Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 15;124(1):21–28. doi: 10.1016/0378-1119(93)90757-T

Identification of unusual RNA folding patterns encoded by bacteriophage T4 gene 60

Le Shu-Yun a,, Chen Jih-Hsiang b, Jacob V Maizel Jr a
PMCID: PMC7131128  PMID: 8382655

Abstract

A 50-nucleotide (nt) untranslated region (coding gap sequence) that interrupts the amino acid coding sequence in T4 gene 60, plus an additional 5 nt upstream and another 3 nt downstream from the gap sequence, shows unusual folding patterns according to RNA structure prediction. A predicted highly stable and significant hairpin structure in the 5' half of the gap sequence and a plausible tertiary structural element computed in the 3' part of the gap sequence seem significant by statistical tests on the wild-type (wt) sequence. This feature is absent in insertion, deletion and substitution variants of the gap sequence, in which template activities are markedly lower than that of the wt. The proposed feature is consistent with currently available data showing that the translational bypass of the coding gap is correlated with a stop codon involved in a stem-loop structure folded in the gap sequence. We suggest that the role of this segment in “ribosomal bypass” of a portion of the mRNA sequence is a property of its special folded structure.

Keywords: RNA structure, mRNA translation, topoisomerase, coding gap bypass

Abbreviations: aa, amino acid(s); bp, base pair(s); nt, nucleotide(s); SD, standard deviation; Sigscr, significance score; Stbscr, stability score; wt, wild type

Received by J. Marmur

References

  1. Brierley I., Digard P., Inglis S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal, requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brierley I., Rolley N.J., Jenner A.J., Inglis S.C. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 1991;220:889–902. doi: 10.1016/0022-2836(91)90361-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cech T.R., Tanner N.K., Tinoco I., Jr., Weir B.R., Zuker M., Perlman P.S. Vol. 80. 1983. Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences; pp. 3903–3907. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chamorro M., Parkin N., Varmus H.E. Vol. 89. 1992. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA; pp. 713–717. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen J.-H., Le S.-Y., Maizel J.V., Jr. A procedure for RNA pseudoknot prediction. CABIOS. 1992;8:243–248. doi: 10.1093/bioinformatics/8.3.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ten Dam E.B., Pleij C.W.A., Bosch L. RNA pseudoknots, translational frameshifting and readthrough on viral RNAs. Virus Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edery I., Petryshyn R., Sonenberg N. Activation of doublestranded RNA-dependent kinase (dsl) by the TAR region of HIV-1 mRNA: a novel translational control mechanism. Cell. 1989;56:303–312. doi: 10.1016/0092-8674(89)90904-5. [DOI] [PubMed] [Google Scholar]
  8. Esteban R., Fujimura T., Wickner R.B. Internal and terminal cisacting sites are necessary for in vitro replication of the L-A doublestranded RNA virus of yeast. EMBO J. 1989;8:947–954. doi: 10.1002/j.1460-2075.1989.tb03456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feng S., Holland E.C. HIV-1 tat trans-activation requires the loop sequence within tar. Nature. 1988;334:165–167. doi: 10.1038/334165a0. [DOI] [PubMed] [Google Scholar]
  10. Fenrick R., Malim M.H., Hauber J., Le S.-Y., Maizel J.V., Jr., Cullen B.R. Functional analysis of the Tat frans activator of human immunodeficiency virus type 2. J. Virology. 1989;63:5006–5012. doi: 10.1128/jvi.63.12.5006-5012.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang W.M., Ao S.-Z., Casjens S., Orlandi R., Zeikus R., Weiss R., Winge D., Fang M. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science. 1988;239:1005–1012. doi: 10.1126/science.2830666. [DOI] [PubMed] [Google Scholar]
  12. Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaeger J.A., Turner D.H., Zuker M. Vol. 86. 1989. Improved prediction of secondary structures for RNA; pp. 7706–7710. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karlin S., Blaisdell B.E., Brendel V. Identification of significant sequence patterns in proteins. Methods Enzymol. 1990;183:388–402. doi: 10.1016/0076-6879(90)83026-6. [DOI] [PubMed] [Google Scholar]
  15. Kirn S.-H., Suddath F.L., Quigley F.L., McPherson A., Sussman J.L., Wang A.H.J., Seeman N.C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974;185:435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  16. Kim S.-H., Cech T.R. Vol. 84. 1987. Three-dimensional model for the active site of the self-splicing rRNA precursor of Tetrahymena; pp. 8788–8792. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kozak M. Vol. 83. 1986. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes; pp. 2850–2854. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Landick R., Yanofsky C., Choo K., Phung L. Replacement of the Escherichia coli trp operon attenuation control codons alters operon expression. J. Mol. Biol. 1990;216:25–37. doi: 10.1016/S0022-2836(05)80058-0. [DOI] [PubMed] [Google Scholar]
  19. Le S.-Y., Maizel J.V., Jr. A method for assessing the statistical significance of RNA folding. J. Theor. Biol. 1989;138:495–510. doi: 10.1016/s0022-5193(89)80047-5. [DOI] [PubMed] [Google Scholar]
  20. Le S.-Y., Chen J.-H., Maizel J.V., Jr. Thermodynamic stability and statistical significance of potential stem-loop structures situated at the frameshift sites of retroviruses. Nucleic Acids Res. 1989;17:6143–6151. doi: 10.1093/nar/17.15.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Le S.-Y., Chen J.-H., Maizel J.V., Jr. Efficient searches for unusual folding regions in RNA sequences. In: Sarma R.H., Sarma M.H., editors. Vol. 1. Adenine Press; Schenectady, NY: 1990. pp. 127–136. (Structure and Methods, Human Genome Initiative and DNA Recombination). [Google Scholar]
  22. Le S.-Y., Malim M.H., Cullen B.R., Maizel J.V., Jr. A highly conserved RNA folding region coincident with the Rev response element of primate immunodeficiency viruses. Nucleic Acids Res. 1990;18:1613–1623. doi: 10.1093/nar/18.6.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Le S.-Y., Shapiro B.A., Chen J.-H., Nussinov R., Maizel J.V., Jr. RNA pseudoknots downstream from the frameshift sites of retroviruses. Gen. Anal.: Tech. Appl. 1991;8:191–205. doi: 10.1016/1050-3862(91)90013-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Malim M.H., Bohnlein S., Fenrick R., Le S.-Y., Maizel J.V., Jr., Cullen B.R. Vol. 86. 1989. Functional comparison of the Rev (rans-activators encoded by different primate immunodeficiency virus species; pp. 8222–8226. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Malim M.H., Hauber J., Le S.-Y., Maizel J.V., Jr., Cullen B.R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989;338:254–257. doi: 10.1038/338254a0. [DOI] [PubMed] [Google Scholar]
  26. Moore R., Dixon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events required for translation of gag and pol. J. Virol. 1987;61:480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McPheeters D.S., Stormo G.D., Gold L. Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J. Mol. Biol. 1988;201:517–535. doi: 10.1016/0022-2836(88)90634-1. [DOI] [PubMed] [Google Scholar]
  28. Muesing M.A., Smith D., Capon D. Regulation of mRNA accumulation by human immunodeficiency virus frans-activator protein. Cell. 1987;48:691–701. doi: 10.1016/0092-8674(87)90247-9. [DOI] [PubMed] [Google Scholar]
  29. Pleij C.W.A., Bosch L. RNA pseudoknots, structure, detection and prediction. Methods Enzymol. 1989;180:289–303. doi: 10.1016/0076-6879(89)80107-7. [DOI] [PubMed] [Google Scholar]
  30. Portier C., Philippe C., Dondon L., Grunberg-Manago M., Ebel J.P., Ehresmann B., Ehresmann C. Translational control of ribosomal protein S15. Biochim. Biophys. Acta. 1990;1050:328–336. doi: 10.1016/0167-4781(90)90190-d. [DOI] [PubMed] [Google Scholar]
  31. Starzyk R.M. A target site for translational regulation. TIBS. 1987;12:415–416. [Google Scholar]
  32. Sussman J.L., Holbrook S.R., Warrant R.W., Church G.M., Kim S.H. Crystallographic refinement. J. Mol. Biol. 1978;123:607. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
  33. Tang C.K., Draper D.E. Unusual mRNA pseudoknot structure is recognized by a protein translational represser. Cell. 1989;57:531–536. doi: 10.1016/0092-8674(89)90123-2. [DOI] [PubMed] [Google Scholar]
  34. Tiley L.S., Brown P.M., Le S.-Y., Maizel J.V., Jr., Cullen B.R. Vol. 87. 1990. Visna virus encodes a post-transcriptional regulator of viral structural gene expression; pp. 7497–7501. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Turner D.H., Sugimoto N., Jaeger J.A., Longfellow C.E., Freier S.M., Kierzek R. Vol. 52. 1987. Improved parameters for prediction of RNA structure; pp. 123–133. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  36. Weiss R.B., Huang W.M., Dunn D.M. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell. 1990;62:117–126. doi: 10.1016/0092-8674(90)90245-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 1985;184:119. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
  38. Zuker M. On finding all suboptimal foldings of RNA molecule. Science. 1989;244:48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Gene are provided here courtesy of Elsevier

RESOURCES