Abstract
The oligomerization state of the rabies virus envelope glycoprotein (G protein) was determined using electron microscopy and sedimentation analysis of detergent solubilized G. Most of the detergents used in this study solubilized G in a 4 S monomeric form. However, when CHAPS was used, G had a sedimentation coefficient of 9 S. This high sedimentation coefficient allowed its further separation from M1 and M2. Using electron microscopy of negatively stained samples, we studied the morphology of G on virus and after detergent extraction. End-on views of G on virus clearly showed triangles consisting of three dots indicating the trimeric nature of native G. End-on views of CHAPS-isolated G showed very similar triangles confirming that, using this detergent, G was solubilized in its native trimeric structure. Electron microscopy also showed that G had a “head” and a “stalk” and provided the basis for a low-resolution model of the glycoprotein structure.
References
- Anilionis A., Wunner W.H., Curtis P.J. Structure of the glycoprotein gene in rabies virus. Nature (London) 1981;294:275–278. doi: 10.1038/294275a0. [DOI] [PubMed] [Google Scholar]
- Arita M., Atanasiu P. Etude comparative du poids moléculaire de plusieurs souches de virus rabique par électrophorèse Sur gel de polyacrylamide. Ann. Virol. (Inst. Pasteur) 1980;131 E:201–215. [Google Scholar]
- Brand C.M., Skehel I.J. Crystalline antigen from the influenza virus envelope. Nature New Biol. 1972;230:145–147. doi: 10.1038/newbio238145a0. [DOI] [PubMed] [Google Scholar]
- Coulon P., Derbin C., Kucera P., Lafay F., Prehaud C., Flamand A. Invasion of the peripheral nervous systems of adult mice by the CVS strain of rabies virus and its avirulent derivative AV01. J. Virol. 1989;63:3550–3554. doi: 10.1128/jvi.63.8.3550-3554.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crimmins D.L., Mehard W.B., Schlesinger S. Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral and acidic pH. Biochemistry. 1983;22:5790–5796. doi: 10.1021/bi00294a017. [DOI] [PubMed] [Google Scholar]
- Delagneau J.F., Perrin P., Atanasiu P. Structure of the rabies virus: spatial relationships of the proteins G, M 1, M2 and N. Ann. Virol. (Inst. Pasteur) 1981;132E:473–493. [Google Scholar]
- Delmas B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope formation. J. Virol. 1990;64:5367–5375. doi: 10.1128/jvi.64.11.5367-5375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietzschold B. Oligosaccharides of the glycoprotein of rabies virus. J. Virol. 1977;23:286–293. doi: 10.1128/jvi.23.2.286-293.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietzschold B., Cox J.H., Schneider L.G. Rabies virus strains: A comparison study by polypeptide analysis of vaccine strains with different pathogenic patterns. Virology. 1979;98:63–75. doi: 10.1016/0042-6822(79)90525-7. [DOI] [PubMed] [Google Scholar]
- Dietzschold B., Cox J.H., Schneider L.G., Wiktor T.J., Koprowski H. Isolation and purification of a polymeric form of the glycoprotein of rabies virus. J. Gen. Virol. 1978;40:131–139. doi: 10.1099/0022-1317-40-1-131. [DOI] [PubMed] [Google Scholar]
- Doms R.W., Keller D.S., Helenius A., Balch W.E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 1987;105:1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaudin Y., Tuffereau C., Segretain D., Knossow M., Flamand A. Reversible conformational changes and fusion activity of rabies virus glycoprotein. J. Virol. 1991;65:4853–4859. doi: 10.1128/jvi.65.9.4853-4859.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaudin Y., Tuffereau C., Benmansour A., Flamand A. Fatty-acylation of rabies virus proteins. Virology. 1991;184:441–444. doi: 10.1016/0042-6822(91)90866-a. [DOI] [PubMed] [Google Scholar]
- Kucera P., Dolivo M., Coulon P., Flamand A. Pathways of the early propagation of virulent and avirulent rabies virus strains from the eye to the brain. J. Virol. 1985;55:158–162. doi: 10.1128/jvi.55.1.158-162.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lafay F., Coulon P., Astic L., Saucier D., Riche D., Holley A., Flamand A. Spread of the CVS Strain of rabies virus and of the avirulent mutant Av01 along the olfactory pathways of the mouse after intranasal inoculation. Virology. 1991;183:320–330. doi: 10.1016/0042-6822(91)90145-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mifune K., Ohuchi M., Mannen K. Hemolysis and cell fusion by rhabdoviruses. FEBS Lett. 1982;137:293–297. doi: 10.1016/0014-5793(82)80370-0. [DOI] [PubMed] [Google Scholar]
- Ruigrok R.W.H., Wrigley N.G., Calder L.J., Cusack S., Wharton S.A., Brown E.B., Skehel J.I. Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO J. 1986;5:41–49. doi: 10.1002/j.1460-2075.1986.tb04175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruigrok R.W.H., Barge A., Albiges-Rizo C., Dayan S. Structure of adenovirus fibre. II. Morphology of single fibres. J. Mol. Biol. 1990;215:589–596. doi: 10.1016/S0022-2836(05)80170-6. [DOI] [PubMed] [Google Scholar]
- Skehel J.J., Bailey P.M., Brown E.B., Martin S.R., Waterfield M.D., White J.M., Wilson I.A., Wiley D.C. Vol. 79. 1982. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion; pp. 968–972. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stegmann T., Morselt H.W.M., Booy F.P., Van Bremen J.F.L., Scherphof G., Wilshut J. Functional reconstitution of influenza virus envelopes. EMBO J. 1987;6:2651–2659. doi: 10.1002/j.1460-2075.1987.tb02556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strong J.E., Leone G., Duncan R., Sharma R.K., Lee P.W.K. Biochemical and biophysical characterization of the reovirus cell attachment protein 1: evidence that it is a homotrimer. Virology. 1991;184:23–32. doi: 10.1016/0042-6822(91)90818-V. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitt M.A., Buonocore L., Prehaud C., Rose I.K. Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology. 1991;185:681–688. doi: 10.1016/0042-6822(91)90539-n. [DOI] [PubMed] [Google Scholar]
- Wiltor T.J., György E., Schlumberger H.D., Sokol F., Koprowski H. Antigenic properties of rabies virus components. J. Immunol. 1973;110:269–276. [PubMed] [Google Scholar]
- Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutination membrane glycoprotein of influenza virus at 3A resolution. Nature (London) 1981;289:368–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
- Wunner W.H., Reagan K.J., Koprowski H. Characterization of saturable binding sites for rabies virus. J. Virol. 1984;50:691–697. doi: 10.1128/jvi.50.3.691-697.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wunner W.H., Dietzschold B., Smith C.L., Lafon M., Golub E. Antigenic variants of CVS rabies virus with altered glycosylation sites. Virology. 1985;140:1–12. doi: 10.1016/0042-6822(85)90440-4. [DOI] [PubMed] [Google Scholar]
- Yelverton E., Norton S., Obijeski J.F., Goeddel D.V. Rabies virus glycoprotein analogs: biosynthesis in Escherichia coli. Science. 1983;219:614–620. doi: 10.1126/science.6297004. [DOI] [PubMed] [Google Scholar]