Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Mar 19;14(14):1303–1312. doi: 10.1016/S0264-410X(96)00065-5

Isotype-specific antibody responses to rotavirus and virus proteins in cows inoculated with subunit vaccines composed of recombinant SA11 rotavirus core-like particles (CLP) or virus-like particles (VLP)

FM Fernandez ∗,, ME Conner ‡,§, AV Parwani , D Todhunter , KL Smith , SE Crawford , MK Estes , LJ Saif ∗,§
PMCID: PMC7131174  PMID: 9004438

Abstract

The isotype antibody responses to bovine IND P5, G6 and simian SA11 P2, G3 rotavirus and SA11 rotavirus proteins (VP4, VP6 and VP7) in serum, colostrum and milk were analysed by ELISA in three groups of vaccinated cows and nonvaccinated controls. Pregnant cows were vaccinated intramuscularly and intramammarily with recombinant baculovirus-expressed SA11 rotavirus VLP (triple-layered virus-like particles containing rotavirus VP2, VP4, VP6 and VP7); CLP (double-layered core-like particles containing rotavirus VP2 and VP6); or inactivated SA11 rotavirus, respectively. Rotavirus antigen titers were highest (30–200-fold) in ELISA in the VLP vaccine compared to the inactivated SA11 vaccine. The IgG1, IgG2 and IgM geometric mean antibody titers (GMT) to rotavirus (titers to bovine rotavirus vs SA11 rotavirus did not differ significantly for any isotype or group) and the IgG2 GMT to VP6 in serum at calving in the vaccinated groups were significantly (P <0.05) higher than in the control group. In colostrum, IgG1 and IgA rotavirus antibody titers were significantly elevated for VLP (IgG1 GMT 832225; IgA GMT 16384), CLP (IgG1 GMT 660561; IgA GMT 10321) and SA11 (IgG1 GMT 131072; IgA GMT 1448) vaccinated cows compared to control cows (IgG1 GMT 11585; IgA GMT 45). The IgG1 and IgA GMT to rotavirus were significantly elevated (6–100-fold) in milk of VLP and CLP vaccinated cows compared to SA11 vaccinated or control cows. The isotype antibody responses to VP6 in serum, colostrum and milk paralleled the responses to rotavirus, but titers were ∼2–10-fold lower. Only cows vaccinated with VLP had significantly enhanced serum, colostral and milk antibody titers to rotavirus VP4 and VP7. These results demonstrate that rotavirus antibody titers in serum, colostrum and milk are significantly enhanced by use of non-infectious VLP, CLP and inactivated SA11 rotavirus vaccines, but the VLP or CLP vaccines induced the highest antibody responses, corresponding to their higher rotavirus antigen titers measured by ELISA.

Keywords: Recombinant rotavirus subunit vaccines, core-like particles, virus-like particles, bovine antibodies to rotavirus in colostrum, milk

