Abstract
The genomic organization at the 3′ end of canine coronavirus (CCV) and feline enteric coronavirus (FECV) was determined by sequence analysis and compared to that of feline infectious peritonitis virus (FIPV) and transmissible gastroenteritis virus (TGEV) of swine. Comparison of the latter two has previously revealed an extra open reading frame (ORF) at the 3′ end of the FIPV genome, lacking in TGEV, which is currently designated ORF 6b. Both CCV and FECV possess 6b-related ORFs at the 3′ ends of their genomes. The presence of ORF 6b in three of four viruses in this antigenic cluster strongly suggests that TGEV has lost this ORF by deletion. The CCV ORF 6b is collinear with that of FIPV, but the predicted amino acid sequences are only 58% identical. The FECV ORF 6b contains a large deletion compared to that of FIPV, reducing the collinear part to 60%. The sequence homologies were highest between CCV and TGEV on the one hand and between FECV and FIPV on the other. Previously, we showed that the expression product of the FIPV ORF 6b can be detected in infected cells by immunoprecipitation (Vennema et al., 1992). In the present study we have performed similar experiments with CCV and FECV. In infected cells both viruses produced proteins related to but different from the FIPV 6b protein.
References
- Binn L.N., Lazer E.C., Keenan K.P., Huxsoll D.L., Marchwicki R.H., Strano A.J. 1975. Recovery and characterization of a coronavirus from military dogs with diarrhoea; pp. 359–366. (Proc. 78th Annu. Meeting U.S. Anim. Health Assoc.). [PubMed] [Google Scholar]
- Boyle J.F., Pedersen N.C., Evermann J.F., McKeirnan A.J., Ott R.L., Black J.W. Plaque assay, polypeptide composition and immunochemistry of feline infectious peritonitis virus and feline enteric coronavirus. Adv. Exp. Med. Biol. 1984;173:133–147. doi: 10.1007/978-1-4615-9373-7_12. [DOI] [PubMed] [Google Scholar]
- Britton P., Carmenes R.S., Page K.W., Garwes D.J., Parra F. Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
- Cavanagh D., Brian D.A., Enjuanes L., Holmes K.V., Lai M.M.C., Laude H., Siddell S.G., Spaan W., Taguchi F., Talbot P.J. Recommendations of the Coronavirus Study Group for the nomenclature of the structural proteins mRNAs, and genes of coronaviruses. Virology. 1990;176:306–307. doi: 10.1016/0042-6822(90)90259-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- De Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′ end of the feline coronavirus FIPV 79-1146 genome: Comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiscus S.A., Teramoto Y.A. Antigenic comparison of feline coronavirus isolates: Evidence for markedly different peplomer glycoproteins. J. Virol. 1987;61:2607–2613. doi: 10.1128/jvi.61.8.2607-2613.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuerst T.R., Niles E.G., Studier F.W., Moss B. Vol. 83. 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase; pp. 8122–8126. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garwes D.J., Stewart F., Britton P. The polypeptide of Mr 1400 of porcine transmissible gastroenteritis virus: Gene assignment and intracellular location. J. Gen. Virol. 1989;70:2495–2499. doi: 10.1099/0022-1317-70-9-2495. [DOI] [PubMed] [Google Scholar]
- Hohdatsu T., Sasamoto T., Okada S., Koyama H. Antigenic analysis of feline coronaviruses with monoclonal anti-bodies (Mabs): Preparation of Mabs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683. Vet. Microbiol. 1991;28:13–24. doi: 10.1016/0378-1135(91)90096-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs L., De Groot R.J., Horzinek M.C., Van der Zeiist B.A.M., Spaan W.J.M. The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): Comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV) Virus Res. 1987;8:363–371. doi: 10.1016/0168-1702(87)90008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis corona virus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawasaki E.S., Wang A.M. Detection of gene expression. In: Erlich H.A., editor. PCR Technology: Principles and Applications for DNA Amplification. Stockton Press; New York: 1989. pp. 89–97. [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lai M.M.C. RNA recombination in animal and plant viruses. Microbiol. Rev. 1992;56:61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La Monica N., Banner L.R., Morris V.L., Lai M.M.C. Localization of extensive deletions in the structural genes of two neurotropic variants of murine coronvirus JHM. Virology. 1991;182:883–888. doi: 10.1016/0042-6822(91)90635-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning. A Laboratory Manual). [Google Scholar]
- McKeirnan A.J., Evermann J.F., Hargis A., Miller L.M., Ott R.L. Isolation of feline coronavirus from two cats with diverse disease manifestations. Feline Pract. 1981;11:16–20. [Google Scholar]
- Neuberger A., Gottschalk A., Marshall R.O., Spiro R.G. Carbohydrate-peptide linkages in glycoproteins and methods for their elucidation. In: Gottschalk A., editor. The Glycoproteins: Their Composition, Structure and Function. Elsevier; Amsterdam: 1972. pp. 450–490. [Google Scholar]
- Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen N.C. Animal infections that defy vaccination: Equine Infectious Anemia, Caprine Encephalitis, Maedi-Visna, and Feline Infectious Peritonitis Virus. Adv. Vet. Sci. Comp. Med. 1989;33:413–428. doi: 10.1016/B978-0-12-039233-9.50017-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen N.C., Evermann J.F., McKeirnan A.J., Ott R.L. Pathogenicity studies of feline coronavirus isolates 791146 and 79-1683. Am. J. Vet. Res. 1984;45:2580–2585. [PubMed] [Google Scholar]
- Rasschaert D., Duarte M., Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990;71:2599–2607. doi: 10.1099/0022-1317-71-11-2599. [DOI] [PubMed] [Google Scholar]
- Rasschaert D., Gelfi J., Laude H. Enteric coronavirus TGEV: Partial sequence of the genomic RNA, its organization and expression. Biochimie. 1987;69:591–600. doi: 10.1016/0300-9084(87)90178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain termination inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddel S., Wege H., Ter Mellen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
- Tupper G.T., Evermann J.F., Russel R.G., Thouless M.E. Antigenic and biological diversity of feline coronaviruses: Feline infectious peritonitis and feline enteritis virus. Arch. Virol. 1987;96:29–38. doi: 10.1007/BF01310988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vennema H., Heijnen L., Rottier P.J.M., Horzinek M.C., Spaan W.J.M. A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J. Virol. 1992;66:4951–4956. doi: 10.1128/jvi.66.8.4951-4956.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vennema H., Heijnen L., Zijderveld A., Horzinek M.C., Spaan W.J.M. Intracellular transport of recombinant coronavirus spike proteins: Implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vennema H., De Groot R.J., Harbour D.A., Horzinek M.C., Spaan W.J.M. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology. 1991;181:327–335. doi: 10.1016/0042-6822(91)90499-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wesley R.D., Woods R.D., Cheung A.K. Genetic basis for the pathogenesis of transmissible gastroenteritis virus. J. Virol. 1990;64:4761–4766. doi: 10.1128/jvi.64.10.4761-4766.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokomori K., Lai M.M.C. Mouse hepatitis virus S RNA sequence reveals that nonstructural proteins ns4 and ns5a are not essential for murine coronavirus replication. J. Virol. 1991;65:5605–5608. doi: 10.1128/jvi.65.10.5605-5608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]