Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;166(2):550–560. doi: 10.1016/0042-6822(88)90526-0

Primary structure and translation of a defective interfering rna of murine coronavirus

Shinji Makino 1,1, Chien-Kou Shieh 1, Lisa H Soe 1, Susan C Baker 1, Michael MC Lai 1
PMCID: PMC7131284  PMID: 2845661

Abstract

An intracellular defective-interfering (DI) RNA, DIssE, of mouse hepatitis virus (MHV) obtained after serial high multiplicity passage of the virus was cloned and sequenced. DIssE RNA is composed of three noncontiguous genomic regions, representing the first 864 nucleotides of the Fend, an internal 748 nucleotides of the polymerase gene, and 601 nucleotides from the 3′ end of the parental MHV genome. The DIssE sequence contains one large continuous open reading frame. Two protein products from this open reading frame were identified both by in vitro translation and in DI-infected cells. Sequence comparison of DIssE and the corresponding parts of the parental virus genome revealed that DIssE had three base substitutions within the leader sequence and also a deletion of nine nucleotides located at the junction of the leader and the remaining genomic sequence. The 5′ end of DIssE RNA was heterogeneous with respect to the number of UCUAA repeats within the leader sequence. The parental MHV genomic RNA appears to have extensive and stable secondary structures at the regions where DI RNA rearrangements occurred. These data suggest that MHV DI RNA may have been generated as a result of the discontinuous and nonprocessive manner of MHV RNA synthesis.

Reference

  1. Baric R.S., Shieh C.-K., Stohlman S.A., Lai M.M.C. Analysis of intracellular small RNAs of mouse hepatitis virus: Evidence for discontinuous transcription. Virology. 1987;156:342–354. doi: 10.1016/0042-6822(87)90414-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baric R.S., Stohlman S.A., Lai M.M.C. Characterization of replicative intermediate RNA of mouse hepatitis virus: Presence of leader RNA sequences on nascent chains. J. Virol. 1983;48:633–640. doi: 10.1128/jvi.48.3.633-640.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baric R.S., Stohlman S.A., Razavi M.K., Lai M.M.C. Characterization of leader-related small RNAs in coronavirus-infected cells: Further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–33. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brayton P.R., Lai M.M.C., Patton C.D., Stohlman S.A. Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J. Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brayton P.R., Stohlman S.A., Lai M.M.C. Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology. 1984;133:197–201. doi: 10.1016/0042-6822(84)90439-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chattopadhyay D., Baneriee A.K. Phosphorylation within a specific domain of the phosphoprotein of vesicular stomatitis virus regulates transcription in vitro. Cell. 1987;49:407–414. doi: 10.1016/0092-8674(87)90293-5. [DOI] [PubMed] [Google Scholar]
  7. Dagert M., Ehrlich S.D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979;6:23–29. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  8. Denison M.R., Perlman S. Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. J. Virol. 1986;60:12–18. doi: 10.1128/jvi.60.1.12-18.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleming J.0., Stohlman S.A., Harmon R.C., Lai M.M.C., Frelinger J.A., Weiner L.P. Antigenic relationships of murine coronaviruses: Analysis using monoclonal antibodies to 1HM (MHV-4) virus. Virology. 1983;131:296–307. doi: 10.1016/0042-6822(83)90498-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  11. Kessler S.W. Use of protein A-bearing staphylococci for the immunoprecipitation and isolation of antigens from cells. In: Langone J.J., Van Vunakis H., editors. Vol. 73. Academic Press; New York: 1981. pp. 442–459. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  12. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus; pp. 3626–3630. (Proc. Natl. Aced. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lai M.M.C., Patton C.D., Baric R.S., Stohlman S.A. Presence of leader sequences in the mRNA of mouse hepatitis virus. J. Virol. 1983;46:1027–1033. doi: 10.1128/jvi.46.3.1027-1033.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lai M.M.C., Patton C.D., Stohlman S.A. Further characterization of mRNAs of mouse hepatitis virus: Presence of common 5′-end nucleotides. J. Virol. 1982;41:557–565. doi: 10.1128/jvi.41.2.557-565.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lai M.M.C., Patton C.D., Stohlman S.A. Replication of mouse hepatitis virus: Negative-stranded RNA and replicative form RNA are of genome length. J. Virol. 1982;44:487–492. doi: 10.1128/jvi.44.2.487-492.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai M.M.C., Stohlman S.A. RNA of mouse hepatitis virus. J. Virol. 1978;26:236–242. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Langridge L., Langridge P., Berquist P.L. Extraction of nucleic acids from agarose gels. Anal. Biochem. 1980;103:264–271. doi: 10.1016/0003-2697(80)90266-3. [DOI] [PubMed] [Google Scholar]
  20. Leibowitz J.L., Wilhelmsen K.C., Bond C.W. The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:39–61. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mahy B.M.J., Siddell S., Wege H., ter Meulen V. RNA-dependent RNA polymerase activity in murine coronavirusinfected cells. J. Gen. Virol. 1983;64:103–111. doi: 10.1099/0022-1317-64-1-103. [DOI] [PubMed] [Google Scholar]
  22. Makino S., Fujioka N., Fujiwara K. Structure of the intracellular defective viral RNAs of defective interfering particles of mouse hepatitis virus. J. Virol. 1985;54:329–336. doi: 10.1128/jvi.54.2.329-336.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Makino S., Keck J.G., Stohlman S.A., Lai M.M.C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Makino S., Shieh C.-K., Keck J.G., Lai M.M.C. Defective-interfering particles of murine coronavirus: Mechanism of synthesis of defective viral RNAs. Virology. 1988;163:104–111. doi: 10.1016/0042-6822(88)90237-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Makino S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus mRNAs can be freely reassorted: Evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Makino S., Taguchi F., Fujiwara K. Defective interfering particles of mouse hepatitis virus. Virology. 1984;133:9–17. doi: 10.1016/0042-6822(84)90420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Makino S., Taguchi F., Hirano N., Fujiwara K. Analysis of genomic and intracellular viral RNAs of small plaque mutants of mouse hepatitis virus, JHM strain. Virology. 1984;139:138–151. doi: 10.1016/0042-6822(84)90335-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  29. Maxam A.M., Gilbert W. Sequencing end-labelled DNA with base-specific chemical cleavages. In: Grossman L., Moldave K., editors. Vol. 65. Academic Press; New York: 1980. pp. 449–560. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  30. Migliaccio G., Castagnola P., Leone A., Cerasuolo A., Bonatti S. mRNA activity of a Sindbis virus defective-interfering RNA. J. Virol. 1985;55:877–880. doi: 10.1128/jvi.55.3.877-880.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robbins S.G., Frana M.F., McGowan J.J., Boyle J.F., Holmes K.V. RNA-binding proteins of coronavirus MHV: Detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology. 1986;150:402–410. doi: 10.1016/0042-6822(86)90305-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shieh C.-K., Soe L.H., Makino S., Chang M.-F., Stohlman S.A., Lai M.M.C. The 5′-end sequence of the murine coronavirus genome: Implications for multiple fusion sites in leaderprimed transcription. Virology. 1987;156:321–330. doi: 10.1016/0042-6822(87)90412-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Skinner M.A., Siddell S.G. Coronovirus JHM: Nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Res. 1983;15:5045–5054. doi: 10.1093/nar/11.15.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Soe L.H., Shieh C.-K., Baker S.C., Chang M.-F., Lai M.M.C. Sequence and translation of the murine coronavirus 5′-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. J. Virol. 1987;61:3968–3976. doi: 10.1128/jvi.61.12.3968-3976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van Der Zeijst B.A.M., Siddell S.G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequence. EMBO J. 1983;2:1939–1944. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stohlman S.A., Lai M.M.C. Phosphoproteins of murine hepatitis viruses. J. Virol. 1979;36:672–675. doi: 10.1128/jvi.32.2.672-675.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wege H., Mu¨ller A., ter Meulen V. Genomic RNA of the murine coronavirus JHM. J. Gen. Virol. 1978;41:217–227. doi: 10.1099/0022-1317-41-2-217. [DOI] [PubMed] [Google Scholar]
  39. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES