Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Apr 10;28:35–112. doi: 10.1016/S0065-3527(08)60721-6

The Molecular Biology of Coronaviruses

Lawrence S Sturman 1,2, Kathryn V Holmes 1,2
PMCID: PMC7131312  PMID: 6362367

Publisher Summary

Coronaviruses have recently emerged as an important group of animal and human pathogens that share a distinctive replicative cycle. Some of the unique characteristics in the replication of coronaviruses include generation of a 3' coterminal-nested set of five or six subgenomic mRNAs, each of which appears to direct the synthesis of one protein. Two virus-specific RNA polymerase activities have been identified. Many of the distinctive features of coronavirus infection and coronavirus-induced diseases may result from the properties of the two coronavirus glycoproteins. The intracellular budding site, which may be important in the establishment and maintenance of persistent infections, appears to be due to the restricted intracytoplasmic migration of the E1 glycoprotein, which acts as a matrix-like transmembrane glycoprotein. E1 also exhibits distinctive behavior by self-aggregating on heating at 100°C in sodium dodecyl sulfate (SDS) and by its interaction with RNA in the viral nucleocapsid. The E1 of mouse hepatitis virus (MHV) is an O-linked glycoprotein, unlike most other viral glycoproteins. Thus, the coronavirus system may be a useful model for the study of synthesis, glycosylation, and transport of O-linked cellular glycoproteins.

References

  1. Alexander D.J., Collins M.S. Effect of pH on the growth and cytopathogenicity of avian infectious bronchitis virus in chick kidney cells. Arch. Virol. 1975;49:339–348. doi: 10.1007/BF01318243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexander D.J., Collins M.S. The purification and polypeptide composition of avian infectious bronchitis virus. Microbios. 1977;18:87–98. [PubMed] [Google Scholar]
  3. Almeida J.D., Tyrrell D.A.J. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J. Gen. Virol. 1967;1:175–178. doi: 10.1099/0022-1317-1-2-175. [DOI] [PubMed] [Google Scholar]
  4. Anderson R, Cheley S, Haworth-Hatherell E. Comparison of polypeptides of two strains of murine hepatitis virus. Virology. 1979;97:492–494. doi: 10.1016/0042-6822(79)90363-5. [DOI] [PubMed] [Google Scholar]
  5. Apostolov K, Flewett T.H., Kendal A.P. Morphology of influenza ABC and infectious bronchitis virus (IBV) virions and their replication. In: Barry R.D., Mahy B.W.J., editors. Academic Press; New York: 1970. pp. 3–26. (‘The Biology of Large RNA Viruses’). [Google Scholar]
  6. Armstrong J, Smeekens S, Rottier P. Sequence of the nucleocapsid gene from coronavirus MHV-A59. Nucleic Acids Res. 1983;11:883–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Arnheiter H, Haller O. Inborn resistance of mice to mouse hepatitis virus type 3 (MHV3). In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 409–417. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  8. Arnheiter H, Baechi T, Haller O. Adult mouse hepatocytes in primary monolayer culture express genetic resistance to mouse hepatitis virus type 3. J. Immunol. 1982;129:1275–1281. [PubMed] [Google Scholar]
  9. Bang F.B. Genetics of resistance of animals to viruses. I. Introduction and studies in mice. Adv. Virus Res. 1978;23:269–348. doi: 10.1016/S0065-3527(08)60102-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bang F.B. The use of a genetically incompatable combination of host and virus (MHV) for the study of mechanisms of host resistance. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 359–373. (‘Biochemistry and Biology of Coronaviruses’). [Google Scholar]
  11. Bang F.B., Cody T.S. Is genetic resistance to mouse hepatitis based on immunological reactions? In: Skamene E., Kongshavn P.A.L., Landy M, editors. Academic Press; New York: 1980. pp. 215–226. (‘Genetic Control of Natural Resistance to Infection and Malignancy’). [Google Scholar]
  12. Bang F.B., Warwick A. Macrophages and mouse hepatitis. Virology. 1959;9:715–717. doi: 10.1016/0042-6822(59)90166-7. [DOI] [PubMed] [Google Scholar]
  13. Bang F.B., Warwick A. Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis of their susceptibility. Proc. Natl. Acad. Sci. U.S.A. 1960;46:1065–1075. doi: 10.1073/pnas.46.8.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Becker W.B., McIntosh K, Dees J.H., Chanock R.M. Morphogenesis of avian infectious bronchitis virus and a related human virus (strain 229E) J. Virol. 1967;1:1019–1027. doi: 10.1128/jvi.1.5.1019-1027.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Berry D.M., Cruickshank J.G., Chu H.P., Wells R.H.J. The structure of infectious bronchitis virus. Virology. 1964;23:403–407. doi: 10.1016/0042-6822(64)90263-6. [DOI] [PubMed] [Google Scholar]
  16. Bhatt P.N., Percy D.H., Jonas A.M. Characterization of the virus of sialodacryoadenitis of rats: A member of the coronavirus group. J. Infect. Dis. 1972;126:123–130. doi: 10.1093/infdis/126.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bingham R.W. The polypeptide composition of avian infectious bronchitis virus. Arch. Virol. 1975;49:207–216. doi: 10.1007/BF01317539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bingham R.W., Almedia J.D. Studies on the structure of a coronavirus-Avian infectious bronchitis virus. J. Gen. Virol. 1977;36:495–502. doi: 10.1099/0022-1317-36-3-495. [DOI] [PubMed] [Google Scholar]
  19. Bingham R.W., Madge M.H., Tyrrell D.A. Haemagglutination by avian infectious bronchitis virus—a coronavirus. J. Gen. Virol. 1975;28:381–390. doi: 10.1099/0022-1317-28-3-381. [DOI] [PubMed] [Google Scholar]
  20. Bond C.W., Leibowitz H.L., Robb J.A. Pathogenic murine coronaviruses. II. Characterization of virus-specific proteins of murine coronavirus JHMV and A59V. Virology. 1979;94:371–384. doi: 10.1016/0042-6822(79)90468-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bond C.W., Anderson K, Goss S, Sardinia L. Relatedness of virion and intracellular proteins of the murine coronavirus JHM and A59. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 103–110. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  22. Bradburne A.F. Antigenic relationships amongst coronaviruses. Arch. Gesamte Virusforsch. 1970;31:352–364. doi: 10.1007/BF01253769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bradburne A.F., Tyrrell D.A.J. The propagation of “coronaviruses” in tissue-culture. Arch. Gesamte Virusforsch. 1969;28:133–150. doi: 10.1007/BF01249379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Brayton P.R., Ganges R.G., Stohlman S.A. Host cell nuclear function and murine hepatitis virus replication. J. Gen. Virol. 1981;56:457–460. doi: 10.1099/0022-1317-56-2-457. [DOI] [PubMed] [Google Scholar]
  25. Brayton P.R., Lai M.M.C., Patton C.D., Stohlman S.A. Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J. Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bridger J.C., Woode G.N., Meyling A. Isolation of coronaviruses from neonatal calf diarrhoea in Great Britain and Denmark. Vet. Microbiol. 1978;3:101–113. [Google Scholar]
  28. Bruckova M, McIntosh K, Kapikian A.Z., Chanock R.M. The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers (35068) Proc. Soc. Exp. Biol. Med. 1970;135:431–435. doi: 10.3181/00379727-135-35068. [DOI] [PubMed] [Google Scholar]
  29. Burks J.S., De Vald B.D., Jankovsky L.C., Gerdes C. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209:933–934. doi: 10.1126/science.7403860. [DOI] [PubMed] [Google Scholar]
  30. Busch H, Reddy R, Rothblum L, Choi Y.C. SnRNAs, SnRNPs, and RNA processing. Ann. Rev. Biochem. 1982;51:617–654. doi: 10.1146/annurev.bi.51.070182.003153. [DOI] [PubMed] [Google Scholar]
  31. Callebaut P.E., Pensaert M.B. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J. Gen. Virol. 1980;48:193–204. doi: 10.1099/0022-1317-48-1-193. [DOI] [PubMed] [Google Scholar]
  32. Carmichael L.E., Binn L.N. New enteric viruses in the dog. Adv. Vet. Sci. Comp. Med. 1981;25:1–37. [PubMed] [Google Scholar]
  33. Caul E.O., Egglestone S.I. Further studies on human enteric coronaviruses. Arch. Virol. 1977;54:107–117. doi: 10.1007/BF01314383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Caul E.O., Ashley C.R., Ferguson M, Egglestone S.I. Preliminary studies on the isolation of coronavirus 229E nucleocapsids. FEMS Microbiol. Lett. 1979;5:101–105. [Google Scholar]
  35. Cavanagh D. Structural polypeptides of coronavirus IBV. J. Gen. Virol. 1981;53:93–103. doi: 10.1099/0022-1317-53-1-93. [DOI] [PubMed] [Google Scholar]
  36. Chasey D, Alexander D.J. Morphogenesis of Avian infectious bronchitis virus in primary chick kidney cells. Arch. Virol. 1976;52:101–111. doi: 10.1007/BF01317869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Cheley S, Anderson R. Cellular synthesis and modification of murine hepatitis virus polypeptides. J. Gen. Virol. 1981;54:301–311. doi: 10.1099/0022-1317-54-2-301. [DOI] [PubMed] [Google Scholar]
  38. Cheley S, Anderson R, Cupples M.J., LeeChan E.C.M., Morris V.L. Intracellular murine hepatitis virus-specific RNAs contain common sequences. Virology. 1981;112:596–604. doi: 10.1016/0042-6822(81)90305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Cheley S, Morris V.L., Cupples M, Anderson R. RNA and polypeptide homology among murine coronaviruses. Virology. 1981;115:310–321. doi: 10.1016/0042-6822(81)90113-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Clewley J.P., Morser J, Avery R.J., Lomniczi B. Oligonucleotide fingerprinting of the RNA of different strains of infectious bronchitis virus. Infect. Immun. 1981;32:1227–1233. doi: 10.1128/iai.32.3.1227-1233.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Cody T.S. Factors governing the responses of macrophages to MHV in vitro. Johns Hopkins University School of Hygiene and Public Health; Baltimore, Maryland: 1980. Doctor of Science Thesis. [Google Scholar]
  42. Collins A.R., Knobler R.L., Powell H, Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Collins M.S., Alexander D.J. Avian infectious bronchitis virus structural polypeptides. Effect of different conditions of disruption and comparison of different strains and isolates. Arch. Virol. 1980;63:239–251. doi: 10.1007/BF01315030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Collins M.S., Alexander D.J. The polypeptide composition of isolated surface projections of avian infectious bronchitis virus. J. Gen. Virol. 1980;48:213–217. doi: 10.1099/0022-1317-48-1-213. [DOI] [PubMed] [Google Scholar]
  45. Collins M.S., Alexander D.J., Harkness J.W. Heterogeneity of infectious bronchitis virus grown in eggs. Arch. Virol. 1976;50:55–72. doi: 10.1007/BF01318001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Compans R.W., Pinter A. Incorporation of sulfate into influenza virus glycoproteins. Virology. 1975;66:151–160. doi: 10.1016/0042-6822(75)90186-5. [DOI] [PubMed] [Google Scholar]
  47. Corbo L.J., Cunningham C.H. Hemagglutination by trypsin-modified infectious bronchitis virus. Am. J. Vet. Res. 1959;20:876–883. [PubMed] [Google Scholar]
  48. Coria M.F., Ritchie A.E. Serial passage of three strains of avian infectious bronchitis virus in African green monkey kidney cells (Vero) Avian Dis. 1973;17:697–704. [PubMed] [Google Scholar]
  49. Cunningham C.H., Spring M.F., Nazerian K. Replication of avian infectious bronchitis virus in African green monkey kidney cell line Vero. J. Gen. Virol. 1972;16:423–427. doi: 10.1099/0022-1317-16-3-423. [DOI] [PubMed] [Google Scholar]
  50. Dales S, Howatson A.F. Virus-like particles in association with L strain cells. Cancer Res. 1961;21:193–197. [PubMed] [Google Scholar]
  51. David-Ferreira J.F., Manaker R.A. An electron microscope study of the development of a mouse hepatitis virus in tissue culture cells. J. Cell Biol. 1965;24:57–78. doi: 10.1083/jcb.24.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Davies H.A., Macnaughton M.R. Comparison of the morphology of three coronaviruses. Arch. Virol. 1979;59:25–33. doi: 10.1007/BF01317891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Davies H.A., Dourmashkin R.R., Macnaughton M.R. Ribonucleoprotein of Avian infectious bronchitis virus. J. Gen. Virol. 1981;53:67–74. doi: 10.1099/0022-1317-53-1-67. [DOI] [PubMed] [Google Scholar]
  54. Delihas N, Andersen J. Generalized structures of 5S ribosomal RNAs. Nucleic Acids Res. 1982;10:7323–7344. doi: 10.1093/nar/10.22.7323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Dennis D.E., Brian D.A. Coronavirus cell-associated RNA-dependent RNA polymerase. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 155–170. (‘Biochemistry and Biology of Coronaviruses’). [Google Scholar]
  56. Dennis D.E., Brian D.A. RNA-dependent RNA polymerase activity in coronavirus-infected cells. J. Virol. 1982;42:153–164. doi: 10.1128/jvi.42.1.153-164.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Doller E.W., Holmes K.V. Different intracellular transportation of the envelope glycoproteins E1 and E2 of the coronavirus MHV. Am. Soc. Microbiol. Abstr. Annu. Meet. 1980 Abstract No. T190. [Google Scholar]
  58. Doller E.W., Oliver C, Holmes K. The two glycoproteins of a coronavirus show different patterns of intracellular migration. 1983 Submitted for publication. [Google Scholar]
  59. Doughri A.M., Storz J. Light and ultrastructural pathologic changes in intestinal coronavirus infection of newborn calves. Zentralbl. Veterinaermed., Reihe B. 1977;24:367–387. doi: 10.1111/j.1439-0450.1977.tb01011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Doughri A.M., Storz J, Hajer I, Fernando H.S. Morphology and morphogenesis of a coronavirus infecting intestinal epithelial cells of newborn calves. Exp. Mol. Pathol. 1976;25:355–370. doi: 10.1016/0014-4800(76)90045-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Dubois-Dalcq M.E., Doller E.W., Haspel M.V., Holmes K.V. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virology. 1982;119:317–331. doi: 10.1016/0042-6822(82)90092-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Ducatelle R, Coussement W, Pensaert M.B., DeBouck P, Hoorens J. In vivo morphogenesis of a new procine enteric coronavirus CV 777. Arch. Virol. 1981;68:35–44. doi: 10.1007/BF01315165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Dupuy J.M., Levy-Leblond E, Prevost C. Immunopathology of mouse hepatitis virus type 3 infection. II. Effect of immunosuppression in resistant mice. J. Immunol. 1975;114:116–120. [PubMed] [Google Scholar]
  64. Evans M.R., Simpson R.W. The coronavirus avian infectious bronchitis virus requires the cell nucleus and host transcriptional factors. Virology. 1980;105:582–591. doi: 10.1016/0042-6822(80)90058-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Fleck L. ‘Genesis and Development of a Scientific Fact.’. Univ. of Chicago Press; Chicago, Illinois: 1979. [Google Scholar]
  66. Gallily R, Warwick A, Bang F.B. Effect of cortisone on genetic resistance to mouse hepatitis virus in vivo and in vitro. Proc. Natl. Acad. Sci. U.S.A. 1964;51:1158–1164. doi: 10.1073/pnas.51.6.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Garwes D.J. Structure and physiocochemical properties of coronaviruses. Colloq.—Inst. Nat. Sante Rech. Med. 1980;90:141–162. [Google Scholar]
  68. Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
  69. Garwes D.J., Reynolds D.J. The polypeptide structure of canine coronavirus and its relationship to porcine transmissible gastroenteritis virus. J. Gen. Virol. 1981;52:153–157. doi: 10.1099/0022-1317-52-1-153. [DOI] [PubMed] [Google Scholar]
  70. Garwes D.J., Pocock D.H., Wijaskza T.M. Identification of heat-dissociable RNA complexes in two porcine coronaviruses. Nature (London) 1975;257:508–510. doi: 10.1038/257508a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Garwes D.J., Pocock D.H., Pike B.V. Isolation of subviral components from transmissible gastroenteritis virus. J. Gen. Virol. 1976;32:283–294. doi: 10.1099/0022-1317-32-2-283. [DOI] [PubMed] [Google Scholar]
  72. Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978;3:179–190. [Google Scholar]
  73. Gerdes J.C., Jankovsky L.D., DeVald B.L., Klein I, Burks J.S. Antigenic relationships of coronaviruses detectable by plaque neutralization, competitive enzyme-linked immunoabsorbent assay and immunoprecipitation. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 29–42. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  74. Gerdes J.C., Klein I, DeVald B, Burks J.S. Coronavirus isolates SK and SD from multiple sclerosis patients are serologically related to murine coronaviruses A59 and JHM and human coronavirus OC43, but not to human coronavirus 229E. J. Virol. 1981;38:231–238. doi: 10.1128/jvi.38.1.231-238.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Gerna G, Cereda P.M., Revello M.G., Torsellini-Gerna M, Costa J. A rapid microneutralization test for antibody determination and serogianosis of human coronavirus OC43 infections. Microbiologica. 1979;2:331–344. [Google Scholar]
  76. Gerna G, Cereda P.M., Grazia-Revello M, Cattaneo E, Battaglia M, Torsellini-Gerna M. Antigenic and biological relationships between human coronavirus OC43 and neonatal calf diarrhoea coronavirus. J. Gen. Virol. 1981;54:91–102. doi: 10.1099/0022-1317-54-1-91. [DOI] [PubMed] [Google Scholar]
  77. Greig A.S., Mitchell D, Corner A.H., Bannister G.L., Meads E.B., Julian R.J. A hemagglutinating virus producing encephalomyelitis in baby pigs. Can. J. Comp. Med. 1962;26:49–56. [PMC free article] [PubMed] [Google Scholar]
  78. Greig A.S., Johnson C.M., Bouillant A.M.P. Encephalitis of swine caused by a haemagglutinating virus. VI. Morphology of the virus. Res. Vet. Sci. 1971;12:305–307. doi: 10.1016/S0034-5288(18)34153-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Guy J.S., Brian D.A. Bovine coronavirus genome. J. Virol. 1979;29:293–300. doi: 10.1128/jvi.29.1.293-300.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Hamre D, Procknow J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 1966;121:190–193. doi: 10.3181/00379727-121-30734. [DOI] [PubMed] [Google Scholar]
  81. Hamre D, Kindig D.A., Mana J. Growth and intracellular development of a new respiratory virus. J. Virol. 1967;1:810–816. doi: 10.1128/jvi.1.4.810-816.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Hartley J.W., Rowe W.P. Tissue culture cytopathic and plaque assays for mouse hepatitis viruses. Proc. Soc. Exp. Biol. Med. 1963;113:403–406. doi: 10.3181/00379727-113-28378. [DOI] [PubMed] [Google Scholar]
  83. Hasony H.J., Macnaughton M.R. Antigenicity of mouse hepatitis virus strain 3 subcomponents in C57 strain mice. Arch. Virol. 1981;69:33–41. doi: 10.1007/BF01315263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Hasony H.J., Macnaughton M.R. Serological relationships of the subcomponents of human coronavirus strain 229E and mouse hepatitis virus strain 3. J. Gen. Virol. 1982;58:449–452. doi: 10.1099/0022-1317-58-2-449. [DOI] [PubMed] [Google Scholar]
  85. Haspel M.V., Lambert P.W., Oldstone M.B. Temperature-sensitive mutants of mouse hepatitis virus produce a high incidence of demyelinatuion. Proc. Natl. Acad. Sci. U.S.A. 1978;75:4033–4036. doi: 10.1073/pnas.75.8.4033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Haspel M.V., Holmes K.V., Welsh R.M. Natural cell-mediated cytotoxicity against mouse hepatitis virus (MHV) infected cells. Am. Soc. Microbiol. Abstr. Annu. Meet. 1981 Abstract No. E9. [Google Scholar]
  87. Heggeness M.H., Scheid A, Choppin P.W. Conformation of the helical nucleocapsids of paramyxoviruses and vesicular stomatitis virus: Reversible coiling and uncoiling induced by changes in salt concentration. Proc. Natl. Acad. Sci. U.S.A. 1980;77:2631–2635. doi: 10.1073/pnas.77.5.2631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Heggeness M.H., Smith P.R., Ulmanen J, Krug R.M., Choppin P.W. Studies on the helical nucleocopsid of influenza virus. Virology. 1982;118:466–470. doi: 10.1016/0042-6822(82)90367-1. [DOI] [PubMed] [Google Scholar]
  89. Heilman C.A., Engel L, Lowry O.R., Howley P.M. Virus-specific transcription in bovine papillomavirus-transformed mouse cells. Virology. 1982;119:22–34. doi: 10.1016/0042-6822(82)90061-7. [DOI] [PubMed] [Google Scholar]
  90. Helenius A, Kartenbeck J, Simons K, Fries E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Helenius A, Marsh M, White J. The entry of viruses into animal cells. Trends Biochem. Sci. 1980;5:104–106. [Google Scholar]
  92. Helenius A, Marsh M, White J. Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J. Gen Virol. 1982;58:47–61. doi: 10.1099/0022-1317-58-1-47. [DOI] [PubMed] [Google Scholar]
  93. Hierholzer J.C., Palmer E.L., Whitfield S.G., Kaye H.S., Dowdle W.R. Protein composition of coronavirus OC43. Virology. 1972;48:516–527. doi: 10.1016/0042-6822(72)90062-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Hirano N, Fujiwara K, Hino S, Matumoto M. Replication and plaque formation of mouse hepatitis virus (MHV-2) in mouse cell line DBT culture. Arch. Gesamte Virusforsch. 1974;44:298–302. doi: 10.1007/BF01240618. [DOI] [PubMed] [Google Scholar]
  95. Hirano N, Fujiwara K, Matumoto M. Mouse hepatitis virus (MHV-2): Plaque assay and propagation in mouse cell line DBT cells. J. J. Microbiol. 1976;20:219–225. [PubMed] [Google Scholar]
  96. Hirano N, Murakami T, Fujiwara K, Matsumoto M. Utility of mouse cell line DBT for propagation and assay of mouse hepatitis virus. J. J. Exp. Med. 1978;48:71–75. [PubMed] [Google Scholar]
  97. Hirano N, Goto N, Makino S, Fujiwara K. Persistent infection with mouse hepatitis virus JHM straIn in DBT cell culture. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 301–308. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  98. Holland J, Spindler K, Horadyski F, Grabau E, Nichol S, Vandepol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  99. Holmes K.V., Behnke J.N. Evolution of a coronavirus during persistent infection in vitro. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 287–299. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  100. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Holmes K.V., Doller E.W., Behnke J.N. Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 133–142. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  102. Horzinek M.C., Lutz H, Pedersen N.C. Antigenic relationships among homologous structural polypeptides of procine, feline, and canine coronaviruses. Infect. Immun. 1982;37:1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Hsu C.H., Kingsbury D.W. Contribution of oligosaccharide sulfation to the charge heterogeneity of viral glycoprotein. J. Biol. Chem. 1982;257:9035–9038. [PubMed] [Google Scholar]
  104. Huang R.T.C., Rott R, Klenk H-D. Influenza viruses cause hemolysis and fusion of cells. Virology. 1981;110:243–247. doi: 10.1016/0042-6822(81)90030-1. [DOI] [PubMed] [Google Scholar]
  105. Huttner W.B. Sulfation of tyrosine residues—a widespread modification of proteins. Nature (London) 1982;299:273–276. doi: 10.1038/299273a0. [DOI] [PubMed] [Google Scholar]
  106. Jacobs L, Spaan W.J.M., Horzinek M.C., van derZeijst B.A.M. The synthesis of the subgenomic mRNAs of mouse hepatitis virus is initiated independently: evidence from UV transcription mapping. J. Virol. 1981;39:401–406. doi: 10.1128/jvi.39.2.401-406.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Kantoch M, Warwick A, Bang F.B. The cellular nature of genetic sysceptibility to a virus. J. Exp. Med. 1963;117:781–798. doi: 10.1084/jem.117.5.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Kapikian A.Z., James H.D., Jr., Kelly S.J., Dees H.J., Turner H.C., McIntosh K, Kim H.W., Parrott R.H., Vincent M.M., Chanock R.M. Isolation from man of “Avian bronchitis virus-like” viruses (coronaviruses) similar to 229E virus, with some epidemiological observations. J. Infect. Dis. 1969;119:282–290. doi: 10.1093/infdis/119.3.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Kaye H.S., Dowdle W.R. Some characteristics of hemagglutination of certain strains of “IBV-like” virus. J. Infect. Dis. 1969;120:576–581. doi: 10.1093/infdis/120.5.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Keller K.L., Keller J.M., Moy J.M. Heparan sulfate from Swiss mouse 3T3 and SV3T3 cells: O-sulfate difference. Biochemistry. 1980;19:2529–2536. doi: 10.1021/bi00552a035. [DOI] [PubMed] [Google Scholar]
  111. Kemp M.C., Compans R.W., Caterson B, Baker J.R. Characterization of glycosaminoglycans associated with Rauscher murine leukemia virus. Membr. Biochem. 1982;4:219–234. doi: 10.3109/09687688209065432. [DOI] [PubMed] [Google Scholar]
  112. Kennedy D.A., Johnson-Lussenburg C.M. Isolation and morphology of the internal component of human coronavirus, strain 229E. Intervirology. 1975;6:197–206. doi: 10.1159/000149474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. King B, Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Klenk H.D., Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr. Top. Microbiol. Immunol. 1981;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  115. Knobler R.L., Haspel M.V., Dubois-Dalcq M, Lampert P.W., Oldstone M.B.A. Host and virus factors associated with CNS cellular tropism leading to encephalomyelitis or demyelination induced by the JHM straIn of mouse hepatitis virus. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 341–348. (‘Biochemistry and Biology of Coronaviruses). [DOI] [PubMed] [Google Scholar]
  116. Knobler R.L., Haspel M.V., Oldstone M.B.A. Mouse hepatitis virus type 4 (JHM strain) induced fatal nervous system disease. Part I. Genetic control and the murine neuron as the susceptible site of disease. J. Exp. Med. 1981;133:832–843. doi: 10.1084/jem.153.4.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Knobler R.L., Dubois-Dalcq M, Haspel M.V., Claysmith A.P., Lampert P.W., Oldstone M.B.A. Selective localization of wild type and mutant mouse hepatitis virus (JHM-strain) antigens in CNS tissue by fluorescence light and electron microscopy. J. Neuroimmunol. 1981;1:81–92. doi: 10.1016/0165-5728(81)90010-2. [DOI] [PubMed] [Google Scholar]
  118. Knobler R.L., Lampert P.W., Oldstone M.B.A. Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature (London) 1982;298:279–280. doi: 10.1038/298279a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Koolen M.J.M., Horzinek M.C., van derZeijst B.A.M. Isolation and biochemical characterization of 21 temperature-sensitive mutants of MHV-A59. Abstr., Intl. Congr. Virol., 5th, 1981. 1981:421. [Google Scholar]
  120. Koolen M.J.M., Osterhaus D.M.E., van Steenis G, Horzinek M.C., van derZeijst B.A.M. Temperature sensitive mutants of mouse hepatitis virus strain A59: Isolation, characterization and neuropathogenic properties. Virology. 1983;125:393–402. doi: 10.1016/0042-6822(83)90211-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Kraaijeveld C.A., Madge M.H., Macnaughton M.R. Enzyme-linked immuno-sorbent assay for coronaviruses HCV229E and MHV-3. J. Gen. Virol. 1980;49:83–89. doi: 10.1099/0022-1317-49-1-83. [DOI] [PubMed] [Google Scholar]
  122. Kraemer P.M., Smith D.A. High molecular weight heparan sulfate from the cell surface. Biochem. Biophys, Res. Commun. 1974;56:423–430. doi: 10.1016/0006-291x(74)90859-6. [DOI] [PubMed] [Google Scholar]
  123. Krystyniak K, Dupuy J.M. Early interaction between mouse hepatitis virus 3 and cells. J. Gen. Virol. 1981;57:53–61. doi: 10.1099/0022-1317-57-1-53. [DOI] [PubMed] [Google Scholar]
  124. Lai M.M.C., Stohlman S.A. The RNA of mouse hepatitis virus. J. Virol. 1978;26:236–242. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Lai M.M.C., Stohlman S.A. Comparative analysis of RNA genomes of mouse hepatitis viruses. J. Virol. 1981;38:661–670. doi: 10.1128/jvi.38.2.661-670.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C, Stohlman S.A. Mouse hepatitis virus A59 messenger RNA structure and genetic localization of the sequence divergence from the hepatropic strain MHV3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Lai M.M.C., Patton C.D., Stohlman S.A. Further characterization of mouse hepatitis virus: Presence of common 5′-end nucleotides. J. Virol. 1982;41:557–565. doi: 10.1128/jvi.41.2.557-565.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Lai M.M.C., Patton C.D., Stohlman S.A. Replication of mouse hepatitis virus: Negative-stranded RNA and replicative form RNA are of genome length. J. Virol. 1982;44:487–492. doi: 10.1128/jvi.44.2.487-492.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Lanser J.A., Howard C.R. The polypeptides of infectious bronchitis virus (IBV-41 strain) J. Gen. Virol. 1980;46:349–361. doi: 10.1099/0022-1317-46-2-349. [DOI] [PubMed] [Google Scholar]
  130. LaPierre L, Marsolais G, Pilon P, Descoteaux J-P. Preliminary report on the observation of a coronavirus in the intestine of the laboratory rabbit. Can. J. Microbiol. 1980;26:1204–1208. doi: 10.1139/m80-201. [DOI] [PubMed] [Google Scholar]
  131. Laporte J, Bobulesco P. Growth of human and canine enteric coronaviruses in a highly susceptible cell line: HRT18. Perspect. Virol. 1981;11:189–193. [Google Scholar]
  132. Lavelle G.C., Bang F.B. Influence of type and concentration of sera in vitro on susceptibility of genetically resistant cells to mouse hepatitis virus. J. Gen. Virol. 1971;12:233–238. doi: 10.1099/0022-1317-12-3-233. [DOI] [PubMed] [Google Scholar]
  133. Leibowitz J.L., Weiss S.R. Murine coronavirus RNA. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 227–244. (‘Biochemistry and Biology of Coronaviruses’). [Google Scholar]
  134. Leibowitz J.L., Wilhelmsen K.C., Bond C.W. The virus-specific intra-cellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:29–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Leibowitz J.L., DeVries J.R., Haspel M.V. Genetic analysis of murine hepatitis virus strain JHM. J. Virol. 1982;42:1080–1087. doi: 10.1128/jvi.42.3.1080-1087.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Leibowitz J.L., Weiss S.R., Paavola E, Bond C.W. Cell-free translation of murine coronavirus RNA. J. Virol. 1982;43:905–913. doi: 10.1128/jvi.43.3.905-913.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. LePrevost C, Virelizier J.L., Dupuy J.M. Immunopathology of mouse hepatitis virus type 3 infection. III. Clinical and virologic observation of a persistent viral infection. J. Immunol. 1975;115:640–645. [PubMed] [Google Scholar]
  138. Lerner M.R., Boyle J.B., Mount S.M., Wolin S.L., Steitz J.A. Are snRNPs involved in splicing? Nature. 1980;283:220–224. doi: 10.1038/283220a0. [DOI] [PubMed] [Google Scholar]
  139. Lindenmann J. In: Poste G., Nicolson G.I., editors. Elsevier/North-Holland Biomedical Press; Amsterdam: 1977. pp. 291–329. (Host antigens In eveloped RNA viruses. In “Virus Infection and the Cell Surface”). [Google Scholar]
  140. Lomniczi B. Biological properties of avian coronavirus RNA. J. Gen. Virol. 1977;36:531–533. doi: 10.1099/0022-1317-36-3-531. [DOI] [PubMed] [Google Scholar]
  141. Lomniczi B, Kennedy I. Genome of infectious bronchitis virus. J. Virol. 1977;24:99–107. doi: 10.1128/jvi.24.1.99-107.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Lomniczi B, Morser J. Polypeptides of infectious bronchitis virus. I. Polypeptides of the virion. J. Gen. Virol. 1981;55:155–164. doi: 10.1099/0022-1317-55-1-155. [DOI] [PubMed] [Google Scholar]
  143. McIntosh K. Coronaviruses. A comparative review. Curr. Top. Microbiol. Immunol. 1974;63:85–129. [Google Scholar]
  144. McIntosh K, Dees H.J., Becker W.B., Kapikian A.Z., Chanock R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. U.S.A. 1967;57:933–940. doi: 10.1073/pnas.57.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. McIntosh K, Becker W.B., Chanock R.M. Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc. Natl. Acad. Sci. U.S.A. 1967;58:2268–2273. doi: 10.1073/pnas.58.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. McIntosh K, Kapikian A.Z., Hardison K.A., Hartley J.W., Chanock R.M. Antigenic relationships among the coronaviruses of man and between human and animal coronaviruses. J. Immunol. 1969;102:1109–1118. [PubMed] [Google Scholar]
  147. Macnaughton M.R. The genomes of three coronaviruses. FEBS Lett. 1978;94:191–194. doi: 10.1016/0014-5793(78)80935-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Macnaughton M.R. The polypeptides of human and mouse coronaviruses. Arch. Virol. 1980;63:75–80. doi: 10.1007/BF01320763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Macnaughton M.R. Structural and antigenic relationships between human murine and avian coronaviruses. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 19–28. (‘The Biology and Biochemistry of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  150. Macnaughton M.R., Davies H.A. Two particle types of avian infectious bronchitis virus. J. Gen. Virol. 1980;47:365–372. doi: 10.1099/0022-1317-47-2-365. [DOI] [PubMed] [Google Scholar]
  151. Macnaughton M.R., Davies H.A. Human enteric coronaviruses: Brief review. Arch. Virol. 1981;70:301–313. doi: 10.1007/BF01320245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Macnaughton M.R., Madge H. The polypeptide composition of avian infectious bronchitis virus particles. Arch. Virol. 1977;55:47–54. doi: 10.1007/BF01314478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Macnaughton M.R., Madge H.M. The characterization of the virion RNA of avian infectious bronchitis virus. FEBS Lett. 1977;77:311–313. doi: 10.1016/0014-5793(77)80258-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Macnaughton M.R., Madge M.H. The genome of human coronavirus strain 229E. J. Gen. Virol. 1978;39:497–504. doi: 10.1099/0022-1317-39-3-497. [DOI] [PubMed] [Google Scholar]
  155. Macnaughton M.R., Patterson S. Mouse hepatitis virus strain 3 infection of C57, A/Sn and A/J strain mice and their macrophages. Arch. Virol. 1980;66:71–75. doi: 10.1007/BF01315046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Macnaughton M.R., Davies H.A., Nermut M.V. Ribonucleoprotein-like structures from coronavirus particles. J. Gen. Virol. 1978;39:545–549. doi: 10.1099/0022-1317-39-3-545. [DOI] [PubMed] [Google Scholar]
  157. Macnaughton M.R., Thomas B.J., Davies H.A., Patterson S. Infectivity of human coronavirus strain 229E. J. Clin. Microbiol. 1980;12:462–468. doi: 10.1128/jcm.12.3.462-468.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Macnaughton M.R., Hasony H.J., Madge M.H., Reed S.E. Antibody to virus components in volunteers experimentally infected with HCV 229E group viruses. Infect. Immun. 1981;31:845–849. doi: 10.1128/iai.31.3.845-849.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Mahy B.W.J., Siddell S, Wege H, terMeulen V. RNA-dependent RNA polymerase activity in murine coronavirus-infected cells. J. Gen. Virol. 1983;64:103–111. doi: 10.1099/0022-1317-64-1-103. [DOI] [PubMed] [Google Scholar]
  160. Mallucci L. Observations on the growth of mouse hepatitis virus (MHV-3) in mouse macrophages. Virology. 1965;25:30–37. doi: 10.1016/0042-6822(65)90248-5. [DOI] [PubMed] [Google Scholar]
  161. Mallucci L. Effect of chloroquine on lysosomes and on growth of mouse hepatitis virus (MHV-3) Virology. 1966;28:355–362. doi: 10.1016/0042-6822(66)90046-8. [DOI] [PubMed] [Google Scholar]
  162. Manaker R.A., Piczak C.V., Miller A.A., Stanton M.F. A hepatitis virus complicating studies with mouse leukemia. JNCI, J. Natl. Cancer Inst. 1961;27:29–51. [PubMed] [Google Scholar]
  163. Marsh M, Helenius A. Adsorptive endocytosis of Semliki Forest virus. J. Mol. Biol. 1980;142:439–454. doi: 10.1016/0022-2836(80)90281-8. [DOI] [PubMed] [Google Scholar]
  164. Massalski A, Coulter-Mackie M, Dales S. Assembly of mouse hepatitis virus straIn JHM. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 111–118. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  165. Massalski A, Coulter-Mackie M, Knobler R.L., Buchmeier M.J., Dales S. In vivo and in vitro models of demyelinating diseases. V. Comparison of the assembly of mouse hepatitis virus, strain JHM, in two murine cell lines. Intervirology. 1982;18:135–146. doi: 10.1159/000149316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Matlin K.S., Reggio H, Helenius A, Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 1981;91:601–603. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Matlin K.S., Reggio H, Helenius A, Simons K. Pathway of vesicular stomatitis virus entry leading to infection. J. Mol. Biol. 1982;156:609–631. doi: 10.1016/0022-2836(82)90269-8. [DOI] [PubMed] [Google Scholar]
  168. Mengeling W.L., Booth A.D., Ritchie A.E. Characteristics of a coronavirus (strain 67N) of pigs. Am. J. Vet. Res. 1972;33:297–308. [PubMed] [Google Scholar]
  169. Mosley J.W. Multiplication and cytopathogenicity of mouse hepatitis virus in mouse cell cultures. Proc. Soc. Exp. Biol. Med. 1961;108:524–529. doi: 10.3181/00379727-108-26986. [DOI] [PubMed] [Google Scholar]
  170. Nakamura K, Compans R.W. The cellular site of sulfation of influenza viral glycoproteins. Virology. 1977;79:381–392. doi: 10.1016/0042-6822(77)90365-8. [DOI] [PubMed] [Google Scholar]
  171. Niemann H, Klenk H-D. Coronavirus glycoprotein E1, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Niemann H, Klenk H-D. GlycoproteIn E1 of coronavirus A59. A new type of viral glycoprotein. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 119–132. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  173. Niemann H, Boschek B, Evans D, Rosing M, Tamura T, Klenk H-D. Post-translational glycosylation of corona virus glycoprotein E1: Inhibition by monensin. Embo. J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Oldberg A, Hook M, Obrink B, Pertoft H, Rubin K. Structure and metabolism of rat liver heparan sulfate. Biochem. J. 1977;164:75–81. doi: 10.1042/bj1640075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Oldberg A, Kjellen L, Hook M. Cell-surface heparan sulfate: Isolation and characterization of a proteoglycan from rat liver membranes. J. Biol. Chem. 1979;254:8505–8510. [PubMed] [Google Scholar]
  176. Oshiro L.S. Coronaviruses. In: Dalton A.J., Haguenau F, editors. Academic Press; New York: 1973. pp. 331–343. (‘Ultrastructure of Animal Viruses and Bacteriophages: An Atlas’). Chapter 18. [Google Scholar]
  177. Oshiro L.S., Schieble J.H., Lennette E.H. Electron microscopic studies of a coronavirus. J. Gen. Virol. 1971;12:161–168. doi: 10.1099/0022-1317-12-2-161. [DOI] [PubMed] [Google Scholar]
  178. Otsuki K, Tsubokura M. Plaque formation by IBV in 1ô CEF cells in the presence of trypsin. Arch. Virol. 1981;70:315–320. doi: 10.1007/BF01320246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Otsuki K, Noro K, Yamamoto H, Tsubokura M. Studies on avian infectious bronchitis virus (IBV). II. Propagation of IBV in several cultured cells. Arch. Virol. 1979;60:115–122. doi: 10.1007/BF01348027. [DOI] [PubMed] [Google Scholar]
  180. Parker J.S., Cross S.S., Rowe W.P. Rat coronavirus (RCV), a prevalent, naturally-occurring pneumotropic virus of rats. Arch. Gesamte Virusforsch. 1970;31:293–302. doi: 10.1007/BF01253764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Patterson S, Bingham R.W. Electron microscope observations on the entry of avian infectious bronchitis virus into susceptible cells. Arch. Virol. 1976;53:267–273. doi: 10.1007/BF01348016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Patterson S, Macnaughton M.R. The distribution of human coronavirus strain 229E on the surface of human diploid cells. J. Gen. Virol. 1981;53:267–273. doi: 10.1099/0022-1317-53-2-267. [DOI] [PubMed] [Google Scholar]
  183. Pedersen N.C., Ward I, Mengeling W.L. Antigenic relationships of the feline infectious peritonitis virus to coronaviruses of other species. Arch. Virol. 1978;58:45–53. doi: 10.1007/BF01315534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Pensaert M.B., Callebaut P. The coronaviruses. Clinical and structural aspects with some practical implications. Ann. Med. Vet. 1978;122:301–322. [Google Scholar]
  185. Pensaert M.B., Debouck P, Reynolds D.J. An immunoelectron microscopic and immunofluorescent study on the antigenic relationship between the coronavirus-like agent, CV777, and several coronaviruses. Arch. Virol. 1981;68:45–52. doi: 10.1007/BF01315166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Petri W.A., Wagner R.R. Glycoprotein micelles isolated from VSV spontaneously partition into sonicated phosphatidylcholine vesicles. Virology. 1980;107:543–547. doi: 10.1016/0042-6822(80)90323-2. [DOI] [PubMed] [Google Scholar]
  187. Pike B.V., Garwes D.J. Lipids of transmissible gastroenteritis virus and their relation to those of two different host cells. J. Gen. Virol. 1977;34:531–535. doi: 10.1099/0022-1317-34-3-531. [DOI] [PubMed] [Google Scholar]
  188. Pinter A, Compans R.W. Sulfated components of enveloped viruses. J. Virol. 1975;16:859–866. doi: 10.1128/jvi.16.4.859-866.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Pocock D.H. Effect of sulphydryl reagents on the biological activities, polypeptide composition, and morphology of haemagglutinating encephalomyelitis virus. J. Gen. Virol. 1978;40:93–101. doi: 10.1099/0022-1317-40-1-93. [DOI] [PubMed] [Google Scholar]
  190. Pocock D.H., Garwes D.J. The influence of pH on the growth and stability of transmissible gastroenteritis virus. Arch. Virol. 1975;49:239–247. doi: 10.1007/BF01317542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Pocock D.H., Garwes D.J. The polypeptides of haemagglutinating encephalomyelitis virus and isolated subviral particles. J. Gen. Virol. 1977;37:487–499. [Google Scholar]
  192. Prehm P, Scheid A, Choppin P.W. The carbohydrate structure of the glycoproteins of the paramyxovirus SV5 grown in bovine kidney cells. J. Biol. Chem. 1979;254:9669–9677. [PubMed] [Google Scholar]
  193. Prinz R, Klein U, Sudhakaran P.R., Sinn W, Ullrich K, vonFigura K. Metabolism of sulfated glycosaminoglycan in rat hepatocytes: Synthesis of heparan sulfate and distribution into cellular and extracellular pools. Biochim. Biophys, Acta. 1980;630:402–413. doi: 10.1016/0304-4165(80)90289-5. [DOI] [PubMed] [Google Scholar]
  194. Reynolds D.J., Garwes D.J., Lucey S. Differentiation of canine coronavirus and porcine transmissible gastroenteritis virus by neutralization with canine, porcine, and feline sera. Vet. Microbiol. 1980;5:283–290. [Google Scholar]
  195. Richter J.M. The attachment of mouse hepatitis virus to the plasma membrane of L2 cells. University of Texas Health Science Center at Dallas; Dallas, Texas: 1976. Master of Arts Thesis. [Google Scholar]
  196. Robb J.A., Bond C.W. Coronaviridae. Compr. Virol. 1979;14:193–247. [Google Scholar]
  197. Robb J.A., Bond C.W. Pathogenic murine coronaviruses. I. Characterization of biological behaviour in vitro and virus-specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses. Virology. 1979;94:352–370. doi: 10.1016/0042-6822(79)90467-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Robb J.A., Bond C.W., Leibowitz J.L. Pathogenic murine coronaviruses. III. Biological and biochemical characterization of temperature-sensitive mutants of JHMV. Virology. 1979;91:385–399. doi: 10.1016/0042-6822(79)90469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Roden L. Structure and metabolism of connective tissue proteoglycans. In: Lennarz W.J., editor. Plenum; New York: 1980. pp. 267–371. (‘The Biochemistry of Glycoproteins and Proteoglycans’). [Google Scholar]
  200. Rodriguez-Boulan E, Sabatini D.D. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity. Proc. Natl. Acad Sci. U.S.A. 1978;75:5071–5075. doi: 10.1073/pnas.75.10.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Rollins B.J., Culp L.A. Glycosaminoglycans in the substrate adhesion sites of normal and virus-transformed murine cells. Biochemistry. 1979;18:141–148. doi: 10.1021/bi00568a022. [DOI] [PubMed] [Google Scholar]
  202. Rottier P.J.M., Spaan W.J.M., Horzinek M, van derZeijst B.A.M. Translation of three mouse hepatitis virus (MHV-A59) subgenomic RNAs in Xenopus laevis oocytes. J. Virol. 1981;38:20–26. doi: 10.1128/jvi.38.1.20-26.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Rottier P.J.M., Horzinek M.C., van derZeijst B.A.M. Viral protein synthesis in mouse hepatitis virus train A59-infected cells: Effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Sabesin S.M. The role of lysosomes in the pathogenesis of experimental viral hepatitis. Am. J. Gastroenterol. 1971;55:539–563. [PubMed] [Google Scholar]
  205. Schlesinger M.J., Kaariainen L. Translation and processing of alphavirus proteins. In: Schlesinger R.W., editor. Academic Press; New York: 1980. pp. 371–392. (‘The Togaviruses: Biology, Structure, Replication’). [Google Scholar]
  206. Schmidt M.F.G. Acylation of viral spike glycoproteins, a feature of enveloped RNA viruses. Virology. 1982;116:327–338. doi: 10.1016/0042-6822(82)90424-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Schmidt M.F.G. Acylation of proteins—a new type of modification of membrane proteins Trends Biochem. Sci. Pers. Ed. 1982;7:322–324. [Google Scholar]
  208. Schmidt M.F.G., Schlesinger M.J. Fatty acid binding to vesicular stomatitis virus glycoprotein: A new type of post-translational modification of the viral glycoprotein. Cell. 1979;17:813–819. doi: 10.1016/0092-8674(79)90321-0. [DOI] [PubMed] [Google Scholar]
  209. Schmidt M.F.G., Schlesinger M.J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J. Biol. Chem. 1980;255:3334–3339. [PubMed] [Google Scholar]
  210. Schmidt M.F.G., Bracha M, Schlesinger M.J. Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins. Proc. Natl. Acad. Sci. U.S.A. 1979;76:1687–1691. doi: 10.1073/pnas.76.4.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Schmidt O.W., Kenny G.E. Immunogenicity and antigenicity of human coronaviruses 229E and OC43. Infect. Immun. 1981;32:1000–1006. doi: 10.1128/iai.32.3.1000-1006.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Schmidt O.W., Kenny G.E. Polypeptides and functions of antigens from human coronaviruses 229E and OC43. Infect. Immun. 1982;35:515–522. doi: 10.1128/iai.35.2.515-522.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Schmidt O.W., Cooney M.K., Kenny G.E. Plaque assay and improved yield of human coronaviruses in a human rhabdomyosarcoma cell line. J. Clin. Microbiol. 1979;9:722–728. doi: 10.1128/jcm.9.6.722-728.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Schochetman G, Stevens R.H., Simpson R.W. Presence of infectious polyadenylated RNA in the coronavirus avian infectious bronchitis virus. Virology. 1977;77:772–782. doi: 10.1016/0042-6822(77)90498-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Sharpee R.L., Mebus C.A., Bass E.P. Characterization of a calf diarrheal coronavirus. Am. J. Vet. Res. 1976;37:1031–1041. [PubMed] [Google Scholar]
  216. Shif I, Bang F.B. In vitro interaction of mouse hepatitis virus and macrophages from genetically resistant mice. I. Adsorption of virus and growth curves. J. Exp. Med. 1970;131:843–850. doi: 10.1084/jem.131.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Siddell S.G., Wege H, Barthel A, ter Meulen V. Coronavirus JHM. Cell-free synthesis of structural protein p60. J. Virol. 1980;33:10–17. doi: 10.1128/jvi.33.1.10-17.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Siddell S.G., Barthel A, ter Meulen V. Coronavirus JHM. A virion-associated protein kinase. J. Gen. Virol. 1981;52:235–243. doi: 10.1099/0022-1317-52-2-235. [DOI] [PubMed] [Google Scholar]
  219. Siddell S.G., Wege H, Barthel A, ter Meulen V. Coronavirus JHM. Intracellular protein synthesis. J. Gen. Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
  220. Siddell S, Wege H, Barthel A, ter Meulen V. Intracellular protein synthesis and the in vitro translation of coronavirus JHM mRNA. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 193–208. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  221. Siddell S, Wege H, ter Meulen V. The structure and replication of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:131–163. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
  222. Small J.D., Aurelian L, Squire R.A., Strandberg J.D., Melby E.C., Jr., Turner T.B., Newman B. Rabbit cardiomyopathy associated with a virus antigenically related to human coronavirus strain 229E. Am. J. Pathol. 1979;95:709–729. [PMC free article] [PubMed] [Google Scholar]
  223. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., van derZeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., van derZeijst B.A.M. Sequence relationships between the genome and the intracellular RNA species 1, 3, 6, and 7 of mouse hepatitis virus strain A59. J. Virol. 1982;42:432–439. doi: 10.1128/jvi.42.2.432-439.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy. I. Identification and characterization of virus-specified RNA. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy. II. Mapping the avian infectious bronchitis virus intracellular RNA species to the genome. J. Virol. 1980;36:440–449. doi: 10.1128/jvi.36.2.440-449.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Stern D.F., Sefton B.M. Synthesis of coronavirus mRNAs: Kinetics of inactivation of IBV RNA synthesis by UV light. J. Virol. 1982;42:755–759. doi: 10.1128/jvi.42.2.755-759.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Stern D.F., Sefton B.M. Coronavirus proteins: Biogenesis of avian infectious bronchitis virus virion proteins. J. Virol. 1982;44:794–803. doi: 10.1128/jvi.44.3.794-803.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Stern D.F., Sefton B.M. Coronavirus proteins: Structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Stern D.F., Burgess L, Sefton B.M. Structural analysis of virion proteins of the avian coronavirus infectious bronchitis virus. J. Virol. 1982;42:208–219. doi: 10.1128/jvi.42.1.208-219.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Stohlman S.A., Frelinger J.A. Macrophages and resistance to JHM virus. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 387–398. (‘Biochemistry and Biology of Coronaviruses’). [Google Scholar]
  232. Stohlman S.A., Lai M.M.C. Phosphoproteins of murine hepatitis viruses. J. Virol. 1979;32:672–675. doi: 10.1128/jvi.32.2.672-675.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Stohlman S.A., Sakaguchi A.Y., Weiner L.P. Characterization of the cold-sensitive murine hepatitis virus mutants rescued from latently-infected cells by cell fusion. Virology. 1979;98:448–455. doi: 10.1016/0042-6822(79)90567-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Stohlman S.A., Woodward J.G., Frelinger J.A. Macrophage antiviral: extrinsic versus intrinsic activity. Infect. Immun. 1982;36:672–677. doi: 10.1128/iai.36.2.672-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Stohlman S.A., Brayton P.R., Fleming J.O., Weiner L.P., Lai M.M.C. Murine coronaviruses: Isolation and characterization of two plaque morphology variants of the JHM neurotropic strain. J. Gen. Virol. 1982;63:265–275. doi: 10.1099/0022-1317-63-2-265. [DOI] [PubMed] [Google Scholar]
  236. Storz J, Kaluza G, Niemann H, Rott R. On enteropathogenic bovine coronavirus. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 171–180. (‘Biochemistry and Biology of Coronaviruses’). [Google Scholar]
  237. Storz J, Rott R, Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infect. Immun. 1981;31:1214–1222. doi: 10.1128/iai.31.3.1214-1222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Sturman L.S. Characterization of a coronavirus. I. Structural proteins: Effects of preparative conditions on the migration of protein in polyacrylamide gels. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Sturman L.S. Coronavirus-associated glycosaminoglycan. Soc. Microbiol., Abstr. Annu. Meet. 1980 Abstract No. T-192. [Google Scholar]
  240. Sturman L.S. The structure and behaviour of coronavirus A59 glycoproteins. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 1–18. (‘Biochemistry and Biology of Coronaviruses’). [Google Scholar]
  241. Sturman L.S., Holmes K.V. Characterization of a coronavirus. II. Glycoproteins of the viral envelope: Tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Sturman L.S., Takemoto K.K. Enhanced growth of a murine coronavirus in transformed mouse cells. Infect. Immun. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Sugiyama K, Amano Y. Haemagglutination and structural polypeptides of a new coronavirus associated with diarrhoea in infant mice. Arch. Virol. 1980;66:95–105. doi: 10.1007/BF01314978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Sugiyama K, Amano Y. Morphology and biological properties of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 1981;66:241–251. doi: 10.1007/BF01318134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Svoboda D, Neilson A, Werder A, Higginson J. An electron microscopic study of viral hepatitis in mice. Am. J. Pathol. 1962;41:205–224. [PMC free article] [PubMed] [Google Scholar]
  247. Taguchi F, Yamaguchi R, Makino S, Fujiwara K. Correlation between growth potential of mouse hepatitis viruses in macrophages and their virulence for mice. Infect. Immun. 1981;34:1059–1061. doi: 10.1128/iai.34.3.1059-1061.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Takeuchi A, Binn L.N., Jervis H.R., Keenan K.P., Hilderbrandt P.K., Valas R.B., Bland F.F. Electron microscope study of experimental enteric infection in neonatal dogs with a canine coronavirus. Lab. Invest. 1976;34:539–549. [PubMed] [Google Scholar]
  249. Tanaka H, Suzuki S, Ichida F. Electron microscopic study on the cultured liver cells infected with mouse hepatitis virus—a preliminary report. Annu. Rep. Inst. Virus Res., Kyoto Univ. 1962;5:95–102. [Google Scholar]
  250. Tannock G.A. The nucleic acid of infectious bronchitis virus. Arch. Gesamte Virusforsch. 1973;43:259–271. doi: 10.1007/BF01250421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Tannock G.A., Hierholzer J.A. The RNA of human coronavirus OC43. Virology. 1977;78:500–510. doi: 10.1016/0042-6822(77)90126-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Taylor C.E., Weiser W.Y., Bang F.B. In vitro macrophage manifestation of cortisone-induced decrease in resistance to mouse hepatitis virus. J. Exp. Med. 1981;153:732–737. doi: 10.1084/jem.153.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. ter Meulen V., Siddell S., Wege H. ‘Biochemistry and Biology of Coronaviruses.’. Plenum; New York: 1981. [Google Scholar]
  254. Toth T.E. Trypsin-enhanced replication of neonatal calf diarrhea coronavirus. Am. J. Vet. Res. 1982;43:967–972. [PubMed] [Google Scholar]
  255. Tyrrell D.A.J., Almedia J.D. Direct electron-microscopy of organ cultures for the detection and characterization of viruses. Arch. Gesamte Virusforsch. 1967;22:417–425. doi: 10.1007/BF01242962. [DOI] [PubMed] [Google Scholar]
  256. Tyrrell D.A.J., Bynoe M.L. Cultivation of a novel type of common-cold virus in organ culture. Br. Med. J. 1965;1:1467–1470. doi: 10.1136/bmj.1.5448.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Tyrrell D.A.J., Almedia J.D., Berry D.M., Cunningham C.H., Hamre D, Hofstad M.S., Mallucci L, McIntosh K. Coronaviruses. Nature (London) 1968;220:650. [Google Scholar]
  258. Tyrrell D.A.J., Almedia J.D., Cunningham C.H., Dowdle W.R., Hofstad M.S., McIntosh K, Tajima M, Zakstelskaya L.Y.A., Easterday B.C., Kapikian A, Bingham R.W. Coronaviridae. Intervirology. 1975;5:76–82. doi: 10.1159/000149883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Tyrrell D.A.J., Alexander D.J., Almeida J.D., Cunningham C.H., Easterday B.C., Garwes D.J., Hierholzer J.C., Kapikian A, Macnaughton M.R., McIntosh K. Coronaviridae, 2nd report. Intervirology. 1978;10:321–328. doi: 10.1159/000148996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Uhlenbeck G.E. Statistical mechanics and quantum mechanics. Nature (London) 1971;232:449–450. doi: 10.1038/232449a0. [DOI] [PubMed] [Google Scholar]
  261. Vannuchi S, Chiarugi V. Surface exposure of glycosaminoglycans in resting, growing, and virus-transformed 3T3 cells. J. Cell Physiol. 1977;90:503–510. doi: 10.1002/jcp.1040900313. [DOI] [PubMed] [Google Scholar]
  262. Virelizier J.L. Role of macrophages and interferon in natural resistance to mouse hepatitis virus infection. Curr. Top. Microbiol. Immunol. 1981;92:105–127. doi: 10.1007/978-3-642-68069-4_4. [DOI] [PubMed] [Google Scholar]
  263. Virelizier J.L., Allison A.C. Correlation of persistent mouse hepatitis virus (MHV-3) infection with its effect on mouse macrophage cultures. Arch. Virol. 1976;50:279–285. doi: 10.1007/BF01317953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Wadey C.N., Westaway E.G. Structural proteins and glycoproteins of infectious bronchitis virus particles labelled during growth in chick embryo fibro-blasts. Intervirology. 1981;15:19–27. doi: 10.1159/000149210. [DOI] [PubMed] [Google Scholar]
  265. Walker D.P., Cleator G.M. Haemagglutination by mouse hepatitis virus type 3 Ann. Virol. Inst. Pasteur. 1980;131E:517–520. [Google Scholar]
  266. Watanabe K. Electron microscopic studies of experimental viral hepatitis in mice. II. J. Electron Microsc. 1969;18:173–189. [PubMed] [Google Scholar]
  267. Watkins H, Reeve P, Alexander D.J. The ribonucleic acid of infectious bronchitis virus. Arch. Virol. 1975;47:279–286. doi: 10.1007/BF01317815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Wege H, Muller A, ter Meulen V. Genomic RNA of the murine coronavirus JHM. J. Gen. Virol. 1978;41:217–227. doi: 10.1099/0022-1317-41-2-217. [DOI] [PubMed] [Google Scholar]
  269. Wege H, Wege H, Nagashima K, ter Meulen V. Structural polypeptides of the murine coronavirus JHM. J. Gen. Virol. 1979;42:37–47. doi: 10.1099/0022-1317-42-1-37. [DOI] [PubMed] [Google Scholar]
  270. Wege H, Stephenson J.R., Koga M, Wege H, ter Meulen V. Genetic variation of neurotropic and non-neurotropic murine coronaviruses. J. Gen. Virol. 1981;54:67–74. doi: 10.1099/0022-1317-54-1-67. [DOI] [PubMed] [Google Scholar]
  271. Wege H, Siddell S, Sturm M, ter Meulen V. Coronavirus JHM: Characterization of intracellular viral RNA. J. Gen. Virol. 1981;54:213–217. doi: 10.1099/0022-1317-54-1-213. [DOI] [PubMed] [Google Scholar]
  272. Wege H, Koga M, Wege H, ter Meulen V. JHM infection In rats as a model for acute and subacute demyelinating disease. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 327–349. (‘Biochemistry and Biology of Coronaviruses’). [DOI] [PubMed] [Google Scholar]
  273. Wege H, Siddell S, ter Meulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  274. Wege H, Koga M, Wanatabe R, Nagashima K, ter Meulen V. Neurovirulence of murine coronavirus JHM temperature-sensitive mutants in rats. Infect. and Immun. 1983;39:1316–1324. doi: 10.1128/iai.39.3.1316-1324.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Weiser W.Y., Bang F. Macrophages genetically resistant to mouse hepatitis virus converted in vitro to susceptible macrophages. J. Exp. Med. 1976;143:690–695. doi: 10.1084/jem.143.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Weiser W.Y., Bang F.B. Blocking of in vitro and in vivo susceptibility to mouse hepatitis virus. J. Exp. Med. 1977;146:1467–1472. doi: 10.1084/jem.146.5.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Weiser W.Y., Vellisto I, Bang F.B. Congenic strains of mice susceptible and resistant to mouse hepatitis virus. Proc. Soc. Exp. Biol. Med. 1976;152:499–502. doi: 10.3181/00379727-152-39426. [DOI] [PubMed] [Google Scholar]
  278. Weiss S.R., Leibowitz J.L. Comparison of the RNAs of murine and human coronaviruses. In: ter Meulen V., Siddell S., Wege H, editors. Plenum; New York: 1981. pp. 245–260. (‘Biochemistry and Biology of Coronaviruses’). [Google Scholar]
  279. White J, Matlin K, Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J. Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Wilhelmsen K.C., Leibowitz J.L., Bond C.W., Robb J.A. The replication of murine coronaviruses in enucleated cells. Virology. 1981;110:225–230. doi: 10.1016/0042-6822(81)90027-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Willingham M.C., Pastan I. The receptosome: An intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts. Cell. 1980;21:67–77. doi: 10.1016/0092-8674(80)90115-4. [DOI] [PubMed] [Google Scholar]
  282. Winterbourne D.J., Mora P.T. Cells selected for high tumorigenicity or transformed by Simian virus 40 synthesize heparan sulfate with reduced degree of sulfation. J. Biol. Chem. 1981;256:4310–4320. [PubMed] [Google Scholar]
  283. Yamada A, Taguchi F, Fujiwara K. T-lymphocyte dependent difference in susceptibility between DDD and C3H mice to mouse hepatitis virus, MHV-3. Jpn. J. Exp. Med. 1979;49:413–421. [PubMed] [Google Scholar]
  284. Yogo Y, Hirano N, Hino S, Shibuta H, Matumoto M. Polyadenylate in the virion RNA of mouse hepatitis virus J. Biochem. Tokyo. 1977;82:1103–1108. doi: 10.1093/oxfordjournals.jbchem.a131782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Yoshikura H, Tejima S. Role of proteins in MHV-induced cell fusion. Virology. 1981;113:503–511. doi: 10.1016/0042-6822(81)90178-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES