Abstract
Monoclonal antibodies to the Quebec isolate of bovine coronavirus were produced and characterized. Monoclonal antibodies to both the E2 and the E3 glycoproteins were found to efficiently neutralize virus in vitro. None of the monoclonal antibodies directed against the E1 glycoprotein neutralized virus infectivity. Neutralizing monoclonal antibodies to the E2 glycoprotein were all found to immunoprecipitate gpl90, gpl00, and their intracellular precursor protein gp170. Neutralizing monoclonal antibodies to the E3 glycoprotein immunoprecipitated gp124 and showed differential reactivity to its precursor proteins gp59 and gpl 18. These monoclonal antibodies also showed differential reactivity to an apparent degradation product of E3. Neutralizing monoclonal antibodies to E2 bound to two distinct nonoverlappig antigenic domains as defined by competitive binding assays. Neutralizing monoclonal antibodies to the E3 glycoprotein also bound to two distinct antigenic sites as defined by competitive binding assays plus a third site which overlapped these regions. Other results indicated that one domain on the E3 glycoprotein could be further subdivided into two epitopes. Thus four epitopes could be defined by E3-specific monoclonal antibodies.
Footnotes
A portion of this work was presented at the Third International Coronavirus Symposium at Asilomar (1986).
References
- Bruck C., Mathot S., Portetelle D., Berte C., Franssen J.-D., Herion P., Burney A. Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology. 1982;122:342–352. doi: 10.1016/0042-6822(82)90234-3. [DOI] [PubMed] [Google Scholar]
- Cavanagh D. Structural polypeptides of coronavirus IBV. J. Gen. Virol. 1981;53:93–103. doi: 10.1099/0022-1317-53-1-93. [DOI] [PubMed] [Google Scholar]
- Cianfriglia M., Armellini D., Massone A., Mariani M. Simple immunization protocol for high frequency of soluble antigen-specific hybridomas. Hybridoma. 1983;2:451–457. doi: 10.1089/hyb.1983.2.451. [DOI] [PubMed] [Google Scholar]
- Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain 1HM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dea S., Roy R.S., Begin M.E. Bovine coronavirus isolation and cultivation in continuous cell lines. Amer. J. Vet. Res. 1980;41:30–38. [PubMed] [Google Scholar]
- Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
- Deregt D., Sabara M., Babiuk L.A. Structural proteins of bovine coronavirus and their intracellular processing. J. Gen. Virol. 1987 doi: 10.1099/0022-1317-68-11-2863. in press. [DOI] [PubMed] [Google Scholar]
- Frankel M.E., Gerhard W. The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. Mol. Immunol. 1979;16:101–106. doi: 10.1016/0161-5890(79)90051-8. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
- Hogue B.G., Brian D.A. Structural proteins of human respiratory coronavirus OC43. Virus Res. 1986;5:131–144. doi: 10.1016/0168-1702(86)90013-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogue B.G., King B., Brian D.A. Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59. J. Virol. 1984;51:384–388. doi: 10.1128/jvi.51.2.384-388.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jimenez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical expitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura-Kuroda J., Yasui K. Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies. J. Virol. 1983;45:124–132. doi: 10.1128/jvi.45.1.124-132.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King B., Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King B., Potts B.I., Brian D.A. Bovine coronavirus hemagglutinin protein. Virus Res. 1985;2:53–59. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laude H., Chapsal J.-M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
- Nakane P.K., Kawaoi A. Peroxidase-labelled antibody: A new method of conjugation. J. Histochem. Cytochem. 1974;22:1084–1091. doi: 10.1177/22.12.1084. [DOI] [PubMed] [Google Scholar]
- Robbins S.G., Frana M.F., McGowan J.J., Boyle I.F., Holmes K.V. RNA-binding proteins of coronavirus MHV: Detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology. 1986;150:402–410. doi: 10.1016/0042-6822(86)90305-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottier P.J.M., Horzinek M.C., van der Zeust B. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: Effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saunders G.C., Clinard E.H., Bartlett M.L., Sanders W.M. Application of the indirect enzyme-labelled antibody microtest to the detection and surveillance of animal diseases. J. Infect. Dis. 1977;136:5258–5266. doi: 10.1093/infdis/136.supplement_2.s258. [DOI] [PubMed] [Google Scholar]
- Siddell S.G. Coronavirius JHM: Trypic peptide finger-printing of virion proteins and intracellular polypeptides. J. Gen. Virol. 1982;62:259–269. doi: 10.1099/0022-1317-62-2-259. [DOI] [PubMed] [Google Scholar]
- Siddell S., Wege H., Barthel A., ter Meulen V. Coronavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
- Stern D.F., Burgess L., Stefton B.M. Structural analysis of virion proteins of the avian coronavirus infections bronchitis virus. J. Virol. 1982;42:208–219. doi: 10.1128/jvi.42.1.208-219.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone M.R., Nowinski R.C. Topological mapping of murine leukemia virus proteins by competition-binding assays with monoclonal antibodies. Virology. 1980;200:370–381. doi: 10.1016/0042-6822(80)90528-0. [DOI] [PubMed] [Google Scholar]
- Storz I., Kaluza G., Niemann H., Rott R. On enteropathogenic bovine coronavirus. Adv. Exp. Med. Biol. 1981;142:171–180. doi: 10.1007/978-1-4757-0456-3_14. [DOI] [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V. Characterization of a coronavirus. II. Glycoproteins of the viral envelope: Tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by tryspin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taguchi F., Massa P.T., ter Meulen V. Characterization of a variant virus isolated from neural cell culture after infection of mouse coronavirus JHMV. Virology. 1986;155:267–270. doi: 10.1016/0042-6822(86)90187-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbot P.I., Salmi A.A., Knobler R.L., Buchmeier M.J. Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (JHM): Correlation with biological activities. Virology. 1984;132:250–260. doi: 10.1016/0042-6822(84)90032-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van den Hurk J.V., Kurstak E. Characterization of Epstein-Barr nuclear antigen (EBNA). I. A new technique for the detection of EBNA or anti-EBNA antibodies and its applicability to the study of chromosome-EBNA interactions. J. Virol. Methods. 1980;1:11–26. [Google Scholar]
- Vautherot J.F., Laporte J. Utilization of monoclonal antibodies for antigenic characterization of coronavirus. Ann. Rech. Vet. 1983;14:437–444. [PubMed] [Google Scholar]
- Wege H., Dorries R., Wege H. Hybridoma antibodies to the murine coronavirus JHM: Characterization of epitopes on the peplomer protein (E2) J. Gen. Virol. 1984;65:1931–1942. doi: 10.1099/0022-1317-65-11-1931. [DOI] [PubMed] [Google Scholar]
- Wege H., Nagushima K., ter Meulen V. Structural polypeptides of the murine coronavirus JHM. J. Gen. Virol. 1979;42:37–47. doi: 10.1099/0022-1317-42-1-37. [DOI] [PubMed] [Google Scholar]