Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 18;74(4):357–362. doi: 10.1016/0300-9084(92)90113-S

Recognition of correct reading frame by the ribosome

EN Trifonov 1
PMCID: PMC7131330  PMID: 1637861

Abstract

The translation frame-monitoring mechanism has been suggested earlier, based on transient complementary contacts, between mRNA and rRNA. Recent studies related to the frame-monitoring mechanism are reviewed. The mechanism is well supported by both new experimental and sequence analysis data. Experiments are suggested for further elucidation of the structural details of the mRNA-rRNA interaction in the ribosome.

Keywords: frame monitoring, mRNA-rRNA interaction, ribosome

References

  • 1.Atkins J.F., Weiss R.B., Gesteland R.F. Ribosome gymnastics — degree of difficulty 9.5, style 10.0. Cell. 1990;62:413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Trifonov E.N. Translational framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequences. J Mol Biol. 1987;194:643–652. doi: 10.1016/0022-2836(87)90241-5. [DOI] [PubMed] [Google Scholar]
  • 3.Prince J.B., Taylor B.H., Thurlow D.L., Ofengand J., Zimmermann R.A. Vol. 79. 1982. Covalent crosslinking of tRNAvall to 16S RNA at the ribosomal P site: identification of crosslinked residues; pp. 5450–5454. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ciesiolka J., Nurse K., Klein J., Ofengand J. Conversation of RNA sequence and cross-linking ability in ribosomes from a higher eukaryote: photochemical cross-linking of the anticodon of P site bound tRNA to the penultimate cytidine of the UACACACG sequence in Artemia saline 18S rRNA. Biochemistry. 1985;24:3233–3239. doi: 10.1021/bi00334a024. [DOI] [PubMed] [Google Scholar]
  • 5.Stiege W., Stade D., Schuler D., Brimacombe R. Covalent crosslinking of poly(A) to Escherichia coli ribosomes and localization of the cross-link site within the 16S RNA. Nucleic Acids Res. 1988;16:2369–2388. doi: 10.1093/nar/16.6.2369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wollenzien P., Expert-Bezancon A., Favre A. Sites of contact of mRNA with 16S rRNA and 23S rRNA in the Escherichia coli ribosome. Biochemistry. 1991;30:1788–1795. doi: 10.1021/bi00221a009. [DOI] [PubMed] [Google Scholar]
  • 7.Lasater L.S., McKuskie Olson H., Cann P.A., Glitz D.G. Complementary oligonucleotide probes of RNA conformation within the Escherichia coli small ribosomal subunit. Biochemistry. 1988;27:4687–4695. doi: 10.1021/bi00413a016. [DOI] [PubMed] [Google Scholar]
  • 8.Oakes M.I., Lake J.A. DNA-hybridization electron microscopy. Localization of five regions of 16S rRNA on the surface of 30S ribosomal subunits. J Mol Biol. 1990;211:897–906. doi: 10.1016/0022-2836(90)90082-W. [DOI] [PubMed] [Google Scholar]
  • 9.Powers T., Noller H.F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 1991;10:2203–2214. doi: 10.1002/j.1460-2075.1991.tb07756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Shine J., Dalgarno L. Vol. 71. 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites; pp. 1342–1346. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gold L., Pribnow D., Schneider T., Shinedling S., Sincer B.S., Stormo G. Translational initiation in prokaryotes. Annu Rev Microbiol. 1981;35:365–403. doi: 10.1146/annurev.mi.35.100181.002053. [DOI] [PubMed] [Google Scholar]
  • 12.Sedlacek J., Fabry J.M., Rychlik I., Volny D., Vitek A. The arrangement of nucleotides in the coding regions of natural templates. Mol Gen Genetics. 1979;172:31–36. doi: 10.1007/BF00276212. [DOI] [PubMed] [Google Scholar]
  • 13.Weiss R.B., Dunn D.M., Dahlberg A.E., Atkins J.F., Gesteland R.F. Reading frame switch caused by base-pair formation between the 3′-end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 1988;7:1503–1507. doi: 10.1002/j.1460-2075.1988.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Takanami M., Zubay G. Vol. 51. 1964. An estimate of the size of the ribosomal site for messenger RNA binding; pp. 834–839. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kang C., Cantor C.R. Structure of ribosome-bound messenger RNA as revealed by enzymatic accessibility studies. J Mol Biol. 1985;181:241–251. doi: 10.1016/0022-2836(85)90088-9. [DOI] [PubMed] [Google Scholar]
  • 16.Moazed D., Noller H.F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell. 1986;47:985–994. doi: 10.1016/0092-8674(86)90813-5. [DOI] [PubMed] [Google Scholar]
