Abstract
Two cytopathogenic isolates of bovine viral diarrhea virus (cpBVDV) have been analyzed. For both viruses two regions of their genomic RNAs were found to be duplicated and rearranged. The viral genomes contain a small duplicated element (SD) derived from the genomic 5' end far downstream of its original context. This sequence is followed by a larger duplication which encompasses the region coding for the protein p80(LD), a molecular marker for cpBVDV. The SD element codes for the viral protease p20. In the case of the viruses analyzed here the aminoterminus of p80 is generated by autoproteolytic removal of the preceding SD-encoded protease. For one of the cpBVDV isolates a specific fusion protein (p28) could be identified which is composed of p20 and part of p10, another viral protein. Molecular characterization of the respective noncytopathogenic counterpart revealed that duplication and rearrangement of sequences as well as the expression of p28 and p80 are specific for the cytopathogenic virus.
Footnotes
References
- Baker J.C. Bovine viral diarrhea virus: A review. J. Amer. Vet. Med. Assoc. 1987;190:1449–1458. [PubMed] [Google Scholar]
- Banner L.R., Lai M.M.C. Random nature of coronavirus recombination in the absence of selection pressure. Virology. 1991;185:441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaucage S.L., Caruthers M.H. Deoxynucleoside phosphoramidites: A new class of key intermediates for deoxynucleotide synthesis. Tetrahedron Lett. 1981;22:1859–1862. [Google Scholar]
- Bolin S.R., McClurkin A.W., Cutup R.C., Coria M.F. Severe clinical disease induced in cattle persistently infected with noncytopathic bovine viral diarrhea virus by superinfection with cytopathic bovine viral diarrhea virus. Amer. J. Vet. Res. 1985;46:573–576. [PubMed] [Google Scholar]
- Brownlie J., Clarke M.C., Howard C.J. Experimental production of fatal mucosal disease in cattle. Vet. Rec. 1984;114:535–536. doi: 10.1136/vr.114.22.535. [DOI] [PubMed] [Google Scholar]
- Collett M.S., Larson R., Gold C., Strinck D., Anderson D.K., Purchio A.F. Molecular cloning and nucleotide sequence of the pestivirus bovine viral diarrhea virus. Virology. 1988;165:191–199. doi: 10.1016/0042-6822(88)90672-1. [DOI] [PubMed] [Google Scholar]
- Collett M.S., Larson R., Belzer S.K., Retzel E. Proteins encoded by bovine viral diarrhea virus: The genomic organization of a pestivirus. Virology. 1988;165:200–208. doi: 10.1016/0042-6822(88)90673-3. [DOI] [PubMed] [Google Scholar]
- Collett M.S., Anderson D.K., Retzel E. Comparisons of the pestivirus bovine viral diarrhea virus with members of the flaviviridae. J. Gen. Virol. 1988;69:2637–2643. doi: 10.1099/0022-1317-69-10-2637. [DOI] [PubMed] [Google Scholar]
- Collett M.S., Wiskerchen M.A., Welniak E., Belzer S.K. Bovine viral diarrhea virus genomic organization. Arch. Virol. 1991;(Suppl 3):19–27. doi: 10.1007/978-3-7091-9153-8_3. [DOI] [PubMed] [Google Scholar]
- Corapi W.V., Donis R.O., Dubovi E.J. Monoclonal antibody analyses of cytopathic and noncytopathic viruses from fatal bovine viral diarrhea virus infections. J. Virol. 1988;62:2823–2827. doi: 10.1128/jvi.62.8.2823-2827.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeMoerlooze L., Desport M., Renard A., Lecomte C., Brownlie J., Martial J.A. The coding region for the 54-kDa protein of several pestiviruses lacks host insertions but reveals a “zinc finger-like” domain. Virology. 1990;177:812–815. doi: 10.1016/0042-6822(90)90555-6. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12(1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donis R.O., Dubovi E.J. Molecular specificity of the antibody responses of cattle naturally and experimentally infected with cytopathic and noncytopathic bovine diarrhea virus biotypes. Amer. J. Vet. Res. 1987;48:1549–1554. [PubMed] [Google Scholar]
- Donis R.O., Dubovi E.J. Characterization of bovine viral diarrhea-mucosal disease virus-specific proteins in bovine cells. J. Gen. Virol. 1987;68:1597–1605. doi: 10.1099/0022-1317-68-6-1597. [DOI] [PubMed] [Google Scholar]
- Finley D., Özkaynak E., Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell. 1987;48:1035–1046. doi: 10.1016/0092-8674(87)90711-2. [DOI] [PubMed] [Google Scholar]
- Finley D., Bartel B., Varshavsky A. The tails of ublqultin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature (London) 1989;338:394–401. doi: 10.1038/338394a0. [DOI] [PubMed] [Google Scholar]
- Gorbalenya A.E., Donchenko A.P., Koonin E.V., Blino V.M. N-terminal domains of putative helicases of flaviand pestiviruses may be serine proteases. Nucleic Acids Res. 1989;17:3889–3897. doi: 10.1093/nar/17.10.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989;17:4713–4730. doi: 10.1093/nar/17.12.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greiser-Wilke I., Dittmar K.E., Liess B., Moennig V. Heterogeneous expression of the non-structural protein p80/pl 25 in cells infected with different pestiviruses. J. Gen. Virol. 1992;73:47–52. doi: 10.1099/0022-1317-73-1-47. [DOI] [PubMed] [Google Scholar]
- Gutekunst D.E., Malmquist W.A. Separation of a soluble antigen and infectious particles of bovine virus diarrhea virus and their relationship to hog cholera. Canad. J. Comp. Med. Vet. Sci. 1963;27:121–123. [PMC free article] [PubMed] [Google Scholar]
- Harlow E., Lane D. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1988. (Antibodies, A Laboratory Manual). [Google Scholar]
- Hennikoff S. In: Wu R., editor. Vol. 155. Academic Press; San Diego: 1987. Unidirectional digestion with exonuclease III in DNA sequence analysis; pp. 156–165. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Jeffreys A.J., Wilson V., Neumann R., Keyte J. Amplification of human minisatellites by the polymerase chain reaction: Towards DNA fingerprinting of single cells. Nucleic Acids Res. 1988;16:10953–10971. doi: 10.1093/nar/16.23.10953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessler S.W. In: Langone J.J., Van Vunakis H., editors. Vol. 73. Academic Press; New York: 1981. Use of protein A-bearing staphylococci for the immunoprecipitation and isolation of antigens from cells; pp. 442–459. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Khatchikian D., Orlich M., Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 1989;340:156–157. doi: 10.1038/340156a0. [DOI] [PubMed] [Google Scholar]
- King A.M.Q., Ortlepp S.A., Newman J.W.I., McCahon D. In: The Molecular Biology of the Positive Stranded RNA Viruses. Rowlands D.J., Mayo M.A., Mahy B.W.J., editors. Academic Press; London: 1987. Genetic recombination in RNA viruses; pp. 129–152. [Google Scholar]
- Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai M.M.C., Baric R.S., Makino S., Keck J.G., Egbert J., Leibowltz J.L., Stohlmann S.A. Recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazzarini R.A., Keene J.D., Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981;26:145–154. doi: 10.1016/0092-8674(81)90298-1. [DOI] [PubMed] [Google Scholar]
- Makino S., Keck J.G., Stohlmann S.A., Lai M.M.C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maniatis T., Fritsch E.F., Sambrooks S. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1989. (Molecular Cloning, A Laboratory Manual). [Google Scholar]
- Meyers G., Rümenapf T., Thiel H.-J. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology. 1989;171:555–567. doi: 10.1016/0042-6822(89)90625-9. [DOI] [PubMed] [Google Scholar]
- Meyers G., Rümenapf T., Thiel H.-J. Ubiquitin in a Togavirus. Nature (London) 1989;341:491. doi: 10.1038/341491a0. [DOI] [PubMed] [Google Scholar]
- Meyers G., Rümenapf T., Thiel H.-J. In: New Aspects of Positive Strand RNA Viruses. Brinton M.A., Heinz F.X., editors. American Society for Microbiology; Washington, DC: 1990. Insertion of ubiqultin-coding sequence identified in the RNA genome of a Togavirus; pp. 25–29. [Google Scholar]
- Meyers G., Tautz N., Dubovi E.J., Thiel H.-J. Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences. Virology. 1991;180:602–616. doi: 10.1016/0042-6822(91)90074-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Özkaynak E., Finley D., Solomon M.S., Varshavsky A. The yeast ubiquitin genes: A family of natural gene fusions. EMBO J. 1987;6:1429–1439. doi: 10.1002/j.1460-2075.1987.tb02384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pocock D.H., Howard C.J., Clarke M.C., Brownlie J. Variation in the intracellular polypeptide profiles from different isolates of bovine viral diarrhea virus. Arch. Virol. 1987;94:43–53. doi: 10.1007/BF01313724. [DOI] [PubMed] [Google Scholar]
- Purchio A.F., Larson R., Collett M.S. Characterization of bovine viral diarrhea viral proteins. J. Virol. 1984;50:666–669. doi: 10.1128/jvi.50.2.666-669.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rechsteiner M. Ubiquitin-mediated pathways for intracellular proteolysis. Annu. Rev. Cell Biol. 1987;3:1–30. doi: 10.1146/annurev.cb.03.110187.000245. [DOI] [PubMed] [Google Scholar]
- Redmann K.L., Rechsteiner M. Identification of the long ubiquitin extension as ribosomal protein S27a. Nature (London) 1989;338:438–440. doi: 10.1038/338438a0. [DOI] [PubMed] [Google Scholar]
- Renard A., Dino D., Martial J. 1987. Vaccines and diagnostics derived from bovine diarrhea virus. European Patent Application number 86870095. 6. Publication number 0208672, 14 January 1987. [Google Scholar]
- Rigby P.W.J., Dieckmann M., Thodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 1977;113:237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Rümenapf T., Meyers G., Stark R., Thiel H.-J. Hog cholera virus-Characterization of specific antiserum and identification of cDNA clones. Virology. 1989;171:18–27. doi: 10.1016/0042-6822(89)90506-0. [DOI] [PubMed] [Google Scholar]
- Rümenapf T., Stark R., Meyers G., Thiel H.-J. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J. Virol. 1991;65:589–597. doi: 10.1128/jvi.65.2.589-597.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strebel K., Beck E., Strohmaier K., Schaller H. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins. J. Virol. 1986;57:983–991. doi: 10.1128/jvi.57.3.983-991.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiel H.-J., Stark R., Weiland E., Rümenapf T., Meyers G. Hog cholera virus: Molecular composition of virions from a pestivirus. J. Virol. 1991;65:4705–4712. doi: 10.1128/jvi.65.9.4705-4712.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wengler G. In: Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses. Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., editors. Springer-Verlag; Berlin: 1991. Family Flaviviridae. [Google Scholar]
- Wiskerchen M.A., Belzer S.K., Collett M.S. Pestivirus gene expression: The first protein of the bovine viral diarrhea virus large open reading frame, p20, possesses proteolytic activity. J. Virol. 1991;65:4508–4514. doi: 10.1128/jvi.65.8.4508-4514.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiskerchen M.A., Collett M.S. Pestivirus gene expression: Protein p80 of bovine viral diarrhea virus is a proteinase involved in polyprotein processing. Virology. 1991;184:341–350. doi: 10.1016/0042-6822(91)90850-b. [DOI] [PubMed] [Google Scholar]