Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 23;76(3):265–270. doi: 10.1016/0300-9084(94)90156-2

Identification of a sorting signal for the regulated secretory pathway at the N-terminus of pro-opiomelanocortin

DR Cool 1, Y Peng Loh 1
PMCID: PMC7131109  PMID: 7819333

Abstract

The N-terminal 26 amino acids of the prohormone pro-opiomelanocortin (POMC) were investigated to determine whether this region has the capacity to act as a sorting signal for the regulated secretory pathway. Constructs were made using the N-terminal 101, 50, 26 or 10 amino acids of POMC fused to the chloramphenicol acetyltransferase (CAT) reporter protein and expressed in AtT20 cells to show that at least the first 26 amino acids were required to sort CAT to the regulated secretory pathway. Full length POMC was mutated by deleting amino acids 2–26 from the N-terminal region. Analysis of Neuro-2a cells expressing this mutation compared to wild type POMC indicated that these 26 amino acids contain information essential for sorting POMC to the regulated secretory pathway. The results presented here suggest the presence of a conformation-dependent signal in the N-terminal 26 amino acids of POMC responsible for sorting POMC to the regulated secretory pathway.

Keywords: prohormone, sorting signal, conformation, regulated secretion

References

  • 1.Gumbiner B., Kelly R.B. Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell. 1982;28:51–59. doi: 10.1016/0092-8674(82)90374-9. [DOI] [PubMed] [Google Scholar]
  • 2.Burgess T.L., Craik C.S., Matsuuchi L., Kelly R.B. In vitro mutagenesis of trypsinogen: role of the amino terminus in intracellular protein targeting to secretory granules. J.Cell Biol. 1987;105:658–659. doi: 10.1083/jcb.105.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Tooze S.A., Chanat E., Tooze J., Huttner W.B. Secretory granule formation. In: Loh Y.P., editor. Mechanisms of Intracellular Trafficking and Processing of Proproteins. CRC Press, Inc; Boca Raton, Fl: 1993. pp. 158–177. [Google Scholar]
  • 4.Castro M.G., Gusovsky F., Loh Y.P. Transmembrane signals mediating adrenocorticotrophin release from mouse anterior pituitary cells. Mol Cell Endocrinol. 1989;65:165–173. doi: 10.1016/0303-7207(89)90177-9. [DOI] [PubMed] [Google Scholar]
  • 5.Munro S., Pelham H. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987;48:899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  • 6.Sahagian G.G., Distler J.J., Jourdian G.W. Membrane receptor for phosphomannosyl residues. Methods Enzymol. 1982;83:392–396. doi: 10.1016/0076-6879(82)83036-x. [DOI] [PubMed] [Google Scholar]
  • 7.Jourdian G.W., Sahagian G.G., Distler J. The role of carbohydrates in the recognition and uptake of glycoproteins by mammalian cells. Biochem Soc Trans. 1981;9:510–512. doi: 10.1042/bst0090510. [DOI] [PubMed] [Google Scholar]
  • 8.Sahagian G.G. The mannose 6-phosphate receptor: function, biosynthesis and translocation. Biol Cell. 1984;51:207–214. doi: 10.1111/j.1768-322x.1984.tb00300.x. [DOI] [PubMed] [Google Scholar]
  • 9.Willingham M.C., Pastan I.H., Sahagian G.G., Jourdian G.W., Neufeld E.F. Vol. 78. 1981. Morphologic study of the internalization of a lysosomal enzyme by the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells; pp. 6967–6971. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gumbiner B., Kelly R.B. Vol. 78. 1981. Secretory granules of an anterior pituitary cell line, AtT20 contain only mature forms of corticotropin and β-lipotropin; pp. 318–322. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Heisler S., Reisine T. Forskolin stimulates adenylate cyclase activity, cyclic AMP accumulation and adrenocorticotropin secretion from mouse anterior pituitary tumor cells. J Neurochem. 1984;42:1659–1666. doi: 10.1111/j.1471-4159.1984.tb12757.x. [DOI] [PubMed] [Google Scholar]
  • 12.Seger M.A., Bennett H.P.J. Structure and bioactivity of the amino-terminal fragment of pro-opiomelanocortin. J Steroid Biochem. 1986;25:703–710. doi: 10.1016/0022-4731(86)90298-0. [DOI] [PubMed] [Google Scholar]
  • 13.Loh Y.P. Molecular mechanisms of beta-endorphin biosynthesis. Biochem Pharmacol. 1992;44:843–849. doi: 10.1016/0006-2952(92)90114-x. [DOI] [PubMed] [Google Scholar]
  • 14.Matsuuchi L., Kelly R.B. Constitutive and basal secretion from the endocrine cell line, AtT20. J Cell Biol. 1991;112:852–943. doi: 10.1083/jcb.112.5.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Schnabel E., Mains R.E., Farquhar M.G. Proteolytic processing of pro-ACTH/Endorphin begins in the Golgi complex of pituitary corticotropes and AtT20 cells. Mol Endocrinol. 1989;3:1223–1235. doi: 10.1210/mend-3-8-1223. [DOI] [PubMed] [Google Scholar]
  • 16.Schwartz J., Gibson S., White A. Regulation of ACTH secretory pathways in cultured pituitary cells. Am J Physiol. 1991;261:C793–C798. doi: 10.1152/ajpcell.1991.261.5.C793. [DOI] [PubMed] [Google Scholar]
  • 17.Castellano F., Heuser J., Marchetti S., Bruno B., Luini A. Vol. 89. 1992. Glucocorticoid stabilization of actin filaments: a possible mechanism for inhibition of corticotropin release; pp. 3775–3779. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kizer J.S., Tropsha A. A motif found in propeptides and prohormones that may target them to secretory vesicles. Biochem Biophys Res Commun. 1991;174:586–592. doi: 10.1016/0006-291x(91)91457-n. [DOI] [PubMed] [Google Scholar]
  • 19.Hilario E., Lihrmann I., Vaudry H. Characterization of the cDNA encoding pro-opiomelanocortin in the frog Rana ridibunda. Biochem Biophys Res Commun. 1990;173:653–659. doi: 10.1016/s0006-291x(05)80085-3. [DOI] [PubMed] [Google Scholar]
  • 20.Wong M., Rius R.A., Loh Y.P. Characterization of Xenopus laevis proenkephalin gene. Brain Res Mol Brain Res. 1991;11:197–205. doi: 10.1016/0169-328x(91)90028-v. [DOI] [PubMed] [Google Scholar]
  • 21.Salbert G., Chauveau I., Bonnec G., Valotaire Y., Jego P. One of the two trout proopiomelanocortin messenger RNAs potentially encodes new peptides. Mol Endocrinol. 1992;6:1605–1613. doi: 10.1210/mend.6.10.1448114. [DOI] [PubMed] [Google Scholar]
  • 22.Naude R.J., Litthauer D., Oelofsen W., Chretien M., Lazure C. The production of the Ostrich NH2-terminal POMC fragment requires cleavage at a unique signal peptidase site. Peptides. 1993;14:519–529. doi: 10.1016/0196-9781(93)90141-3. [DOI] [PubMed] [Google Scholar]
  • 23.Loh Y.P., Gritsch H.A. Evidence for intragranular processing of pro-opiocortin in the mouse pituitary intermediate lobe. Eur J Cell Biol. 1981;26:177–183. [PubMed] [Google Scholar]
  • 24.Tooze J., Tooze S.A., Fuller S.D. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells. J Cell Biol. 1987;105:1215–1226. doi: 10.1083/jcb.105.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Eipper B., Mains R.E. Structure and biosynthesis of pro-adrenocorticotropin hormone. Endocrinol Rev. 1980;1:1–27. doi: 10.1210/edrv-1-1-1. [DOI] [PubMed] [Google Scholar]
  • 26.Estivariz F.E., Friedman T.C., Chikuma T., Loh Y.P. Processing of adrenocorticotropin by two proteases in bovine intermediate lobe secretory vesicle membranes. A distinct acidic, tetrabasic residue-specific calcium-activated serine protease and a PC2-like enzyme. J Biol Chem. 1992;267:7456–7463. [PubMed] [Google Scholar]
  • 27.Estivariz F.E., Birch N.P., Loh Y.P. Generation of Lys-γ3-melanotropin from pro-opiomelanocortin by a bovine intermediate lobe secretory vesicle membrane-associated aspartic protease and purified pro-opiomelanocortin converting enzyme. J Biol Chem. 1989;264:17796–17801. [PubMed] [Google Scholar]
  • 28.Benjannet S., Rondeau N., Day R., Chretien M., Seidah N.G. Vol. 88. 1991. PC1 and PC2 are proprotein convertases capable of cleaving pro-opiomelanocortin at distinct pairs of basic residues; pp. 3564–3568. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Douglass J., Civelli O., Herbert E. Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem. 1984;53:665–715. doi: 10.1146/annurev.bi.53.070184.003313. [DOI] [PubMed] [Google Scholar]
  • 30.Seger M.A., Bennett H.P.J. Structure and bioactivity of the amino-terminal fragment of pro-opiomelanocortin. J Steroid Biochem. 1986;25:703–710. doi: 10.1016/0022-4731(86)90298-0. [DOI] [PubMed] [Google Scholar]
  • 31.Comb M., Seeburg P.H., Adelman J., Eiden L., Herbert E. Primary structure of the human met and leu-enkephalin precursor and its mRNA. Nature. 1982;295:663–666. doi: 10.1038/295663a0. [DOI] [PubMed] [Google Scholar]
  • 32.Ruppert S., Scherer G., Scutz G. Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence. Nature. 1984;304:554–557. doi: 10.1038/308554a0. [DOI] [PubMed] [Google Scholar]
  • 33.Land H., Schutz G., Schmale H., Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin neurophysin II precursor. Nature. 1982;295:299–303. doi: 10.1038/295299a0. [DOI] [PubMed] [Google Scholar]
  • 34.Benedum U.M., Lamouroux A., Konecki D.S., Rosa P., Hille A., Baeuerle P.A., Frank R., Lottspeich F., Mallet J., Huttner W.B. The primary structure of human secretogranin I (chromogranin B): comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region. EMBO J. 1987;6:1203–1211. doi: 10.1002/j.1460-2075.1987.tb02355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Tam W.H.H., Andreasson K.A., Loh Y.P. The amino-terminal sequence of pro-opiomelanocortin directs intracellular targeting to the regulated secretory pathway. Eur J Cell Biol. 1993;62:294–306. [PubMed] [Google Scholar]
  • 36.Roy P., Chevrier D., Fournier H., Racine C., Zollinger M., Crine P., Boileau G. Investigation of a possible role of the amino-terminal pro-region of pro-opiomelanocortin in its processing and targeting to secretory granules. Mol Cell Endocrinol. 1991;82:237–250. doi: 10.1016/0303-7207(91)90037-s. [DOI] [PubMed] [Google Scholar]
  • 37.Ross J., Olmsted J.B., Rosenbaum J.L. The ultrastructure of mouse neuroblastoma cells in tissue culture. Tissue Cell. 1977;7:107–136. doi: 10.1016/s0040-8166(75)80010-3. [DOI] [PubMed] [Google Scholar]
  • 38.Chanat E., Weiss U., Huttner W.B., Tooze S.A. Reduction of the disulfide bond of chromogranin B (secretogranin 1) in the trans-Golgi network causes its missorting to the constitutive secretory pathway. EMBO J. 1993;12:2159–2168. doi: 10.1002/j.1460-2075.1993.tb05864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Gerdes H.H., Rosa P., Phillips E., Baeuerle P.A., Frank R., Argos P., Huttner W.B. The primary structure of human secretogranin II, a widespread tyrosine sulfated secretory granule protein that exhibits low pH and calcium induced aggregation. J Biol Chem. 1989;264:12009–12015. [PubMed] [Google Scholar]
  • 40.Chanat E., Huttner W.B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol. 1991;115:1505–1519. doi: 10.1083/jcb.115.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kelly R.B. From organelle to organelle. Nature. 1987;326:14–15. doi: 10.1038/326014a0. [DOI] [PubMed] [Google Scholar]
  • 42.Arvan P., Castle D. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol. 1992;2:327–331. doi: 10.1016/0962-8924(92)90181-l. [DOI] [PubMed] [Google Scholar]
  • 43.Andreasson K.I., Tam W.W.H., Feurst T.O., Moss B., Loh Y.P. Production of pro-opiomelanocortin (POMC) by a vaccinia virus transient expression system and in vitro processing of the expressed prohormone by POMC-converting enzyme. FEBS Lett. 1989;248:43–47. doi: 10.1016/0014-5793(89)80428-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochimie are provided here courtesy of Elsevier

RESOURCES