Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;132(2):250–260. doi: 10.1016/0042-6822(84)90032-1

Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): Correlation with biological activities

Pierre J Talbot 1, Aimo A Salmi 1,1, Robert L Knobler 1, Michael J Buchmeier 1,2
PMCID: PMC7131154  PMID: 6199888

Abstract

Monoclonal hybridoma antibodies (MAb) of defined polypeptide specificity and biological activity were used in a competition binding assay to identify antibody binding sites (epitopes) on the glycoproteins of murine hepatitis virus-4 strain JHM (MHV-4). Individual MAb were labeled with horseradish peroxidase (HRP) and used as probes in a competition enzyme immunoassay (EIA). Four topographically distinct antigenic sites were detected on the E2 glycoprotein of MHV-4. Antibodies reacting with these four determinants provisionally designated A(E2), B(E2), C(E2), and D(E2) had corresponding biological activities (M. J. Buchmeier, H. A. Lewicki, P. J. Talbot, and R. L. Knobler (1984)Virology132, 261–270). Antibodies to sites A(E2) and B(E2) mediated virus neutralization in vitro and passively protected mice against lethal virus challenge in vivo. Antibody to site C(E2) neutralized virus efficiently in vitro but did not alter disease in vivo, while antibody to site D(E2) neither neutralized nor protected. Two major nonoverlapping antigenic sites were defined on the El glycoprotein. Overlapping epitopes A(El) and B(El) constituted one site and epitope C(E1) the other.

References

  1. Bond C.W., Leibowitz J.L., Robb J.A. Pathogenic murine coronaviruses. II. Characterization of virus-specific proteins of murine coronaviruses JHMV and A59V. Virology. 1979;94:371–384. doi: 10.1016/0042-6822(79)90468-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breschkin A.M., Ahern J., White D.O. Antigenic determinants of influenza virus hemagglutinin. VIII. Topography of the antigenic regions of influenza virus hemagglutinin determined by competitive radioimmunoassay with monoclonal antibodies. Virology. 1981;113:130–140. doi: 10.1016/0042-6822(81)90142-2. [DOI] [PubMed] [Google Scholar]
  3. Bruck C., Portetelle D., Burny A., Zavada J. Topographical analysis by monoclonal antibodies of BLV-gp5l epitopes involved in viral functions. Virology. 1982;122:353–362. doi: 10.1016/0042-6822(82)90235-5. [DOI] [PubMed] [Google Scholar]
  4. Buchmeier M.J., Lewicki H.A., Talbot P.J., Knobler R.L. Murine hepatitis virus-4 (strain JHM)-induced neurologic disease is modulated in vivo by monoclonal antibody. Virology. 1984;132:261–270. doi: 10.1016/0042-6822(84)90033-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchmeier M.J., Lewicki H.A., Tomori O., Oldstone M.B.A. Monoclonal antibodies to lymphocytic choriomeningitis and Pichinde viruses: Generation, characterization, and cross-reactivity with other arenaviruses. Virology. 1981;113:73–85. doi: 10.1016/0042-6822(81)90137-9. [DOI] [PubMed] [Google Scholar]
  6. Burstin S.J., Spriggs D.R., Fields B.N. Evidence for functional domains on the reovirus type 3 hemagglutinin. Virology. 1982;117:146–155. doi: 10.1016/0042-6822(82)90514-1. [DOI] [PubMed] [Google Scholar]
  7. Carter M.J., Willcocks M.M., Loffler S., Ter Meulen V. Relationships between monoclonal antibody-binding sites on the measles virus haemagglutinin. J. Gen. Virol. 1982;63:113–120. doi: 10.1099/0022-1317-63-1-113. [DOI] [PubMed] [Google Scholar]
  8. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erickson P.F., Minier L.N., Lasher R.S. Quantitative electrophoretic transfer of polypeptides from SDS polyacrylamide gels to nitrocellulose sheets: A method for their re-use in immunoautoradiographic detection of antigens. J. Immunol. Method. 1982;51:241–249. doi: 10.1016/0022-1759(82)90263-0. [DOI] [PubMed] [Google Scholar]
  10. Frankel M., Gerhard W. The rapid determinations of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. Mol. Immunol. 1979;16:101–106. doi: 10.1016/0161-5890(79)90051-8. [DOI] [PubMed] [Google Scholar]
  11. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a Coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kimura-Kuroda J., Yasui K. Topographical analysis of antigenic determinants on envelope glycoprotein V3(E) of Japanese encephalitis virus, using monoclonal antibodies. J. Virol. 1983;45:124–132. doi: 10.1128/jvi.45.1.124-132.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knobler R.L., Dubois-Dalcq M., Haspel M.V., Claysmith A., Lampert P.W., Oldstone M.B.A. Selective localization of wild type and mutant mouse hepatitis virus (JHM strain) antigens in CNS tissue by fluorescence, light and electron microscopy. J. Neuroimmunol. 1981;1:81–92. doi: 10.1016/0165-5728(81)90010-2. [DOI] [PubMed] [Google Scholar]
  14. Knobler R.L., Lampert P.W., Oldstone M.B.A. Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature (London) 1982;298:279–280. doi: 10.1038/298279a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lampert P.W., Sims J.K., Kniazeff A.J. Mechanism of demyelination of JHM virus encephalomyelitis. Acta Neuropathol. 1973;24:76–85. doi: 10.1007/BF00691421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  18. Massey R.J., Schochetman G. Topographical analysis of viral epitopes using monoclonal antibodies: Mechanism of virus neutralization. Virology. 1981;115:20–32. doi: 10.1016/0042-6822(81)90085-4. [DOI] [PubMed] [Google Scholar]
  19. Mauch T.H. Multiple sclerosis: Two or more viruses may be involved. Science. 1977;195:768–771. doi: 10.1126/science.195.4280.768. [DOI] [PubMed] [Google Scholar]
  20. Nagashima K., Wege H., Meyermann R., Ter Meulen V. Coronavirus-induced subacute demyelinating encephalitis in rats: A morphological analysis. Acta Neuropathol. 1978;44:63–70. doi: 10.1007/BF00691641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Niemann H., Klenk H.-D. Coronavirus glycoprotein El, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roehrig J.T., Day J.W., Kinney R.M. Antigenic analysis of the surface glycoproteins of a Venezuelan equine encephalomyelitis virus (TC83) using monoclonal antibodies. Virology. 1980;118:269–278. doi: 10.1016/0042-6822(82)90346-4. [DOI] [PubMed] [Google Scholar]
  23. Rottier P.J.M., Horzinek M.C., Van Der Zeijst B.A.M. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: Effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmaljohn A.L., Johnson E.D., Dalrymple J.M., Cole G.A. Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. Nature (London) 1982;297:70–72. doi: 10.1038/297070a0. [DOI] [PubMed] [Google Scholar]
  25. Schmidt M.F.G. Acylation of viral spike glycoproteins: A feature of enveloped RNA viruses. Virology. 1982;116:327–338. doi: 10.1016/0042-6822(82)90424-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siddell S.G. Coronavirus JHM: Tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. J. Gen. Virol. 1982;62:259–269. doi: 10.1099/0022-1317-62-2-259. [DOI] [PubMed] [Google Scholar]
  27. Siddell S., Wege H., Barthel A., Ter Meulen V. Cononavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
  28. Siddell S., Wege H., Ter Meulen V. The structure and replication of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:131–163. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
  29. Sorensen O., Perry D., Dales S. In vivo and in vitro models of demyelinating diseases. III. JHM virus infection of rats. Arch. Neurol. 1980;37:478–484. doi: 10.1001/archneur.1980.00500570026003. [DOI] [PubMed] [Google Scholar]
  30. Stohlman S.A., Weiner L.P. Chronic central nervous system demyelination in mice after JHM virus infection. Neurology. 1981;31:38–44. doi: 10.1212/wnl.31.1.38. [DOI] [PubMed] [Google Scholar]
  31. Stone M.R., Nowinski R.C. Topological mapping of murine leukemia virus proteins by competition-binding assays with monoclonal antibodies. Virology. 1980;110:370–381. doi: 10.1016/0042-6822(80)90528-0. [DOI] [PubMed] [Google Scholar]
  32. Sturman L.S., Holmes K.V. Characterization of a coronavirus. II. Glycoproteins of the viral envelope: Tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28 doi: 10.1016/S0065-3527(08)60721-6. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4350–4354. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tyrrell D.A.J., Almeida J.D., Cunningham C.H., Dowdle W.R., Hofstad M.S., McIntosh K., Tajima M., Zakstilskaya L.Y.A., Easterday B.C., Kapikian A., Bingham R.W. Coronaviridae. Intervirology. 1975;5:76–82. doi: 10.1159/000149883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Volk W.A., Snyder R.M., Benjamin D.C., Wagner R.R. Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: Comparative neutralizing activity. J. Virol. 1982;42:220–227. doi: 10.1128/jvi.42.1.220-227.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wege H., Wege H., Nagashima K., Ter Meulen V. Structural polypeptides of the murine coronavirus JHM. J. Gen. Virol. 1979;42:37–47. doi: 10.1099/0022-1317-42-1-37. [DOI] [PubMed] [Google Scholar]
  39. Weiner L.P. Pathogenesis of demyelination induced by mouse hepatitis virus (JHM virus) Arch. Neurol. 1973;28:298–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  40. Wilson M.B., Nakane P.K. Recent developments in the periodate method of conjugating horseradish peroxidase (HRPO) to antibodies. In: Knapp W., Holubar K., Wick G., editors. Immunofluorescence and Related Staining Techniques. Elsevier/North Holland; New York: 1978. pp. 215–224. [Google Scholar]
  41. Yewdell J.W., Gerhard W. Antigenic characterization of viruses by monoclonal antibodies. Annu. Rev. Microbiol. 1981;35:185–206. doi: 10.1146/annurev.mi.35.100181.001153. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES