Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;176(1):70–80. doi: 10.1016/0042-6822(90)90231-F

Immunoglobulin Fc binding activity is associated with the mouse hepatitis virus E2 peplomer protein

Emilia L Oleszak 1,1, Julian L Leibowitz 1
PMCID: PMC7131168  PMID: 2158698

Abstract

Antigenic variation among murine coronaviruses is associated primarily with the surface peplomer protein E2 (180,000 Dal. E2 is responsible for attachment of the virus to the host cell, MHV-induced cell fusion, and eliciting neutralizing antibody. We report here the molecular mimicry between E2 and Fc γ receptor (FcγR). Molecular mimicry between E2 and FcyR may allow the escape of virus-infected cells from destruction by immunological mechanisms. Rabbit IgG, monoclonal rat IgG1 and IgG2b, monoclonal mouse IgG2a and IgG2b, and the rat anti-mouse FcγR monoclonal antibody 2.4132 immunoprecipitated from MHV-JHM-infected cells a polypeptide with a molecular mass identical to that immunoprecipitated by anti-E2 antibodies. F(ab′)2 fragments of rabbit IgG did not immunoprecipitate any proteins from MHV-infected cells. All of these antibodies did not immunoprecipitate any proteins from uninfected cells. The anti-mouse FcyR monoclonal antibody 2.4132 immunoprecipitated from MHV-JHM-, MHV-3-, or MHV-A59-infected L-2 cells and 17CL-1 cells, or MHV-JHM-infected cultures of neonatal BALB/c brain cells, a protein with a molecular weight identical to that of MHV-JHM E2. The anti-FcyR monoclonal antibody did not immunoprecipitate any proteins from uninfected cells. Furthermore, the 2.4132 monoclonal antibody (mab), unrelated rat and mouse monoclonal antibodies, and a goat antiserum against E2, but not normal goat serum, immunoprecipitated a 75,000- to 77,000-Da molecule from uninfected WEHI-3 cells, a FcγR bearing cell line. Several lines of evidence demonstrated that the protein immunoprecipitated by the anti-FcγR mab from MHV-JHM-infected cells is the E2 glycoprotein: (1) Partial proteolytic maps obtained by Staphylococcus aureus V-8 protease treatment of the 180,000-Da proteins immunoprecipitated by the anti FcγR mab and the anti-E2 mab were identical. (2) Sequential immunoprecipitation experiments from MHV-JHM-infected cells revealed that the same polypeptide chain was recognized by the anti-E2 mab and by the anti-FcγR mab 2.41G2. (3) Actinomycin D did not influence the induction and expression of the 180,000-Da polypeptide chain that was immunoprecipitated by the anti-FcγR mab, demonstrating that this protein is of viral origin.

References

  1. Adams D.O., Hall T., Steplewski S., Koprowski H. Vol. 81. 1984. Tumors undergoing rejection induced by monoclonal antibodies of the IgG2a isotype contained increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis; pp. 3506–3510. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler R., Glorioso J.C., Cossman J., Levine M. Possible role of Fc receptores on cells infected and transformed by herspesvirus: Escape from immune cytolysis. Infect. Immun. 1978;21:442–447. doi: 10.1128/iai.21.2.442-447.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bond C.W., Anderson K., Leibowitz J.L. Protein synthesis in cells infected by murine hepatitis viruses JHM and A59: Tryptic peptide analysis. Arch. Virol. 1984;80:333–347. doi: 10.1007/BF01311223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleveland D.W., Fischer S.G., Kirschner M.W., Laemmli U.K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 1977;252:1102–1106. [PubMed] [Google Scholar]
  5. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dayhoff M.0., Barker W.C., Hunt L.T. Establishing homologies in protein sequences. In: Hirs C.H.W., Timasheff S.N., editors. Vol. 91. Academic Press; San Diego: 1983. pp. 524–545. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  7. Diamond B., Yelton D.E. A new Fc receptor on mouse macrophages binding IgG3. J. Exp. Med. 1981;153:514–519. doi: 10.1084/jem.153.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickler H.B., Sachs D.H. Evidence for identity or close association of the Fc receptor of lymphocytes and alloantigens determined by the Ir region of the H-2 complex. J. Exp. Med. 1974;140:779–796. doi: 10.1084/jem.140.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dyrberg T., Oldstone M.B.A. Peptides as probes to study molecular mimicry and virus-induced autoimmunity. Curr. Top. Microbiol. Immunol. 1986;130:25–37. doi: 10.1007/978-3-642-71440-5_3. [DOI] [PubMed] [Google Scholar]
  10. Eizuru Y., Minamishima Y. Induction of Fc (IgG) receptor(s) by simian cytomegaloviruses in human embryonic lung fibroblasts. Intervirology. 1988;29:339–345. doi: 10.1159/000150065. [DOI] [PubMed] [Google Scholar]
  11. Frana M.F., Behnke J.N., Sturman L.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Host dependent differences in proteolytic cleavage and cell fusion. J. Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gallo D. Elimination of Fc receptor binding of human immunoglobulin G in immunofluorescence assay for Herpes simplex virus antibodies. J. Clin. Microbiol. 1886;24:672–674. doi: 10.1128/jcm.24.4.672-674.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garnier J., Osguthorpe D.J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 1978;120:97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  14. Hibbs M.L., Walker I.D., Kirschbaum L., Pieteresz G.A., Deacon N.J., Chambers G.W., McKenzie I.F.C., Hogarth P.M. Vol. 83. 1986. The murine Fc receptor for immunoglobulin: Purification, partial amino-acid sequence, and isolation of cDNA clones; pp. 6980–6984. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hogarth P.M., Hibbs M.L., Bonadonna L., Scott B.M., Witort E., Pietersz G.A., McKenzie I.F.C. The mouse Fc receptor for IgG (Ly-17): Molecular cloning and specificity. Immunogenetics. 1987;26:161–168. doi: 10.1007/BF00365906. [DOI] [PubMed] [Google Scholar]
  16. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of coronavirus glycoprotein; demonstration of a novel type of glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubscher T., Eisen A.H. Allergen binding to human peripheral leukocytes. Int. Arch. Allergy Appl. Immunol. 1971;41:689–699. doi: 10.1159/000230561. [DOI] [PubMed] [Google Scholar]
  18. Johansson P.J.H., Blomberg J. Absence of host-cell influence on binding specificity of Herpes simplex virus 1 induced Fc receptor. Acta Pathol. Microbiol. Immunol. Scand. Sect. C. 1987;95:113–116. doi: 10.1111/j.1699-0463.1987.tb00017.x. [DOI] [PubMed] [Google Scholar]
  19. Johnson D.C., Feenstra V. Identification of a novel Herpes simplex virus type 1—induced glycoprotein which complexes with gE and binds immunoglobulin. J. Virol. 1987;61:2208–2216. doi: 10.1128/jvi.61.7.2208-2216.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson D.C., Frame M.C., Ligas M.W., Cross A.M., Stew N.D. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gl. J. Virol. 1988;62:1347–1354. doi: 10.1128/jvi.62.4.1347-1354.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knobler R.L., Haspel M.V., Oldstone M.B.A. Mouse hepatitis virus type 4 (JHM strain) induced fatal central nervous system disease. I. Genetic control and murine neuron as the susceptible site of disease. J. Exp. Med. 1981;153:832–843. doi: 10.1084/jem.153.4.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kung P.C., Goldstein G., Reinherz E.L., Schlossman S.F. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979;206:347–349. doi: 10.1126/science.314668. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U.K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol. 1973;80:575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  24. Lampert P.W., Sims J.K., Kniazeff A.J. Mechanism of demyelination in JHM virus encephalomyelitis. Electron microscope studies. Acta. Neuropathol. 1973;24:76–85. doi: 10.1007/BF00691421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leibowitz J.L., De Vries J.D., Rodriguez M. Increased hepatotropism of mutants of MHV, strain JHM, selected with monoclonal antibodies. In: Lai M.M.C., Stohlman S.A., editors. Vol. 218. Plenum; New York: 1986. pp. 321–331. (Advances in Experimental Medicine and Biology). [DOI] [PubMed] [Google Scholar]
  26. Leibowitz J.L., De Vries J.R. Synthesis of virus-specific RNA in permeabilized murine coronavirus-infected cells. Virology. 1988;166:66–75. doi: 10.1016/0042-6822(88)90147-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. LePrevost C., Levy-Leblond E., Virelizier J.L., Dupuy J.M. Immunopathology of mouse hepatitis virus type 3 infection. I. Role of humoral and cell mediated immunity in resistance mechanisms. J. Immunol. 1975;114:221–225. [PubMed] [Google Scholar]
  28. Leslie R.G.Q. Complex aggregation: A critical event in macrophage handling of soluble immune complexes. Immunol. Today. 1985;6:183–187. doi: 10.1016/0167-5699(85)90113-6. [DOI] [PubMed] [Google Scholar]
  29. Levy G.A., Leibowitz J.L., Edgington T.S. The induction of monocyte procoagulant activity by murine hepatitis virus (MHV-3) parallels disease susceptibility in mice. J. Exp. Med. 1981;154:1150–1163. doi: 10.1084/jem.154.4.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Levy-Leblond E., Oth A., Dupuy J.M. Genetic study of mouse sensitivity to MHV-3 infection: influence of the H-2 complex. J. Immunol. 1979;119:1359–1362. [PubMed] [Google Scholar]
  31. Lewis V.A., Koch T., Plutner H., Mellman I. A complementary DNA clone for a macrophage-lymphocyte Fc receptor. Nature (London) 1986;324:372–375. doi: 10.1038/324372a0. [DOI] [PubMed] [Google Scholar]
  32. Longnecker R., Chatterjee R.S., Whitley R.J., Roizman B. Vol. 84. 1987. Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture; pp. 4303–4307. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., Van Der Zeijst B.A.M., Horzinek M.C., Spaan W.J.M. Primarystructure of the glycoprotein E2 of the coronavirus MHV-A59 and the identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McCarthy K.D., De Vellis J. Preparation of separate astroglial and oligodenroglial cell cultures from rat cerebral tissue. J. Cell Biol. 1980;85:890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mellman I.S., Unkeless J.C. Purification of a functional mouse Fc receptor through the use of a monoclonal antibody. J. Exp. Med. 1980;152:1048–1069. doi: 10.1084/jem.152.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mellman I.S., Plutner H., Steinman R., Unkeless J.C., Cohn Z.A. Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis. J. Cell Biol. 1983;96:887–895. doi: 10.1083/jcb.96.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Murayama T., Natsuume-Sakai S., Shimdkawa K., Furnakawa T. Fc receptor(s) induced by human cytomegalovirus bind differentially with human immunoglobulin G subclasses. J. Gen. Virol. 1986;67:1475–1478. doi: 10.1099/0022-1317-67-7-1475. [DOI] [PubMed] [Google Scholar]
  38. Nanno M., Seki H., Bao Y., Ioannides C., Morkowski J., Platsoucas C.D. Development of a monoclonal antibody specific for the gamma chain of the T-cell antigen receptor using an open reading frame expression vector. Hybridoma. 1989;8:277–291. doi: 10.1089/hyb.1989.8.277. [DOI] [PubMed] [Google Scholar]
  39. Nathan C.F., Murray H.W., Cohn Z.A. The macrophage as an effector cell. N. Engl. J. Med. 1980;303:622–626. doi: 10.1056/NEJM198009113031106. [DOI] [PubMed] [Google Scholar]
  40. Nisonoff A., Markur G., Dissler F.C. Separation of univalent fragments of rabbit antibody by reduction of a single, labile, disulphide bond. Nature (London) 1961;189:293–295. doi: 10.1038/189293a0. [DOI] [PubMed] [Google Scholar]
  41. Ogata M., Shigeta S. Appearance of immunoglobulin G Fc receptor in cultured human cells infected with varicella-zoster virus. Infect. Immun. 1979;26:770–774. doi: 10.1128/iai.26.2.770-774.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Para M.F., Goldstein L., Spear P.G. Similarities and differences in the Fc binding glycoprotein (gE) of Herpes simplex virus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein. J. Virol. 1982;41:137–144. doi: 10.1128/jvi.41.1.137-144.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Platsoucas C.D. Human T cell antigens involved in cytotoxicity against allogeneic or autologous chemically modified targets. Association of the Leu2a/T8 antigen with effector-target cell binding and of the T3/Leu4 antigen with triggering. Eur. J. Immunol. 1984;14:566–577. doi: 10.1002/eji.1830140615. [DOI] [PubMed] [Google Scholar]
  44. Reinherz E.L., Kung P.C., Goldstein G., Schlossman S.F. Vol. 76. 1979. Separation of functional subsets of human T cells by a monoclonal antibody; pp. 4061–4065. (Proc. Natl. Acad. Sci. USA). [PubMed] [Google Scholar]
  45. Ricard C.S., Sturman L.S. Isolation of the subunits of the coronavirus envelope glycoprotein E2 by hydroxyapatite highperformance liquid chromatography. J. Chromatogr. 1985;326:191–197. doi: 10.1016/S0021-9673(01)87445-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Robb J.A., Bond C.W. Pathogenic murine coronaviruses. I. Characterization of biological behavior in vitro and virusspecific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses. Virology. 1979;94:352–370. doi: 10.1016/0042-6822(79)90467-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Robb J.A., Bond C.W., Leibowitz J.L. Pathogenic murine coronaviruses. III. Biological and biochemical characterization of temperature-sensitive mutants of JHMV. Virology. 1979;94:385–399. doi: 10.1016/0042-6822(79)90469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rothels K.H., Axelrad A.A., Siminovitch L., McCulloch F.A., Parker R.C. Vol. 3. 1959. The origin of altered cell lines from mouse, monkey, and man as indicated by chromosome and transplantation studies; pp. 189–214. (Canad. Cancer Conf.). [Google Scholar]
  49. Schmidt I., Skinner M., Siddell S.G. Nucleotide sequence of the gene encoding the surface projection glycoprotein of the coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  50. Siddell S., Wege H., Barthel A., ter Meulen V. Coronavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
  51. Sorensen O., Dugre R., Percy D., Dales S. In vivo and in vitro models of demyelinating diseases: Endogenous factors influencing demyelinating disease caused by murine hepatitis virus in rats and mice. Infect. Immun. 1982;37:1248–1260. doi: 10.1128/iai.37.3.1248-1260.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sorensen O., Coulter-Mackie M., Puchalski S., Dales S. In vivo and in vitro models of demyelinating diseases. IX. Progress of JHM virus infection in the central nervous system of the rat during overt and asymptomatic phase. Virology. 1984;137:347–357. doi: 10.1016/0042-6822(84)90227-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sturman L.S., Takemoto K.K. Enhanced growth of murine coronavirus in transformed cells. Infect. Immun. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Talbot P.J., Salmi A.A., Knobler R.L., Buchmeier M.J. Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): Correlation with biological activities. Virology. 1984;132:250–260. doi: 10.1016/0042-6822(84)90032-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Talbot P.J., Buchmeier M.J. Antigenic variations about murine coronaviruses: evidence for polymorphism on the peplomer glycoprotein, E2. Virus Res. 1985;2:317–328. doi: 10.1016/0168-1702(85)90028-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Teilland J., Diamond B., Pollock R., Fajtova R.R., Scharff M.D. FcR on cultured myeloma and hybridoma cells. J. Immunol. 1985;134:1774–1779. [PubMed] [Google Scholar]
  59. Thomas Y., Sosman J., Irigoyen O., Friedman S.M., Kung P.C., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. I. Collaborative T-T interactions in the immunoregulation of B cell differentiation. J. Immunol. 1980;125:2402–2408. [PubMed] [Google Scholar]
  60. Tsay D.D., Ogden D., Schlamowitz M. Binding of homologous and heterologous IgG to Fc receptors on the fetal rabbit yolk sac membrane. J. Immunol. 1980;124:1562–1567. [PubMed] [Google Scholar]
  61. Unkeless J.C., Eisen H.N. Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages. J. Exp. Med. 1975;142:1520–1533. doi: 10.1084/jem.142.6.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Unkeless J.C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 1979;150:580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Watkins J.F. Adsorption of sensitized sheep erythrocytes to HeLa cells infected with Herpes simplex virus. Nature (London) 1964;202:1364–1365. doi: 10.1038/2021364a0. [DOI] [PubMed] [Google Scholar]
  64. Wege H.S., Siddell S., ter Meulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunobiol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  65. Weiner L.P. Pathogenesis of demyelination induced by a mouse hepatitis virus. Arch. Neurol. 1973;28:298–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  66. Weinshank R.L., Luster A.D., Ravetch J.V. Function and regulation of a murine macrophage-specific IgG Fc receptor, FcγR-a. J. Exp. Med. 1988;167:1909–1925. doi: 10.1084/jem.167.6.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Williams A.F., Barclay A.N. The immunoglobulin superfamily-domains for cell surface recognition. Annu. Rev. Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  68. Yasuda J., Milgram F. Hemadsorption by Herpes simplex infected cell cultures. Int. Arch. Allergy Appl. Immunol. 1968;33:151–170. doi: 10.1159/000229985. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES