Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 17;108(2):201–209. doi: 10.1016/0378-1119(91)90435-E

Enhancement of the vaccinia virus/phage T7 RNA polymerase expression system using encephalomyocarditis virus 5'-untranslated region sequences

Harry Vennema 1,, Rene Rijnbrand 1,, Leo Heijnen 1,, Marian C Horzinek 1, Willy JM Spaan 1,
PMCID: PMC7131192  PMID: 1660838

Abstract

A recombinant vaccinia virus producing the bacteriophage T7 RNA polymerase was used to express foreign genes in eukaryotic cells. Translation efficiency in this expression system was enhanced significantly by employing the encephalomyocarditis virus (EMCV) 5'-untranslated region (UTR) which confers cap-independent translation by directing internal initiation of translation. The enhancement was accomplished by fusing open reading frames (ORFs) to the N terminus of the EMCV polyprotein coding region, thus utilizing its highly efficient translation initiation site. Expression vectors were constructed to allow cloning in all three reading frames. As reporter genes, we used the lacZ gene and a number of genes encoding coronavirus structural proteins: among others the genes encoding glycoproteins with N-terminal signal sequences. The signal sequences of these glycoproteins are located internally in the primary translation product. We demonstrated that this did not interfere with translocation and glycosylation and yields biologically active proteins. The usefulness of sequences that direct internal initiation was extended by using EMCV UTR s to express two and three ORFs from polycistronic mRNAs.

Keywords: Recombinant DNA; bacteriophage T7; promoter, terminator; picornavirus; cap-independent translation; internal initiation; translation efficiency; β-galactosidase; coronavirus

Abbreviations: aa, amino acid(s); βGal, β-galactosidase; bp, base pair(s); CBB, Coomassie brilliant blue; EMCV, encephalomyocarditis virus; EndoH, endo-β-N-acetylglucosaminidase H; ExoIII, exonuclease III of E. coli; FIPV, feline infectious peritonitis virus; G, glycoprotein-encoding gene; IPTG, isopropyl-β-d-thiogalactopyranoside; kb, kilobase(s) or 1000 bp; M, membrane; M, membrane protein-encoding gene; MCS, multiple cloning site; N, nueleocapsid; N, nucleocapsid protein-encoding gene; ORF, open reading frame; p, plasmid; p, promoter; p7.5 and p11, promoters for the 7.5- and 11-kDa VV polypeptide-encoding genes; PAGE, polyacrylamide-gel electrophoresis; PolIk, Klenow (large) fragment of E.coli DNA polymerase I; re, recombinant; RIPA, radioimmune precipitation assay; S, spike; S, spike protein-encoding gene; SDS, sodium dodecyl sulfate; TGEV, transmissible gastroenteritis virus; TK, gene encoding thymidine kinase; UTR, untranslated region; v, vaccinia; VSV, vesicular stomatitis virus; VV, vaccinia virus; wt, wild type; XGal, 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside

Received by W.C. Summers

References

  1. Casadaban M.J., Martinez-Arias A., Shapira S.K., Chou J. β-Galaetosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. doi: 10.1016/0076-6879(83)00063-4. [DOI] [PubMed] [Google Scholar]
  2. Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: co-expression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 1985;5:3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elroy-Stein O., Moss B. Vol. 87. 1990. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells; pp. 6743–6747. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elroy-Stein O., Fuerst T.R., Moss B. Vol. 86. 1989. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system; pp. 6126–6130. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Falkner F.G., Moss B. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J. Virol. 1988;62:1849–1854. doi: 10.1128/jvi.62.6.1849-1854.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuerst T.R., Moss B. Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells; importance of the 5' untranslated leader. J. Mol. Biol. 1989;206:333–348. doi: 10.1016/0022-2836(89)90483-x. [DOI] [PubMed] [Google Scholar]
  7. Fuerst T.R., Niles E.G., Studier F.W., Moss B. Vol. 83. 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase; pp. 8122–8126. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuerst T.R., Earl P.L., Moss B. Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol. Cell. Biol. 1987;7:2538–2544. doi: 10.1128/mcb.7.7.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jang S.K., Davies M.V., Kaufman R.J., Wimmer E. Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 1988;63:1651–1660. doi: 10.1128/jvi.63.4.1651-1660.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaminski A., Howell M.T., Jackson R.J. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 1990;9:3753–3759. doi: 10.1002/j.1460-2075.1990.tb07588.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kapke P.A., Tung F.Y.T., Hogue B.G., Brian D.A., Woods R.D., Wesley R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988;165:367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Mackett M., Smith G.L., Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 1984;49:857–864. doi: 10.1128/jvi.49.3.857-864.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mahr A., Roberts B.E. Arrangement of late RNAs transcribed from a 7.1-kilobase EcoRI vaccinia virus DNA fragment. J. Virol. 1984;49:510–520. doi: 10.1128/jvi.49.2.510-520.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning. A Laboratory Manual). [Google Scholar]
  16. Moss B., Elroy-Stein O., Mizukami T., Alexander W.A., Fuerst T.R. New mammalian expression vectors. Nature. 1990;348:91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
  17. Parks G.D., Duke G.M., Palmenberg A.C. Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5' noneoding sequences to the P3 region. J. Virol. 1986;60:376–384. doi: 10.1128/jvi.60.2.376-384.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pelletier J., Kaplan G., Racaniello V.R., Sonenberg N. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region. Mol. Cell. Biol. 1988;8:1103–1112. doi: 10.1128/mcb.8.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosenberg A.H., Lade B.N., Chui D.-s., Lin S.-W., Dunn J.J., Studier F.W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56:125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  20. Rottier P.J.M., Florkiewicz R.Z., Shaw A.S., Rose J.K. An internalized amino-terminal signal sequence retains activity in vivo but not in vitro. J. Biol. Chem. 1987;262:8889–8895. [PubMed] [Google Scholar]
  21. Vennema H., Heijnen L., Zijderveld A., Horzinek M.C., Spaan W.J.M. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vennema H., De Groot R.J., Harbour D.A., Horzinek M.C., Spaan W.J.M. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology. 1991;181:327–335. doi: 10.1016/0042-6822(91)90499-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Gene are provided here courtesy of Elsevier

RESOURCES