  • 17.Evstafieva A., Shatsky I.N., Bogdanov A.A., Semenkov Y., Vasiliev V.D. Localization of 5′ and 3′ ends of the ribosome-bound segment of template polynucleotides by immune electron microscopy. EMBO J. 1983;2:799–804. doi: 10.1002/j.1460-2075.1983.tb01503.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Stern S., Weiser B., Noller H.F. Model for the three-dimensional folding of 16S ribosomal RNA. J Mol Biol. 1988;204:447–481. doi: 10.1016/0022-2836(88)90588-8. [DOI] [PubMed] [Google Scholar]
  • 19.Lasater L.S., Montesano-Roditis L., Cann P.A., Glitz D.G. Localization of an oligodeoxynucleotide complementing 16S ribosomal RNA residues 520–531 on the small subunit of Escherichia coli ribosomes: electron microscopy of ribosome-cDNA-antibody complexes. Nucleic Acids Res. 1990;18:477–485. doi: 10.1093/nar/18.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Oakes M.L., Kahan L., Lake J.A. DNA-hybridization electron microscopy. Tertiary structure of 16S rRNA. Mol Biol. 1990;211:907–918. doi: 10.1016/0022-2836(90)90083-X. [DOI] [PubMed] [Google Scholar]
  • 21.Oakes M.L., Clark M.W., Hendreson F., Lake J.A. Vol. 83. 1986. DNA hybridization electron microscopy: ribosomal RNA nucleotides 1392–1407 are exposed in the cleft of the small subunit; pp. 275–279. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Keren-Zur M., Boublik M., Ofengand J. Vol. 76. 1979. Localization of the decoding region on the 30S Escherichia coli ribosomal subunit by affinity immunoelectron microscopy; pp. 1054–1058. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Gornicki P., Nurse K., Hellman W., Boublik M., Ofengand J. High resolution localization of the tRNA anticodon interaction site on the Escherichia coli 30S ribosomal subunit. J Biol Chem. 1987;259:10493–10498. [PubMed] [Google Scholar]
  • 24.Rinke-Appel J., Junke N., Stade K., Brimacombe R. The path of mRNA through the Escherichia coli ribosome; site-directed cross-linking of mRNA analogues carrying a photo-reactive label at various points 3′ to the decoding site. EMBO J. 1991;10:2195–2202. doi: 10.1002/j.1460-2075.1991.tb07755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Dontsova O., Kopylov A., Brimacombe R. The location of mRNA in the ribosomal 30S intiation complex: site-directed corsslinking of mRNA analogues carrying several photoreactive labels simultaneously on either side of the AUG start codon. EMBO J. 1991;10:2613–2620. doi: 10.1002/j.1460-2075.1991.tb07803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Trifonov E.N. Vol. 47. 1983. Sequence-dependent variations of B-DNA structure and protein-DNA recognition; pp. 271–278. (Cold Spring Harbor Symp Quant Biol). [DOI] [PubMed] [Google Scholar]
  • 27.Atkins J.F., Gesteland R.F., Reid B.R., Anderson C.W. Normal tRNAs promote ribosomal frameshifting. Cell. 1979;18:1119–1131. doi: 10.1016/0092-8674(79)90225-3. [DOI] [PubMed] [Google Scholar]
  • 28.Weiss R.B., Dunn D.M., Atkins J.F., Gesteland R.F. Vol. 52. 1987. Slippery runs, shifty stops, backward steps, and toward hops: −2, −1, +1, +2, +5 and +6 ribosomal frameshifting; pp. 687–693. (Cold Spring Harbor Symp Quant Biol). [DOI] [PubMed] [Google Scholar]
  • 29.Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Brierley I., Digard P., Inglis S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1988;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Trifonov E.N. Imperfect complementarity and RNA structure. J. Biosci. 1985;(Suppl 8):781–790. [Google Scholar]
  • 32.Lagunez-Otero J., Trifonov E.N. Translation framing pattern in mRNA—compensation effects. In: Ratner V., editor. Modelling and Computer Methods in Molecular Biology and Genetics. Nova Science Publishers; New York: 1992. in press. [Google Scholar]
  • 33.Kant J.A., Lord S.T., Crabtree G.R. Vol. 80. 1983. Partial mRNA sequences for human A-alpha, B-beta, and gamma fibrinogen chains: evolutionary and functional implications; pp. 3953–3957. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Lorberboum H., Digweed M., Erdmann V.A., Servadio Y., Weinstein D., De Groot N., Hochberg A.A. Small cytoplasmic RNAs from human placental free mRNPs. Structure and their effect on in vivo protein synthesis. Eur J Biochem. 1986;155:279–287. doi: 10.1111/j.1432-1033.1986.tb09487.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochimie are provided here courtesy of Elsevier

RESOURCES