References

  • 1.Mebus C.A., Underdahl N.R., Rhodes M.B., Twiehaus M.J. Calf diarrhoea (scours): reproduced with a virus from field outbreak. Univ NE Res Bull, Lincoln, NE. 1969;233:1–16. [Google Scholar]
  • 2.McNulty M.S. Rotaviruses. J. Gen. Virol. 1978;40:2–18. doi: 10.1099/0022-1317-40-1-1. [DOI] [PubMed] [Google Scholar]
  • 3.Mebus C.A., White R.G., Baas E.P., Twiehaus M.J. Immunity to neonatal calf diarrhoea virus. J. Am. Vet. Med. Assoc. 1973;163:880–883. [Google Scholar]
  • 4.Saif L.J., Jackwood D.J. Enteric virus vaccines: theoretical considerations, current status, and future approaches. In: Saif L.J., Theil K.W., editors. Viral Diarrhoeas of Man and Animals. CRC Press; Boca Raton, FL: 1990. pp. 313–329. [Google Scholar]
  • 5.Saif L.J. Passive immunity to coronavirus and rotavirus infections in swine and cattle: enhancement by maternal vaccination. In: Tzipori S., editor. Infect. Diarrhoea in the Young. Elsevier; Amsterdam: 1985. pp. 456–467. [Google Scholar]
  • 6.Saif L.J., Smith K.L. Proc. 4th International Symposium on Neonatal Diarrhoea Saskatchewan. 5th edn. 1984. Keynote address: a review of rotavirus immunization of cows and passive protection in calves; pp. 394–423. (Canada. Vet. Infect. Dis. Organ.). [Google Scholar]
  • 7.Saif L.J., Redman D.R., Smith K.L., Theil K.W. Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from immunized or non-immunized cows. Infect. & Immun. 1983;41:1118–1131. doi: 10.1128/iai.41.3.1118-1131.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Snodgrass D.R., Wells P.W. Passive immunity in rotaviral infections. J. Am. Vet. Med. Assoc. 1978;173:565–568. [PubMed] [Google Scholar]
  • 9.DeLeeuw P.W., Ellens D.J., Talmon F.P., Zimmer G.N., Kommerij R. Rotavirus infections in calves: efficacy of oral vaccination in endemically infected herds. Res. Vet. Sci. 1980;29:142–147. doi: 10.1016/S0034-5288(18)32654-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Myers L.L., Snodgrass D.R. Colostral and milk antibody titers in cows vaccinated with a modified live rotavirus-coronavirus vaccine. J. Am. Vet. Med. Assoc. 1982;181:486–488. [PubMed] [Google Scholar]
  • 11.Saif L.J., Smith K.L., Landmeier B.J., Bohl E.H., Theil K.W. Immune response of pregnant cows to bovine rotavirus immunization. Am. J. Vet. Res. 1984;45:49–58. [PubMed] [Google Scholar]
  • 12.Snodgrass D.R., Fahey K.L., Wells P.W., Campbell I., Whitelaw A. Passive immunity in calf rotavirus infections, Maternal vaccination increases and prolongs immunoglobulin G1 antibody secretion in milk. Infect. Immun. 1980;28:344–349. doi: 10.1128/iai.28.2.344-349.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bellinzoni R.C., Blackall J., Baro N., Auza N., Mattion N., Casaro A., La Torre J.L., Scodeller E.A. Efficacy of an inactivated oil-adjuvanted rotavirus vaccine in the control of calf diarrhoea in beef herds in Argentina. Vaccine. 1989;7:263–269. doi: 10.1016/0264-410X(89)90241-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Cornaglia E.M., Fernandez F.M., Gottschalk M., Barrandeguy M.E., Lucchelli A., Passini M.I., Saif L.J., Parraud J.R., Romat A., Schudel A.A. Reduction in morbidity due to diarrhoea in nursing beef calves by use of an inactivated oil-adjuvanted rotavirus-Escherichia coli vaccine in the dam. Vet. Microbiol. 1992;30:191–202. doi: 10.1016/0378-1135(92)90113-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Besser T.E., Gay C.C., McGuire T.C., Evermann J.F. Passive immunity to bovine rotavirus infection associated with transfer of serum antibody into the intestinal lumen. J. Virol. 1988;62:2238–2242. doi: 10.1128/jvi.62.7.2238-2242.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.McNulty M.S., Logan E.F. Effect of vaccination of the dam on rotavirus infection in young calves. Vet. Rec. 1987;120:250–252. doi: 10.1136/vr.120.11.250. [DOI] [PubMed] [Google Scholar]
  • 17.Dauvergne M., Brun A., Soulebot J. Passive protection of newborn calves against rotavirus by vaccination of their dams. Dev. Biol. Stand. 1983;53:245–255. [PubMed] [Google Scholar]
  • 18.Waltner-Towes D., Martin S.W., Meek A.H., McMillan I., Crouch G.F. A field trial to evaluate the efficacy of a combined rotavirus-coronavirus-Escherichia coli vaccine in dairy cattle. Can. J. Comp. Med. 1985;49:1–9. [PMC free article] [PubMed] [Google Scholar]
  • 19.Roy P., French T.J., Erasmus B.J. Protection efficacy of virus-like particles for bluetongue disease. Vaccine. 1991;10:28–32. doi: 10.1016/0264-410x(92)90415-g. [DOI] [PubMed] [Google Scholar]
  • 20.Labbe M., Charpilienne A., Crawford S.E., Estes M.K., Coen J. Expression of rotavirus VP2 produces empty core-like particles. J. Virol. 1991;65:2946–2952. doi: 10.1128/jvi.65.6.2946-2952.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Crawford S.E., Labbe M., Cohen J., Burroughs M., Zhou Y.J., Estes M. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 1994;68:5945–5952. doi: 10.1128/jvi.68.9.5945-5952.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Conner M.E., Crawford S.E., Barone C., Estes M.K. Vaccines 94, Proceedings of Modern approaches to new vaccines including prevention of AIDS. Cold Spring Harbor Press; Cold Spring Harbor, NY: 1994. Rotavirus or virus-like particles administered parenterally induce active immunity; pp. 351–355. [Google Scholar]
  • 23.Theil K.W., Bohl E.H., Agnes A.G. Cell culture propagation of porcine rotavirus (reovirus-like agent) Am. J. Vet. Res. 1977;38:1755–1768. [PubMed] [Google Scholar]
  • 24.Lucchelli A., Kang S.Y., Jayasekera M.K., Parwani A., Zeman D.H., Saif J.L. A survey of G6 and G10 serotypes of group A bovine rotaviruses from diarrheic beef and dairy calves using monoclonal antibodies in ELISA. J. Vet. Diagn. Invest. 1994;6:175–181. doi: 10.1177/104063879400600207. [DOI] [PubMed] [Google Scholar]
  • 25.Raj P., Matson D., Coulson B., Bishop R., Taniguchi K., Urasawa S., Greenberg H., Estes M. Comparisons of rotavirus VP7-typing monoclonal antibodies by competition binding assay. J. Clin. Microb. 1992;30:704–711. doi: 10.1128/jcm.30.3.704-711.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Shaw R., Phuoct T.Vo., Offit P., Coulson B., Greenberg H. Antigenic mapping of surface proteins of rhesus rotavirus. Virol. 1986;155:434–451. doi: 10.1016/0042-6822(86)90205-9. [DOI] [PubMed] [Google Scholar]
  • 27.Brussow H., Bruttin A., Marc-Martin S. Polypeptide composition of rotavirus empty capsids and their possible use as a subunit vaccine. J. Virol. 1990;64:3635–3642. doi: 10.1128/jvi.64.8.3635-3642.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Redmond M., Ijaz M., Parker M., Sabara M., Dent D., Gibbons E., Babiuk L. Assembly of recombinant rotavirus proteins into virus-like particles and assessment of vaccine potential. Vaccine. 1993;11:273–281. doi: 10.1016/0264-410x(93)90029-w. [DOI] [PubMed] [Google Scholar]
  • 29.Ijaz M., Attah-Pocku S., Redmond M., Parker M., Sabara M., Babiuk L. Heterotypic passive protection induced by synthetic peptides corresponding to VP7 and VP4 of bovine rotavirus. J. Virol. 1991;65:3106–3113. doi: 10.1128/jvi.65.6.3106-3113.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Pierce A., Feinstein A. Biophysical and immunological studies on bovine immunoglobulins with evidence for selective transport within the mammary gland from maternal plasma to colostrum. Immunology. 1965;8:106. [PMC free article] [PubMed] [Google Scholar]
  • 31.Conner M.C., Crawford S.E., Barone C., Estes M. Rotavirus vaccine administered parenterally induces protective immunity. J. Virol. 1993;67:6633–6641. doi: 10.1128/jvi.67.11.6633-6641.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Saif L.J., Todhunter D., Smith K.L., Gadfield K., Parwani A., Estes M., Crawford S., Conner M. Antibody responses in cows inoculated with recombinant rotavirus-like particles (VLP) as a subunit vaccine. Proc. & Abst. of the 13th Ann. Mtg. of the Am. Soc. Virol.; Madison, WI; 1994. p. 113. (Abst W4-7) [Google Scholar]
  • 33.Saif L.J., Fernandez F. Group A rotavirus veterinary vaccines. J. Inf. Dis. 1996 doi: 10.1093/infdis/174.Supplement_1.S98. (in press) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Brussow H., Walther J., Fryder V., Sidoti J., Bruttin A. Cross-neutralizing antibodies induced by single serotype vaccination of cows with rotavirus. J. Gen. Virol. 1988;69:1647–1658. doi: 10.1099/0022-1317-69-7-1647. [DOI] [PubMed] [Google Scholar]
  • 35.Snodgrass D.R., Ojeh O.K., Campbell I., Herring A.J. Bovine rotavirus serotypes and their significance for immunization. J. Clin. Microbiol. 1984;20:342–346. doi: 10.1128/jcm.20.3.342-346.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Vaccine are provided here courtesy of Elsevier

RESOURCES