Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;171(1):162–169. doi: 10.1016/0042-6822(89)90523-0

Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes

Paul Digard 1, Vivian C Blok 1, Stephen C Inglis 1,1
PMCID: PMC7131359  PMID: 2741339

Abstract

All three influenza virus polymerase (P) proteins were expressed in Xenopus oocytes from microinjected in vitro transcribed mRNA analogs, with yields of up to 100 ng per oocyte. To examine the functional state of the Xenopus-expressed P proteins, the polypeptides were tested for their ability to form stable complexes with each other. As seen in virus-infected cells, all three P proteins associated into an immunoprecipitable complex, suggesting that the system has considerable promise for the reconstruction of an active influenza RNA polymerase. Examination of the ability of paired combinations of the P proteins to associate indicated that PB1 contained independent binding sites for PB2 and PA, and so probably formed the backbone of the complex. Sedimentation analysis of free and complexed P proteins indicated that PB1 and PB2 did not exist as free monomers, and that similarly, complexes of all three P proteins did not simply consist of one copy of each protein. The heterodisperse sedimentation rate seen for complexes of all three P proteins did not appear to result from their binding to RNA, suggesting the incorporation of additional polypeptides polymerase complex.

References

  1. Akkina R.K., Chambers T.M., Londo D.R., Nayak D.P. Intracellular localisation of the viral polymerase proteins in cells infected with influenza virus and cells expressing PB1 protein from Cloned cDNA. J. Virol. 1987;61:2217–2224. doi: 10.1128/jvi.61.7.2217-2224.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop D.H.L., Obijeski J.F., Simpson R.W. Transcription of the influenza ribonucleic acid genome by a virion polymerase. 1. Optimal conditions for in vitro activity of the ribonucleic acid-dependent ribonucleic acid polymerase activity. J. Virol. 1971;8:66–73. doi: 10.1128/jvi.8.1.66-73.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braam J., Ulmanen I., Krug R.M. Molecular model of a eukaryotic transcription complex: Functions and movements of influenza P proteins during capped RNA-primed transcription. Cell. 1983;34:609–618. doi: 10.1016/0092-8674(83)90393-8. [DOI] [PubMed] [Google Scholar]
  4. Braam-Markson J., Jeudon C., Krug R.M. Vol. 82. 1985. Expression of a functional influenza viral cap-recognising protein by using a bovine papilloma virus vector; pp. 4326–4330. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frame-shifting signal in the polymerase encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colman A. Translation of eukaryotic messenger RNA in Xenopus oocytes. In: Harries B.D., Higgins S.J., editors. Transcription and Translation: A Practical Approach. IRL Press; Oxford: 1984. pp. 271–302. [Google Scholar]
  7. Detjen B.M., St. Angelo C., Katze M.G., Krug R.M. The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex. J. Virol. 1987;61:16–22. doi: 10.1128/jvi.61.1.16-22.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drummond D.R., Armstrong J., Colman A. The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res. 1985;13:7375–7394. doi: 10.1093/nar/13.20.7375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hay A.J., Abraham G., Skehel J.J., Smith J.J., Smith J., Fellner P. Influenza virus messenger RNAs are incomplete transcripts of the genome RNAs. Nucleic Acids Res. 1977;4:4197–4209. doi: 10.1093/nar/4.12.4197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hay A.J., Lomnizi B., Bellamy A., Skehel J.J. Transcription of the influenza virus genome. Virology. 1977;83:337–355. doi: 10.1016/0042-6822(77)90179-9. [DOI] [PubMed] [Google Scholar]
  11. Herz C., Stavnezer E., Krug R.M. Influenza virus, an RNA virus, synthesises its messenger RNA in the nucleus of infected cells. Cell. 1981;26:391–400. doi: 10.1016/0092-8674(81)90208-7. [DOI] [PubMed] [Google Scholar]
  12. Inglis S.C., Carroll A.R., Lamb R.A., Mahy B.W.J. Polypeptides specified by the influenza virus genome. 1. Evidence for eight distinct gene products specified by fowl plague virus. Virology. 1976;74:489–503. doi: 10.1016/0042-6822(76)90355-x. [DOI] [PubMed] [Google Scholar]
  13. Krieg P.A., Melton D.A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984;12:7057–7071. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krystal M., Li R., Lyles D., Pavlakis G., Palese P. Vol. 83. 1986. Expression of the three influenza virus polymerase proteins in a single cell allows growth complementation of viral mutants; pp. 2709–2713. (Proc. Natl. Acad. Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. Molecular Cloning: A Laboratory Manual. [Google Scholar]
  17. Pelham H.R.B., Jackson R.J. Messenger RNA translation in reticulocyte lysate. Eur. J. Biochem. 1976;105:445–451. [Google Scholar]
  18. Plotch S.J., Bouloy M., Krug R.M. Vol. 76. 1979. Transfer of 5terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro; pp. 1618–1622. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rigby P.W.I., Lane D.P. Structure and function of simian virus 40 large T-antigen. Adv. Viral Oncol. 1983;3:31–57. [Google Scholar]
  20. St. Angelo C., Smith G.E., Summers M.D., Krug R.M. Two of the three influenza viral polymerase proteins expressed by using baculovirus vectors form a complex in insect cells. J. Viral. 1987;61:361–365. doi: 10.1128/jvi.61.2.361-365.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stanley K.K., Luzio J.P. Construction of anew family of high efficiency expression vectors: Identification of cDNA clones coding for human liver proteins. EMBO J. 1984;3:1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Szewczyk B., Laver W.G., Summers D.F. Vol. 85. 1988. Purification, thioredoxin renaturation, and enzymatic activity of the three subunits of the influenza A virus RNA polymerase; pp. 7907–7911. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Grodon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Young J.F., Desselberger U., Graves P., Palese P., Shatzman A., Rosenberg M. Cloning and expression of influenza virus genes. In: Laver W.G., editor. The Origin of Pandemic Influenza Viruses. Elsevier Science; Amsterdam: 1983. pp. 129–138. [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES