough K.C., Crowther J.R., Butcher R.N., Carpenter W.C., Brocchi E., Cappucci L., De Simone F. Immune protection against foot-and-mouth disease virus studied using virus neutralizing and non neutralizing concentrations of monoclonal antibodies. Immunology. 1986;58:421–428. [PMC free article] [PubMed] [Google Scholar]
- McCullough K.C., De Simone F., Brocchi E., Capucci L., Crowther J.R., Kihm U. Protective immune response against foot-and-mouth disease. J. Virol. 1992;66:1835–1840. doi: 10.1128/jvi.66.4.1835-1840.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCullough K.C., Parkinson D., Crowther J.R. Opsonization-enhanced phagocytosis of foot-and-mouth disease virus. Immunology. 1988;65:187–191. [PMC free article] [PubMed] [Google Scholar]
- McIntosh K., Chanock R.M. Raven Press; New York: 1990. Respiratory syncytial viruses; pp. 1045–1072. (Fields Virology). [Google Scholar]
- McKendall R.R. IgG-mediated viral clearance in experimental infection with herpes simplex virus type 1: Role for neutralization and Fc-dependent functions but not C′ cytolysis and C5 chemotaxis. J. Infect. Dis. 1985;151:464–470. doi: 10.1093/infdis/151.3.464. [DOI] [PubMed] [Google Scholar]
- McLain L., Dimmock N.J. Single- and multi-hit kinetics of immunoglobulin G neutralization of human immunodeficiency virus type 1 by monoclonal antibodies. J. Gen. Virol. 1994;75:1457–1460. doi: 10.1099/0022-1317-75-6-1457. [DOI] [PubMed] [Google Scholar]
- Megran D.W., Stiver G., Peeling R., Maclean I.W., Brunham R.C. Complement enhancement of neutralizing antibody to the structural proteins of Chlamydia trachomatis. J. Infect. Dis. 1988;158:661–663. doi: 10.1093/infdis/158.3.661. [DOI] [PubMed] [Google Scholar]
- Merkenschlager M., Buck D., Beverley P.C., Sattentau Q.J. The MHC class II-dependent activation of resting T cells is inhibited by monoclonal antibodies to CD4 regardless of whether or not they recognize epitopes involved in the binding of MHC class II or HIV gp120. Vol. 145. 1990. Functional epitope analysis of the human CD4 molecule; pp. 2839–2845. (J. Immunol.). [PubMed] [Google Scholar]
- Merz D.C., Scheid A., Choppin P.W. Immunological studies of the functions of paramyxovirus glycoproteins. Virology. 1981;109:94–105. doi: 10.1016/0042-6822(81)90474-8. [DOI] [PubMed] [Google Scholar]
- Mester J.C., Glorioso J.C., Rouse B.T. Protection against zosteriform spread of herpes simplex virus by monoclonal antibodies. J. Infect. Dis. 1991;163:263–269. doi: 10.1093/infdis/163.2.263. [DOI] [PubMed] [Google Scholar]
- Mochizuki Y., de Ming T., Hayashi T., Itoh M., Hotta H., Homma M. Protection of mice against Sendai virus pneumonia by non-neutralizing anti-F monoclonal antibodies. Micro-biol. Imunol. 1990;34:171–183. doi: 10.1111/j.1348-0421.1990.tb01002.x. [DOI] [PubMed] [Google Scholar]
- Moore J.P., Cao Y., Qing L., Sattentau Q.J., Pyati J., Koduri R., Robinson J., Barbas C.F., Burton D.R., Ho D.D. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J. Virol. 1995;69:101–109. doi: 10.1128/jvi.69.1.101-109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J.P., Ho D.D. HIV-1 neutralization: The consequences of viral adaptation to growth on transformed T cells. AIDS. 1995;9(Suppl A):S117–S136. [PubMed] [Google Scholar]
- Morens D.M., Halstead S.B., Marchette N.J. Profiles of antibody-dependent enhancement of dengue virus type 2 infection. Microb. Pathog. 1987;3:231–237. doi: 10.1016/0882-4010(87)90056-8. [DOI] [PubMed] [Google Scholar]
- Moulard M., Lortat-Jacob H., Mondor I., Roca G., Wyatt R., Sodroski J., Zhao L., Olson W., Kwong P.D., Sattentau Q.J. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J. Virol. 2000;74:1948–1960. doi: 10.1128/jvi.74.4.1948-1960.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mozdzanowska K., Furchner M., Washko G., Mozdzanowski J., Gerhard W. A pulmonary influenza virus infection in SCID mice can be cured by treatment with hemagglutinin-specific antibodies that display very low virus-neutralizing activity in vitro. J. Virol. 1997;71:4347–4355. doi: 10.1128/jvi.71.6.4347-4355.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mozdzanowska K., Maiese K., Furchner M., Gerhard W. Treatment of influenza virus-infected SCID mice with nonneutralizing antibodies specific for the transmembrane proteins matrix 2 and neuraminidase reduces the pulmonary virus titer but fails to clear the infection. Virology. 1999;254:138–146. doi: 10.1006/viro.1998.9534. [DOI] [PubMed] [Google Scholar]
- Murphy B.R., Kasel J.A., Chanock R.M. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med. 1972;286:1329–1332. doi: 10.1056/NEJM197206222862502. [DOI] [PubMed] [Google Scholar]
- Murphy B.R., Webster R.G. Orthomyxoviruses. In: Fields B.N., Knipe D.M., Howley P.M., Chanock R.M., Melnick J.L., Monath T.P., Roizman B., Straus S.E., editors. Lippincott-Raven Publishers; Philadelphia, PA: 1996. pp. 1397–1446. (Fields Virology). [Google Scholar]
- Nakanaga K., Yamanouchi K., Fujiwara K. Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice. J. Virol. 1986;59:168–171. doi: 10.1128/jvi.59.1.168-171.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakes J.E., Lausch R.N. Role of Fc fragments in antibody-mediated recovery from ocular and subcutaneous herpes simplex virus infections. Infect. Immun. 1981;33:109–114. doi: 10.1128/iai.33.1.109-114.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Old L.J., Stockert E., Boyse E.A., Geering G. Vol. 124. 1967. A study of passive immunization against a transplanted G +leukemia with specific antiserum; pp. 63–68. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
- Oldstone M.B.A. Virus neutralization and virus-induced immune complex disease. Progr. Med. Virol. 1975;19:84–119. [PubMed] [Google Scholar]
- Ollmann Saphire E., Parren P.W.H.I., Barbas C.F., III, Burton D.R., Wilson I.A. Crystallization and preliminary structure determination of an intact human immunoglobulin b12: An antibody that broadly neutralizes primary isolates of HIV-1. Acta Crystallogr. 2001 doi: 10.1107/s0907444900017376. (in press) [DOI] [PubMed] [Google Scholar]
- Orentas R.J., Hildreth J.E.K. Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Res. Hum. Retroviruses. 1993;9:1157–1165. doi: 10.1089/aid.1993.9.1157. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Demarest J.F., Vaccarezza M., Graziosi C., Bansal G.P., Koenig S., Fauci A.S. Effect of anti-V3 antibodies on cell-free and cell-to-cell human immunodeficiency virus transmission. Eur. J. Immunol. 1995;25:226–231. doi: 10.1002/eji.1830250137. [DOI] [PubMed] [Google Scholar]
- Parren P.W.H.I. Preparation of genetically engineered monoclonal antibodies for human immunotherapy. Hum. Antibod. Hybridomas. 1992;3:137–145. [PubMed] [Google Scholar]
- Parren P.W.H.I., Burton D.R. Antibodies against HIV-1 from phage display libraries: Mapping of an immune response and progress towards anti-viral immunotherapy. Chem. Immunol. 1997;65:18–56. doi: 10.1159/000319346. [DOI] [PubMed] [Google Scholar]
- Parren P.W.H.I., Ditzel H.J., Gulizia R.J., Binley J.M., Barbas C.F., Burton D.R., Mosier D.E. Protection against HIV-1 infection in hu-PBL-SCID mice by passive immunization with a neutralizing human monoclonal antibody against the gp120 CD4-binding site. AIDS. 1995;9:F1–F6. doi: 10.1097/00002030-199506000-00001. [DOI] [PubMed] [Google Scholar]
- Parren P.W.H.I., Gauduin M.-C., Koup R.A., Poignard P., Sattentau Q.J., Fisicaro P., Burton D.R. Relevance of the antibody response against human immunodeficiency virus type 1 envelope to vaccine design. Immunol. Lett. 1997;58:125–132. doi: 10.1016/s0165-2478(97)00109-0. [DOI] [PubMed] [Google Scholar]
- Parren P.W.H.I., Maruyama T., Burton D.R., Jahrling P.B. 2001. A human neutralizing antibody protects against challenge with Ebola Zaire in an animal model. Manuscript in preparation. [Google Scholar]
- Parren P.W.H.I., Marx P., Cheng-Mayer C., Harouse J., Moore J.P., Burton D.R. 2001. A neutralizing human monoclonal antibody protects macaques against challenge with a pathogenic R5 SHIV. Manuscript in preparation. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parren P.W.H.I., Mondor I., Naniche D., Ditzel H.J., Klasse P.J., Burton D.R., Sattentau Q.J. Neutralization of HIV-1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol. 1998;72:3512–3519. doi: 10.1128/jvi.72.5.3512-3519.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parren P.W.H.I., Moore J.P., Burton D.R., Sattentau Q.J. The neutralizing antibody response to HIV-1: Viral evasion and escape from humoral immunity. AIDS. 1999;13(Suppl A):S137–S162. [PubMed] [Google Scholar]
- Parren P.W.H.I., Sattentau Q.J., Burton D.R. HIV-1 antibody-Debris or virion? Nature. Med. 1997;3:366–367. doi: 10.1038/nm0497-366d. [DOI] [PubMed] [Google Scholar]
- Peeling R.W., Brunham R.C. Neutralization of Chlamydia trachomatis: Kinetics and stoichiometry. Infect. Immun. 1991;59:2624–2630. doi: 10.1128/iai.59.8.2624-2630.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philipson L. Interaction betwen poliovirus and immunoglobulins. II. Basic aspects of virus- antibody interaction. Virology. 1966;28:35–46. doi: 10.1016/0042-6822(66)90304-7. [DOI] [PubMed] [Google Scholar]
- Philipson L., Killander J., Albertsson P.-A. Interaction between poliovirus and immunoglobulins I. Detection of virus antibodies by partition in aqueous polymer phase systems. Virology. 1966;28:22–34. doi: 10.1016/0042-6822(66)90303-5. [DOI] [PubMed] [Google Scholar]
- Pincus S.H., Cole R., Ireland R., McAtee F., Fujisawa R., Portis J. Protective efficacy of nonneutralizing monoclonal antibodies in acute infection with murine leukemia virus. J. Virol. 1995;69:7152–7158. doi: 10.1128/jvi.69.11.7152-7158.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poignard P., Sabbe S., Picchio G.R., Wang M., Gulizia R.J., Katinger H., Parren P.W.H.I., Mosier D.E., Burton D.R. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity. 1999;10:431–438. doi: 10.1016/s1074-7613(00)80043-6. [DOI] [PubMed] [Google Scholar]
- Pollock D.P., Kutzko J.P., Birck-Wilson E., Williams J.L., Echelard Y., Meade H.M. Transgenic milk as a method for the production of recombinant antibodies. J. Immunol. Meth. 1999;231:147–157. doi: 10.1016/S0022-1759(99)00151-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Portis J.L., Spangrude G.J., McAtee F.J. Identification of a sequence in the unique 5′ open reading frame of the gene encoding glycosylated Gag which influences the incubation period of neurodegenerative disease induced by a murine retrovirus. J. Virol. 1994;68:3879–3887. doi: 10.1128/jvi.68.6.3879-3887.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Possee R.D., Schild G.C., Dimmock N.J. Studies on the mechanism of neutralization of influenza virus by antibody: Evidence that neutralizing antibody (anti-haemagglutinin) inactivates influenza virus in vivo by inhibiting virions transcriptase activity. J. Gen. Virol. 1982;58:373–386. doi: 10.1099/0022-1317-58-2-373. [DOI] [PubMed] [Google Scholar]
- Prince A.M. Challenges for development of hepatitis C virus vaccines. FEMS Microbiol. Rev. 1994;14:273–277. doi: 10.1111/j.1574-6976.1994.tb00099.x. [DOI] [PubMed] [Google Scholar]
- Prince G.A., Hemming V.G., Horswood R.L., Baron P.A., Chanock R.M. Effectiveness of topically administered neutralizing antibodies in experimental immunotherapy of respiratory syncytial virus infection in cotton rats. J. Virol. 1987;61:1851–1854. doi: 10.1128/jvi.61.6.1851-1854.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prince G.A., Hemming V.G., Horswood R.L., Baron P.A., Murphy B.R., Chanock R.M. Mechanism of antibody-mediated viral clearance in immunotherapy of respiratory syncytial virus infection of cotton rats. J.Virol. 1990;64:3091–3092. doi: 10.1128/jvi.64.6.3091-3092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prince G.A., Hemming V.G., Horswood R.L., Chanock R.M. Immunoprophylaxis and immunotherapy of respiratory syncytial virus infection in the cotton rat. Virus Res. 1985;3:193–206. doi: 10.1016/0168-1702(85)90045-0. [DOI] [PubMed] [Google Scholar]
- Prince G.A., Horswood R.L., Chanock R.M. Quantitative aspects of passive immunity to respiratory syncytial virus infection in infant cotton rats. J. Virol. 1985;55:517–520. doi: 10.1128/jvi.55.3.517-520.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prohaszka Z., Nemes J., Hidvegi T., Toth F.C., Kerekes K., Erdei A., Szabo J., Ujhelyi E., Thielens N., Dierich M.R., Spath P., Ghebrehiwet B., Hampl H., Kiss J., Arlaud G., Fust G. Two parallel routes of the complement-mediated antibody-dependent enhancement of HIV-1 infection. AIDS. 1997;11:949–958. doi: 10.1097/00002030-199708000-00002. [DOI] [PubMed] [Google Scholar]
- Rappaport I. An analysis of the inactivation of MS2 bacteriophage with antiserum. J. Gen. Virol. 1970;6:25–32. doi: 10.1099/0022-1317-6-1-25. [DOI] [PubMed] [Google Scholar]
- Raux H., Coulon P., Lafay F., Flamand A. Monoclonal antibodies which recognize the acidic configuration of the rabies glycoprotein at the surface of the virion can be neutralizing. Virology. 1995;210:400–408. doi: 10.1006/viro.1995.1356. [DOI] [PubMed] [Google Scholar]
- Rizzuto C.D., Sodroski J.G. Contribution of virion ICAM-1 to human immunodeficiency virus infectivity and sensitivity to neutralization. J. Virol. 1997;71:4847–4851. doi: 10.1128/jvi.71.6.4847-4851.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roben P., Moore J.P., Thali M., Sodroski J., Barbas C.F., Burton D.R. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J. Virol. 1994;68:4821–4828. doi: 10.1128/jvi.68.8.4821-4828.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson W.E., Montefiori D.C., Mitchell W.M. Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet. 1988;i:790–794. doi: 10.1016/s0140-6736(88)91657-1. [DOI] [PubMed] [Google Scholar]
- Roden R.S., Weissinger E.M., Henderson D.W., Booy F., Kirnbauer R., Mushinski J.F., Lowy D.R., Schiller J.T. Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins. J. Virol. 1994;68:7570–7574. doi: 10.1128/jvi.68.11.7570-7574.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosengard A.M., Alonso L.C., Korb L.C., Baldwin W.M., Sanfilippo F., Turka L.A., Ahearn J.M. Functional characterization of soluble and membrane-bound forms of vaccinia complement control protein. Mol. Immunol. 1999;36:685–697. doi: 10.1016/s0161-5890(99)00081-4. [DOI] [PubMed] [Google Scholar]
- Rother R.P., Rollins S.A., Fodor W.L., Albrecht J.C., Setter E., Fleckenstein B., Squinto S.P. Inhibition of complement-mediated cytolysis by the terminal complement-inhibitor of herpesvirus saimiri. J. Virol. 1994;68:730–737. doi: 10.1128/jvi.68.2.730-737.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saarlos M.N., Sullivan B.L., Czerniewski M.A., Parameswar K.D., Spear G.T. Detection of HLA-DR associated with monocytotropic, primary, and plasma isolates of human immunodeficiency virus type 1. J. Virol. 1997;71:1640–1643. doi: 10.1128/jvi.71.2.1640-1643.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saifuddin M., Ghassemi M., Patki C., Parker C.J., Spear G.T. Host cell components affect the sensitivity of HIV type 1 to complement-mediated virolysis. AIDS Res. Hum. Retroviruses. 1994;10:829–837. doi: 10.1089/aid.1994.10.829. [DOI] [PubMed] [Google Scholar]
- Saifuddin M., Parker C.J., Peeples M.E., Gorny M.K., Zolla-Pazner S., Ghassemi M., Rooney I.A., Atkinson J.P., Spear G.T. Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55and CD59in complement resistance of cell line-derived and primary isolates of HIV-1. J. Exp. Med. 1995;182:501–509. doi: 10.1084/jem.182.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakurai H., Williamson R.A., Crowe J.E., Beeler J.A., Poignard P., Bastidas R.B., Chanock R.M., Burton D.R. Human antibody responses to mature and immature forms of viral envelope in respiratory syncytial virus infection: Significance for subunit vaccines. J. Virol. 1999;73:2956–2962. doi: 10.1128/jvi.73.4.2956-2962.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanna P.P., De Logu A., Williamson R.A., Hom Y.-L., Straus S.E., Bloom F.E., Burton D.R. Protection of nude mice by passive immunization with a type-common human recombinant monoclonal antibody against HSV. Virology. 1996;215:101–106. doi: 10.1006/viro.1996.0011. [DOI] [PubMed] [Google Scholar]
- Sanner M.F. Python: A programming language for software integration and development. J. Mol. Graphics. Mod. 1999;17:57–61. [PubMed] [Google Scholar]
- Sanner M.F., Duncan B.S., Carrillo C.J., Olson A.J. Vol. 99. 1999. Integrating computation and visualization for biomolecular analysis: An example using python and AVS; pp. 401–412. (Proc. Pacific. Symp. Biocomputing). [DOI] [PubMed] [Google Scholar]
- Sanner M.F., Spehner J.-C., Olson A.J. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers. 1996;38:305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- Sattentau Q.J., Dalgleish A.G., Weiss R.A., Beverley P.C. Epitopes of the CD4 antigen and HIV infection. Science. 1986;234:1120–1123. doi: 10.1126/science.2430333. [DOI] [PubMed] [Google Scholar]
- Sattentau Q.J., Moore J.P. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med. 1995;182:185–196. doi: 10.1084/jem.182.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattentau Q.J., Zolla-Pazner S., Poignard P. Epitope exposure on functional, oligomeric HIV-1 gp41 molecules. Virology. 1995;206:713–717. doi: 10.1016/s0042-6822(95)80094-8. [DOI] [PubMed] [Google Scholar]
- Schlesinger J.J., Chapman S. Neutralizing F(ab′)2 fragments of protective monoclonal antibodies to yellow fever virus (YF) envelope protein fails to protect mice against lethal YF encephalitis. J. Gen. Virol. 1995;76:217–220. doi: 10.1099/0022-1317-76-1-217. [DOI] [PubMed] [Google Scholar]
- Schmaljohn A.L., Johnson E.D., Dalrymple J.M., Cole G.A. Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. Nature. 1982;297:70–72. doi: 10.1038/297070a0. [DOI] [PubMed] [Google Scholar]
- Schmaljohn A.L., Kokubun K.M., Cole G.A. Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus E1 glycoprotein. Virology. 1983;130:144–154. doi: 10.1016/0042-6822(83)90124-1. [DOI] [PubMed] [Google Scholar]
- Schoønning K., Lund O., Lund O.S., Hansen J.E.S. Stoichiometry of monoclonal anitbody neutralization of T-cell line-adapted human immunodeficiency virus type 1. J. Virol. 1999;73:8364–8370. doi: 10.1128/jvi.73.10.8364-8370.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schutten M., Andeweg A.C., Bosch M.L., Osterhaus A.D. Enhancement of infectivity of a non-syncytium inducing HIV-1 by sCD4 and by human antibodies that neutralize syncytium inducing HIV-1. Scand. J. Immunol. 1995;41:18–22. doi: 10.1111/j.1365-3083.1995.tb03528.x. [DOI] [PubMed] [Google Scholar]
- Scicluna L.A., McCullough K.C. Rapidity of specific antibody-antigen interactions. Scand. J. Immunol. 1999;50:167–176. doi: 10.1046/j.1365-3083.1999.00572.x. [DOI] [PubMed] [Google Scholar]
- Shibata R., Igarashi T., Haigwood N., Buckler-White A., Ogert R., Ross W., Willey R., Cho M.W., Martin M.A. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 1999;5:204–210. doi: 10.1038/5568. [DOI] [PubMed] [Google Scholar]
- Smith G.L. Vaccinia virus immune evasion. Immunol. Lett. 1999;65:55–62. doi: 10.1016/s0165-2478(98)00125-4. [DOI] [PubMed] [Google Scholar]
- Smith T.J., Chase E.S., Schmidt T.J., Olson N.H., Baker T.S. Neutralising antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature. 1996;383:350–354. doi: 10.1038/383350a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith T.J., Olson N.H., Cheng R.H., Liu H., Chase E.S., Lee W.M., Leippe D.M., Mosser A.G., Rueckert R.R., Baker T.S. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J. Virol. 1993;67:1148–1158. doi: 10.1128/jvi.67.3.1148-1158.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith T.J. Antibody interactions with rhinovirus; lessons for mechanisms of neutralization and the role of immunity in viral evolution. Curr. Top. Microbiol. Immunol. 2001 doi: 10.1007/978-3-662-05783-4_1. (in press) [DOI] [PubMed] [Google Scholar]
- Spear G.T., Sullivan B.L., Landay A.L., Lint T.F. Neutralization of human immunodeficiency virus type 1 by complement occurs by viral lysis. J.Virol. 1990;64:5869–5873. doi: 10.1128/jvi.64.12.5869-5873.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiller O.B., Hanna S.M., Devine D.V., Tufaro F. Neutralization of cytomegalovirus virions: The role of complement. J. Infect. Dis. 1997;176:339–347. doi: 10.1086/514050. [DOI] [PubMed] [Google Scholar]
- Stewart P.L., Chiu C., Huang S., Muir T., Zhao Y., Chait B., Mathias P., Nemerow G.R. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J. 1997;16:1189–1198. doi: 10.1093/emboj/16.6.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart P.L., Nemerow G.R. Recent structural solutions for antibody neutralization of viruses. Trends Microbiol. 1997;5:229–233. doi: 10.1016/S0966-842X(97)01049-4. [DOI] [PubMed] [Google Scholar]
- Stoiber H., Clivio A., Dierich M.P. Role of complement in HIV infection. Annu. Rev. Immunol. 1997;15:649–674. doi: 10.1146/annurev.immunol.15.1.649. [DOI] [PubMed] [Google Scholar]
- Stott E.J. Towards a vaccine against AIDS: Lessons from simian immunodeficiency virus vaccines. Curr. Top. Microbiol. Immunol. 1994;188:221–237. doi: 10.1007/978-3-642-78536-8_12. [DOI] [PubMed] [Google Scholar]
- Stott E.J., Bew M.H., Taylor G., Jebbett J., Collins A.P. The characterization and uses of monoclonal antibodies to respiratory syncytial virus. Dev. Biol. Stand. 1984;57:237–244. [PubMed] [Google Scholar]
- Sullivan B.L., Knopoff E.J., Saifuddin M., Takefman D.M., Saarloos M.-N., Sha B.E., Spear G.T. Susceptibility of HIV-1 plasma virus to complement-mediated lysis. J. Immunol. 1996;157:1791–1798. [PubMed] [Google Scholar]
- Sullivan B.L., Takefman D.M., Spear G.T. Complement can neutralize HIV-1 plasma virus by a C5-independent mechanism. Virology. 1998;248:173–181. doi: 10.1006/viro.1998.9289. [DOI] [PubMed] [Google Scholar]
- Sullivan N., Sun Y., Binley J., Lee J., Barbas C.F., III, Parren P.W.H.I., Burton D.R., Sodroski J. Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies. J. Virol. 1998;72:6332–6338. doi: 10.1128/jvi.72.8.6332-6338.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan N., Sun Y., Li J., Hofmann W., Sodroski J. Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. J. Virol. 1995;69:4413–4422. doi: 10.1128/jvi.69.7.4413-4422.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeda A., Tuazon C.U., Ennis F.A. Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science. 1988;242:580–583. doi: 10.1126/science.2972065. [DOI] [PubMed] [Google Scholar]
- Takefman D.M., Sullivan B.L., Sha B.E., Spear G.T. Mechanisms of resistance of HIV-1 primary isolates to complement-mediated lysis. Virology. 1998;246:370–378. doi: 10.1006/viro.1998.9205. [DOI] [PubMed] [Google Scholar]
- Taylor H.P., Armstrong S.J., Dimmock N.J. Quantitative relationships between an influenza virus and neutralizing antibody. Virology. 1987;159:288–298. doi: 10.1016/0042-6822(87)90466-1. [DOI] [PubMed] [Google Scholar]
- Thomas L.H., Cook R.S., Wyld S.G., Furze J.M., Taylor G. Passive protection of gnotobiotic calves using monoclonal antibodies directed at different epitopes on the fusion protein of bovine respiratory syncytial virus. J. Infect. Dis. 1998;177:874–880. doi: 10.1086/515234. [DOI] [PubMed] [Google Scholar]
- Tortorella D., Gewurz B.E., Furman M.H., Schust D.J., Ploegh H.L. Viral subversion of the immune system. Annu. Rev. Immunol. 2000;18:861–926. doi: 10.1146/annurev.immunol.18.1.861. [DOI] [PubMed] [Google Scholar]
- Truneh A., Buck D., Cassatt D.R., Juszczak R., Kassis S., Ryu S.E., Healey D., Sweet R., Sattentau Q. A region in domain 1 of CD4 distinct from the primary gp120 binding site is involved in HIV infection and virus-mediated fusion. J Biol. Chem. 1991;266:5942–5948. [PubMed] [Google Scholar]
- Ubol S., Levine B., Lee S.-H., Greenspan N.S., Griffin G.E. Roles of immunoglobulin valency and the heavy-chain constant domain in antibody-medicated downregulation of sindbis virus replication in persistently infected neurons. J.Virol. 1995;69:1990–1993. doi: 10.1128/jvi.69.3.1990-1993.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ugolini S., Mondor I., Parren P.W.H.I., Burton D.R., Tilley S.A., Klasse P.J., Sattentau Q.J. Inhibition of virus attachment to CD4 target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. J. Exp. Med. 1997;186:1287–1298. doi: 10.1084/jem.186.8.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderplasschen A., Hollinshead M., Smith G.L. Antibodies against vaccinia virus do not neutralize extracellular enveloped virus but prevent virus release from infected cells and comet formation. J. Gen. Virol. 1997;78:2041–2048. doi: 10.1099/0022-1317-78-8-2041. [DOI] [PubMed] [Google Scholar]
- Vanderplasschen A., Matthew E., Hollinshead M., Sim R.B., Smith G.L. Vol. 95. 1998. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope; pp. 7544–7549. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Kammen A. Beijerinck's contribution to the virus concept—An introduction. Arch. Virol. (Suppl) 1999;15:1–8. doi: 10.1007/978-3-7091-6425-9_1. [DOI] [PubMed] [Google Scholar]
- Verma R., Boleti E., George A.J. Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Meth. 1998;216:165–181. doi: 10.1016/s0022-1759(98)00077-5. [DOI] [PubMed] [Google Scholar]
- Vernon S.K., Neurath A.R., Rubin B.A. Electron microscopic studies on the structure of rabies virus. J. Ultrastruct. Res. 1972;41:29–42. doi: 10.1016/s0022-5320(72)90036-6. [DOI] [PubMed] [Google Scholar]
- Virgin H.W., IV, Bassel-Duby R., Fields B.N. Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing) J. Virol. 1988;62:4594–4604. doi: 10.1128/jvi.62.12.4594-4604.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vzorov A.N., Compans R.W. Effect of the cytoplasmic domain of the simian immunodeficiency virus envelope protein on incorporation of heterologous envelope proteins and sensitivity to neutralization. J.Virol. 2000;74:8219–8225. doi: 10.1128/jvi.74.18.8219-8225.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallis C., Melnick J.L. Virus aggregation as the cause of the non-neutralizable persistent fraction. J. Virol. 1967;1:478–488. doi: 10.1128/jvi.1.3.478-488.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallis C., Melnick J.L. Herpesvirus neutralization: Induction of the persistent fraction by insufficient antibody. Virology. 1970;42:128–137. doi: 10.1016/0042-6822(70)90245-x. [DOI] [PubMed] [Google Scholar]
- Walsh E.E., Schlesinger J.J., Brandriss M.W. Protection from respiratory syncytial virus infection in cotton rats by passive transfer of monoclonal antibodies. Infect. Immun. 1984;43:756–758. doi: 10.1128/iai.43.2.756-758.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster R.G., Laver W.G. Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. J. Immunol. 1967;99:49–55. [PubMed] [Google Scholar]
- Wege H., Dorries R., Wege H. Hybridoma antibodies to the murine coronavirus JHM: Characterization of epitopes on the peplomer protein. J. Gen. Virol. 1984;65:1931–1942. doi: 10.1099/0022-1317-65-11-1931. [DOI] [PubMed] [Google Scholar]
- Weiland E., Wieczorek-Krohmer M., Kohl D., Conzelmann K.K., Weiland F. Mono-clonal antibodies to GP5of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to GP4. Vet. Microbiol. 1999;66:171–186. doi: 10.1016/s0378-1135(99)00006-1. [DOI] [PubMed] [Google Scholar]
- Weiss L., Okada N., Haeffner-Cavaillon N., Hattori C., Faucher C., Kazatchkine M.D., Okada H. Decreased expression of the membrane inhibitor of complement-mediated cytolysis CD59 on T-lymphocytes of HIV-infected patients. AIDS. 1992;6:379–385. doi: 10.1097/00002030-199204000-00004. [DOI] [PubMed] [Google Scholar]
- Weltzin R., Hsu S.A., Mittler E.S., Georgakopoulos K., Monath T.P. Intranasal monoclonal immunoglobulin A against respiratory syncytial virus protects against upper and lower respiratory tract infections in mice. Antimicrobial Agents Chemother. 1994;38:2785–2791. doi: 10.1128/aac.38.12.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weltzin R., Traina-Dorge V., Soike K., Zhang J.Y., Mack P., Soman G., Drabik G., Monath T.P. Intranasal monoclonal IgA antibody to respiratory syncytial virus protects rhesus monkeys against upper and lower respiratory tract infection. J. Infect. Dis. 1996;174:256–261. doi: 10.1093/infdis/174.2.256. [DOI] [PubMed] [Google Scholar]
- Westaway E.G. The neutralization of arboviruses. I. Neutralization in homologous virus-serum mixtures with two group B arboviruses. Virology. 1965;26:517–527. doi: 10.1016/0042-6822(65)90313-2. [DOI] [PubMed] [Google Scholar]
- Wild F., Cathala F., Huppert J. Vesicular stomatitis virus (measles) pseudotypes: Tool for demonstrating defective measles infections. Intervirology. 1975–1976;6:185–189. doi: 10.1159/000149471. [DOI] [PubMed] [Google Scholar]
- Wilson J.A., Hevey M., Bakken R., Guest S., Bray M., Schmaljohn A.L., Hart M.K. Epitopes involved in antibody-mediated protection from Ebola Virus. Science. 2000;287:1664–1666. doi: 10.1126/science.287.5458.1664. [DOI] [PubMed] [Google Scholar]
- Winter G., Griffiths A.D., Hawkins R.E., Hoogenboom H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 1994;12:433–455. doi: 10.1146/annurev.iy.12.040194.002245. [DOI] [PubMed] [Google Scholar]
- Wright K.E., Buchmeier M.J. Antiviral antibodies attenuate T-cell-mediated immunopathology following acute lymphocytic choriomeningitis virus infection. J. Virol. 1991;65:3001–3006. doi: 10.1128/jvi.65.6.3001-3006.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H., Kwong P.D., Hendrickson W.A. Dimeric association and segmental variability in the structure of human CD4. Nature. 1997;387:527–530. doi: 10.1038/387527a0. [DOI] [PubMed] [Google Scholar]
- Zavada J., Rosenbergova M. Phenotypic mixing of vesicular stomatitis virus with fowl plague virus. Acta Virol. 1972;16:103–114. [PubMed] [Google Scholar]
- Zebedee S.L., Lamb R.A. Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol. 1988;62:2762–2772. doi: 10.1128/jvi.62.8.2762-2772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeitlin L., Whaley K.J., Sanna P.P., Moench T.R., Bastidas R., De Logu A., Williamson R.A., Burton D.R., Cone R.A. Topically applied human recombinant monoclonal IgG antibody and its Fab and F(ab′) fragments protect mice form vaginal transmission of HSV-2. Virology. 1996;225:213–215. doi: 10.1006/viro.1996.0589. [DOI] [PubMed] [Google Scholar]