Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jun 9;112(2):596–604. doi: 10.1016/0042-6822(81)90305-6

Intracellular murine hepatitis virus-specific RNAs contain common sequences

Steve Cheley 1, Robert Anderson 1, Margaret J Cupples 1, Edwin CM Lee Chan 1, Vincent L Morris 1,1
PMCID: PMC7131256  PMID: 6114592

Abstract

A major polyadenylated viral RNA of approximately 0.8 × 106 daltons was isolated from murine hepatitis virus (A59)-infected cells by preparative polyacrylamide gel electrophoresis in formamide. This RNA was shown to encode the viral nucleocapsid protein by direct in vitro translation in a cell-free, reticulocyte-derived system. Single stranded 32P-labeled complementary DNA was prepared from this RNA and was demonstrated to be virus specific. Using this complementary DNA in a Northern blotting procedure, we were able to identify six major virus-specific intracellular RNA species with estimated molecular weights of 0.8, 1.1, 1.4, 1.6, 3, and 4 × 106 daltons. All of these RNA species were polyadenylated. Our results support the idea that coronavirus-infected cells contain multiple intracellular polyadenylated RNAs which share common sequences.

References

  1. Alwine J.C., Kemp D.J., Stark G.R. Vol. 74. 1977. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes; pp. 5350–5354. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R., Cheley S., Haworth-Hatherell E. Comparison of polypeptides of two strains of murine hepatitis virus. Virology. 1979;97:492–494. doi: 10.1016/0042-6822(79)90363-5. [DOI] [PubMed] [Google Scholar]
  3. Aviv H., Leder P. Vol. 69. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose; pp. 1408–1412. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birnstiel M.L., Sells B.H., Purdom I.F. Kinetic complexity of RNA molecules. J. Mol. Biol. 1972;63:21–39. doi: 10.1016/0022-2836(72)90519-0. [DOI] [PubMed] [Google Scholar]
  5. Bond C.W., Leibowitz J.L., Robb J.A. Pathogenic murine coronaviruses. II. Characterization of virus-specific proteins of murine coronaviruses JHMV and A59V. Virology. 1979;94:371–384. doi: 10.1016/0042-6822(79)90468-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonner W.M., Laskey R.A. A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 1974;46:83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  7. Cheley S., Anderson R. Cellular synthesis and modification of murine hepatitis viral polypeptides. J. Gen. Virol. 1981 doi: 10.1099/0022-1317-54-2-301. in press. [DOI] [PubMed] [Google Scholar]
  8. Cohen J.C., Shank P.R., Morris V.L., Cardiff R., Varmus H.E. Integration of the DNA of mouse mammary tumor virus in virus-infected normal and neoplastic tissue of the mouse. Cell. 1979;16:333–345. doi: 10.1016/0092-8674(79)90010-2. [DOI] [PubMed] [Google Scholar]
  9. Coulter-Mackie M.B., Bradbury W.C., Dales S., Flintoff W.F., Morris V.L. In vivo and in vitro models of demyelinating diseases. IV. Isolation of Halle measles virus-specific RNA from BGMK cells and preparation of complementary DNA. Virology. 1980;102:327–338. doi: 10.1016/0042-6822(80)90100-2. [DOI] [PubMed] [Google Scholar]
  10. Duersberg P.H., Vogt P.K. Gel electrophoresis of avian leukosis and sarcoma viral RNA in formamide: Comparison with other viral and cellular RNA species. J. Virol. 1973;12:594–599. doi: 10.1128/jvi.12.3.594-599.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glanville N., Ranki M., Morser J., Kääriäinen L., Smith A.E. Vol. 73. 1976. Initiation of translation directed by 42S and 26S RNAs from Semliki Forest Virus in vitro; pp. 3059–3063. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hunter T.R., Hunt T., Knowland J., Zimmern D. Messenger RNA for the coat protein of tobacco mosaic virus. Nature (London) 1976;260:759–764. doi: 10.1038/260759a0. [DOI] [PubMed] [Google Scholar]
  13. Hunter T., Gibson W. Characterization of the mRNA's for the polyoma virus capsid proteins VP1, VP2 and VP3. J. Virol. 1978;28:240–253. doi: 10.1128/jvi.28.1.240-253.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobson M.F., Baltimore D. Vol. 61. 1968. Polypeptide cleavages in the formation of poliovirus proteins; pp. 77–84. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lai M.M.C., Stohlman S.A. RNA of mouse hepatitis virus. J. Virol. 1978;26:236–242. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leong J., Garapin A.-C., Jackson N., Fanshier L., Levinson W., Bishop J.M. Virus specific ribonucleic acid in cells producing Rous sarcoma virus: Detection and characterization. J. Virol. 1972;9:891–902. doi: 10.1128/jvi.9.6.891-902.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lomniczi B. Biological properties of avian coronavirus RNA. J. Gen. Virol. 1977;36:531–533. doi: 10.1099/0022-1317-36-3-531. [DOI] [PubMed] [Google Scholar]
  19. Lomniczi B., Kennedy I. Genome of infectious bronchitis virus. J. Virol. 1977;24:99–107. doi: 10.1128/jvi.24.1.99-107.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McMaster G.K., Carmichael G.G. Vol. 74. 1977. Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange; pp. 4835–4838. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacNaughton M.R., Madge M.H. The characterisation of the virion RNA of avian infectious bronchitis virus. FEBS Lett. 1977;77:311–313. doi: 10.1016/0014-5793(77)80258-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morris V.L., Medeiros E., Ringold G.M., Bishop J.M., Varmus H.E. Comparison of mouse mammary tumor virus-specific DNA in inbred, wild and asian mice, and in tumors and normal organs from inbred mice. J. Mol. Biol. 1977;114:73–92. doi: 10.1016/0022-2836(77)90284-4. [DOI] [PubMed] [Google Scholar]
  23. Mowshowitz D. Identification of polysomal RNA in BHK cells infected by Sindbis virus. J. Virol. 1973;11:535–543. doi: 10.1128/jvi.11.4.535-543.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pelham H.R.B., Jackson R.J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 1976;67:247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  25. Ringold G.M., Shank P.R., Yamamoto K.R. Production of unintegrated mouse mammary tumor virus DNA in infected rat hepatoma cells is a secondary action of dexamethasone. J. Virol. 1978;26:93–101. doi: 10.1128/jvi.26.1.93-101.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rose J.K., Knipe D. Nucleotide sequence complexities, molecular weights and poly (A) content of the vesicular stomatitis virus mRNA species. J. Virol. 1975;15:994–1003. doi: 10.1128/jvi.15.4.994-1003.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rothfels K.H., Axelrad A.A., Siminovitch L., McCulloch E.A., Parker R.C. Vol. 3. 1959. The origin of altered cell lines from mouse, monkey and man as indicated by chromosome and transplantation studies; pp. 189–214. (Canad. Cancer Conf.). [Google Scholar]
  28. Schochetman G., Stevens R.H., Simpson R.W. Presence of infectious polyadenylated RNA in the coronavirus avian bronchitis virus. Virology. 1977;77:772–782. doi: 10.1016/0042-6822(77)90498-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shank P.R., Cohen J.C., Varmus H.E., Yamamoto K.R., Ringold G.M. Vol. 75. 1978. Mapping of linear and circular forms of mouse mammary tumor virus DNA with restriction endonucleases: Evidence for a large specific deletion occurring at high frequency during circularization; pp. 2112–2116. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shih D.S., Kaesberg P. Vol. 70. 1973. Translation of brome mosaic viral ribonucleic acid in a cell-free system derived from wheat embryo; pp. 1799–1803. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Siddell S.G., Wege H., Barthel A., ter Meulen V. Coronavirus JHM: Cell-free synthesis of structural protein p60. J. Virol. 1980;33:10–17. doi: 10.1128/jvi.33.1.10-17.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy. I. Identification characterization of virus-specified RNA. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stern D.F., Kennedy S.I.T. Corona-virus multiplication strategy. II. Mapping the avian infectious bronchitis virus intracellular RNA species to the genome. J. Virol. 1980;36:440–449. doi: 10.1128/jvi.36.2.440-449.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strohman R.C., Moss P.S., Micou-Eastwood J., Spector D. Messenger RNA for myosin polypeptides: Isolation from single myogenic cell cultures. Cell. 1977;10:265–273. doi: 10.1016/0092-8674(77)90220-3. [DOI] [PubMed] [Google Scholar]
  35. Sturman L.S. Characterization of a corona-virus. I. Structural proteins: Effects of preparative conditions on the migration of protein in polyacrylamide gels. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Swanstrom R., Shank P.R. X-Ray intensifying screens greatly enhance the detection by autoradiography of the radioactive isotopes 32P and 125I. Anal. Biochem. 1978;86:184–192. doi: 10.1016/0003-2697(78)90333-0. [DOI] [PubMed] [Google Scholar]
  38. Tannock G.A. The nucleic acid of infectious bronchitis virus. Arch. Gesamte Virusforsch. 1973;43:259–271. doi: 10.1007/BF01250421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tyrrell D.A.J., Alexander D.J., Almeida J.D., Cunningham C.H., Easterday B.C., Garwes D.J., Hierholzer J.C., Kapikian A., MacNaughton M.R., McIntosh K. Coronaviridae: Second report. Intervirology. 1978;10:321–328. doi: 10.1159/000148996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Varmus H.E., Quintrell N., Medeiros E., Bishop J.M., Nowinski R.C., Sarkar N.H. Transcription of mouse mammary tumor virus genes in tissues from high and low tumor incidence mouse strains. J. Mol. Biol. 1973;79:663–679. doi: 10.1016/0022-2836(73)90070-3. [DOI] [PubMed] [Google Scholar]
  41. Watkins H., Reeve P., Alexander D.J. The ribonucleic acid of infectious bronchitis virus. Arch. Virol. 1975;47:279–286. doi: 10.1007/BF01317815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wege H., Müller A., ter Meulen V. Genomic RNA of the murine coronavirus JHM. J. Gen. Virol. 1978;41:217–227. doi: 10.1099/0022-1317-41-2-217. [DOI] [PubMed] [Google Scholar]
  43. Wege H., Wege H., Nagashima K., ter Meulen V. Structural polypeptides of the murine coronavirus JHM. J. Gen. Virol. 1979;42:37–47. doi: 10.1099/0022-1317-42-1-37. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES