Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1998 Apr 27;22(2):353–386. doi: 10.1016/S0278-5846(98)00010-4

Mechanism of triazolo-benzodiazepine and benzodiazepine action in anxiety and depression: Behavioral studies with concomitant in vivo CA1 hippocampal norepinephrine and serotonin release detection in the behaving animal

Patricia A Broderick 1,2,3,, Omotola Hope 3,4, Pierrot Jeannot 3,5
PMCID: PMC7131360  PMID: 9608607

Abstract

  • 1.

    1. Real time, in vivo microvoltammetric studies were performed, using miniature carbon-based sensors, to concurrently detect norepinephrine (NE) release and serotonin (5-HT) release, in 2 separate electrochemical signals, within CA1 region of hippocampus in the freely moving and behaving, male, Sprague Dawley laboratory rat.

  • 2.

    2. Concurrently, four parameters of open-field Behavior I.E. Ambulations, Rearing, Fine Movements and Central Ambulatory behavior (a measure of anxiety reduction behavior), were assayed by infrared photobeam detection.

  • 3.

    3. Time course studies showed that the mechanism of action of the triazolobenzodiazepine (TBZD), adinazolam, (Deracyn®) is dramatically different from that of the classical benzodiazepine (BZD), diazepam (Valium®) i.e., adinazolam increased, whereas diazepam decreased, 5-HT release within CA1 region of hippocampus in the freely moving and behaving rat.

  • 4.

    4. Adinazolam initially increased NE release and then decreased NE release in CA1 region of hippocampus in the freely moving and behaving rat whereas diazepam only decreased the electrochemical signal for NE; the decrease in NE produced by adinazolam was greater than the decrease in NE release produced by diazepam.

  • 5.

    5. The Behavioral Activity Patterns, derived from same animal controls, simultaneously with detection of in vivo microvoltammetric signals for NE release and 5-HT release, showed that the BZD, diazepam, exhibited more potent sedative properties than did the TBZD adinazolam.

  • 6.

    6. Hippocampal 5-HT and NE release effects of the TBZD, adinazolam, concomitant with behavioral effects lends explanation to the dual anxiolytic/antidepressant properties of the TBZDs.

Keywords: adinazolam (Deracyn®), carbon paste microelectrode, diazepam (Valium®), freely moving animal, hippocampus, infrared photocell beams, in vivo microvoltammetry, norepinephrine, open-field behavior, serotonin, stearate

Abbreviations: benzodiazepine, (BZD); dorsal raphe, (DR); gamma-aminobutyric acid, (GABA); gammabutyrolactone, (GBL); intraperitoneal, (i.p.); locus coeruleus, (LC); norepinephrine, (NE); platelet activating factor, (PAF); serotonin, (5-HT); triazolobenzodiazepine, (TBZD); tricyclic antidepressant, (TCA)

References

  1. Aghajanian G.K. Feedback Regulation of Central Monoaminergic Neurons: Evidence From Single Cell Recording Studies. In: Youdim M.B.H., Lovenberg W., Sharman D.F., Lagnado J.R., editors. vol. 3. John. Wiley & Sons; New York: 1978. pp. 1–33. (Essays in Neurochemistry and Neuropharmacology). [PubMed] [Google Scholar]
  2. Amaral D.G., Insausti R. Hippocampal Formation. In: Paxinos G., editor. The Human Nervous System. Academic Press, Inc; New York: 1990. pp. 711–755. [Google Scholar]
  3. Amsterdam J.D., Kaplan M., Potter L., Bloom L., Rickels K. Adinazolam, a New Triazolobenzodiazepine, and Imipramine in the Treatment of Major Depressive Disorder. Psychopharmacology. 1986;88:484–488. doi: 10.1007/BF00178511. [DOI] [PubMed] [Google Scholar]
  4. Andrade R., Chaput Y. 5-Hydroxytryptamine 4-Like Receptors Mediate the Slow Excitatory Response to Serotonin in the Rat Hippocampus. J. Pharmacol. Exp. Therap. 1991;257(3):930–937. [PubMed] [Google Scholar]
  5. Asberg M., Eriksson B., Matensson B., Traskman-Bendz L., Wagner A. Therapeutic Effects of Serotonin Uptake Inhibitors in Depression. J. Clin. Psychiat. 1985;47:23–35. [PubMed] [Google Scholar]
  6. Asnis G.M., Wetzler S., Sanderson W.C., Kahn R.S., Van Praag H.M. Functional Interrelationship of Serotonin and Norepinephrine: Cortisol Response to MCPP and DMI in Patients with Panic Disorder, Patients with Depression, and Normal Control Subjects. Psychiat. Res. 1992;43(1):65–76. doi: 10.1016/0165-1781(92)90142-p. [DOI] [PubMed] [Google Scholar]
  7. Baldessarini R.J. Drugs and the Treatment of Psychiatric Disorders: Psychosis and Anxiety. In: Hardman J.G., Limbird L.E., Molinoff P.B., Ruddon R.N., Gilman A.G., editors. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 9th Edition. McGraw-Hill; New York: 1996. pp. 399–430. [Google Scholar]
  8. Blier P., De Montigny C., Chaput Y. Modifications of the Serotonin System by Antidepressant Treatments: Implications for the Therapeutic Response in Major Depression. J. Clin. Psychopharmacol. 1987;7:245–355. [PubMed] [Google Scholar]
  9. Bodnoff S.R., Suranyi-Cadotte B., Aitken D.H., Quirion R., Meaney M.J. The Effects of Chronic Antidepressant Treatment in an Animal Model of Anxiety. Psychopharmacology. 1988;95:298–302. doi: 10.1007/BF00181937. [DOI] [PubMed] [Google Scholar]
  10. Broderick P.A. Distinguishing In Vitro Electrochemical Signatures for Norepinephrine and Dopamine. Neurosci. Lett. 1988;95:275–280. doi: 10.1016/0304-3940(88)90670-2. [DOI] [PubMed] [Google Scholar]
  11. Broderick P.A. Characterizing Stearate Probes In Vitro for the Detection of Dopamine and Serotonin. Brain Res. 1989;495:115–121. doi: 10.1016/0006-8993(89)91224-9. [DOI] [PubMed] [Google Scholar]
  12. Broderick P.A. State-of-the-Art Microelectrodes for In Vivo Voltammetry. Electroanalysis. 1990;2:241–251. [Google Scholar]
  13. Broderick P.A. Adinazolam Affects Biogenic Amine Release in Hippocampal CA1 Neuronal Circuitry. Brain Res. Bull. 1991;27:689–692. doi: 10.1016/0361-9230(91)90046-m. [DOI] [PubMed] [Google Scholar]
  14. Broderick P.A. In Vivo Voltammetric Studies on Release Mechanisms for Cocaine with Gamma-Butyrolactone. Pharmacol. Biochem. Behav. 1991;40:969–975. doi: 10.1016/0091-3057(91)90113-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Broderick P.A. Distinguishing Effects of Cocaine IV and SC on Mesoaccumbens Dopamine and Serotonin Release with Chloral Hydrate Anesthesia. Pharmacol. Biochem. Behav. 1992;43:929–937. doi: 10.1016/0091-3057(92)90427-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Broderick P.A. Alprazolam and Diazepam: Compared Effects on Norepinephrine and Serotonin Release in CA1 Region of Hippocampus. Soc. Neurosci. Abstr. 1993;19:1866. [Google Scholar]
  17. Broderick P.A. Alprazolam, Diazepam, Yohimbine, Clonidine: In Vivo CA1 Hippocampal Norepinephrine and Serotonin Release Profiles Under Chloral Hydrate Anesthesia. Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 1997;21 doi: 10.1016/s0278-5846(97)00103-6. [DOI] [PubMed] [Google Scholar]
  18. Broderick P.A., Lynch V., de P. Behavioral and Biochemical Changes Induced by Lithium and L-Tryptophan in Muricidal Rats. Neuropharmacology. 1982;21:671–679. doi: 10.1016/0028-3908(82)90010-7. [DOI] [PubMed] [Google Scholar]
  19. Broderick P.A., Jacoby J.H. Diabetes-Related Changes in L-Tryptophan-Induced Release of Striatal Biogenic Amines. Diabetes. 1988;39(7):956–960. doi: 10.2337/diab.37.7.956. [DOI] [PubMed] [Google Scholar]
  20. Broderick P.A., Phelan F.T., Lum J.T., Hoffmann W.E., Piercey M.F. Buspirone: Effects on Serotonin/Norepinephrine Cell Firing Rates and Release Mechanisms. Soc. Neurosci. Abstr. 1989;15:1097. [Google Scholar]
  21. Broderick P.A., Phelix C.F. I. Serotonin (5-HT) Within Dopamine Reward Circuits Signals Open-Field Behavior. II. Basis for 5-HT-DA Interaction in Cocaine Dysfunctional Behavior. Neurosci. & Biobehav. Rev. 1997;21(3):227–259. doi: 10.1016/s0149-7634(96)00048-6. [DOI] [PubMed] [Google Scholar]
  22. Broderick P.A., Piercey M.F. Regulation of Nerve Impulse Frequency and Transmitter Release by Serotonergic Autoreceptor Agonists. In: Kalsner S., Westfall T.C., editors. Vol. 64. Ann. NY Acad. Sci; New York: 1990. pp. 596–597. (Presynaptic Receptors and the Question of Autoregulation of Neurotransmittter Release). [Google Scholar]
  23. Broderick P.A., Piercey M.F. 5-HT1A Agonists Uncouple Noradrenergic Somatodendritic Impulse Flow and Terminal Release. Brain Res. Bull. 1991;27:693–696. doi: 10.1016/0361-9230(91)90047-n. [DOI] [PubMed] [Google Scholar]
  24. Burrows G.D., Judd F.K., Norman T.R. Long-Term Drug Treatment of Panic Disorder. J. Psychiat. Res. 1993;27(Suppl 1):111–125. doi: 10.1016/0022-3956(93)90022-t. [DOI] [PubMed] [Google Scholar]
  25. Charney D.S., Heninger G.R., Sternberg D.E. Serotonin Function and Mechanism of Action of Antidepressant Treatment. Effects of Amitriptyline and Desipramine. Arch. Gen. Psych. 1984;41:359–365. doi: 10.1001/archpsyc.1984.01790150049008. [DOI] [PubMed] [Google Scholar]
  26. Charney D.S., Woods S.W., Goodman W.K., Rifkin B., Kirch M., Aiken B., Quadrino L.M., Heninger G.R. Drug Treatment of Panic Disorder: the Comparative Efficacy of Imipramine, Alprazolam, and Trazodone. J. Clin. Psychiat. 1986;47:580–586. [PubMed] [Google Scholar]
  27. Chouinard G., Annable L., Fontaine R., Solyom L. Alprazolam in the Treatment of Generalized Anxiety and Pain Disorders. Psychopharmacology. 1982;77:229–233. doi: 10.1007/BF00464571. [DOI] [PubMed] [Google Scholar]
  28. Cohn J.B., Pyke R.E., Wilcox C.S. Adinazolam Mesylate and Placebo in Depressed Outpatients: A 6-Week, Double-Blind Comparison. J. Clin. Psychiat. 1988;49(4):142–147. [PubMed] [Google Scholar]
  29. Coppen A., Shaw D.M., Farrell J.P. Potentiation of the Antidepressive Effects of a Monoamine Oxidase Inhibitor by Tryptophan. Lancet. 1963;1:79–81. doi: 10.1016/s0140-6736(63)91084-5. [DOI] [PubMed] [Google Scholar]
  30. Costa E., Guidotti A. Benzodiazepines On Trial: A Research Strategy for their Rehabilitation. Trends in Pharmacological Sciences. 1996;17(5):192–200. doi: 10.1016/0165-6147(96)10015-8. [DOI] [PubMed] [Google Scholar]
  31. Davidson J.R. Use of Benzodiazepines in Panic Disorder. J. Clin. Psychiat. 1997;58(Suppl 2):26–28. [PubMed] [Google Scholar]
  32. De Montigny C., Blier P., Chaput Y. Electrophysiologically-Identified Serotonin Receptors in the Rat CNS. Neuropharmacology. 1984;23:1511–1520. doi: 10.1016/0028-3908(84)90095-9. [DOI] [PubMed] [Google Scholar]
  33. Dubovsky S.I. Beyond the Serotonin Reuptake Inhibitors: Rationales for the Development of New Serotonergic Agents. J. Clin. Psychiat. 1994;55(Suppl. 2):34–44. [PubMed] [Google Scholar]
  34. Fawcett J., Edwards J.H., Kravitz H.M., Jeffriess H. Alprazolam: an Antidepressant? Alprazolam, Desipramine, and an Alprazolam-Desipramine Combination in the Treatment of Adult Depressed Out-Patients. J. Clin. Psychopharmacol. 1987;7:295–310. [PubMed] [Google Scholar]
  35. Feighner J.P. A Review of Controlled Studies of Adinazolam Mesylate in Patients With Major Depressive Disorder. Psychopharmacology. 1986;88:484–488. [PubMed] [Google Scholar]
  36. File S.E., Pellow S. Triazolobenzodiazepines Antagonize the Effects of Anxiogenic Drugs Mediated at Three Different Central Nervous System Sites. Neurosci. Lett. 1985;61:115–119. doi: 10.1016/0304-3940(85)90410-0. [DOI] [PubMed] [Google Scholar]
  37. Fleishaker J.C., Greist J.H., Jefferson J.W., Sheridan A.Q. Relationship Between Concentrations of Adinazolam and its Primary Metabolite in Plasma and Therepeutic/Untoward Effects in the Treatment of Panic Disorder. J. Clin. Psychopharmacol. 1994;14(1):28–35. [PubMed] [Google Scholar]
  38. Gall M., Kamdar G.V., Collins R.J. Pharmacology of Some Metabolites of Triazolam, Alprazolam, and Diazepam Prepared by a Simple One-Step Oxidation of Benzodiazepines. J. Med. Chem. 1978;21:1290–1294. doi: 10.1021/jm00210a022. [DOI] [PubMed] [Google Scholar]
  39. Gallagher D.W. Benzodiazepines: Potentiation of a GABA Inhibitory Response In the Dorsal Raphe Nucleus. Eur. J. Pharmacol. 1978;49(2):133–143. doi: 10.1016/0014-2999(78)90069-9. [DOI] [PubMed] [Google Scholar]
  40. Gardner C.R. Recent Developments in 5-HT Related Pharmacology of Animal Models of Anxiety. Pharmacol. Biochem. Behav. 1986;24:1479–1485. doi: 10.1016/0091-3057(86)90215-7. [DOI] [PubMed] [Google Scholar]
  41. Gardner C.R., Laskin J.D., Laskin D.L. Platelet-activating factor-induced calcium mobilization and oxidative metabolism in hepatic macrophages and endothelial cells. J. Leukocyte Biol. 1993;53(2):190–196. doi: 10.1002/jlb.53.2.190. [DOI] [PubMed] [Google Scholar]
  42. Geyer M.A. Approaches to the Characterization of Drug Effects on Locomotor Activity in Rodents. In: Adler M.W., Cowan A., editors. Testing and Evaluation of Drug Abuse. A.R. Liss; New York: 1990. pp. 81–99. [Google Scholar]
  43. Goodwin F.K. Vol. 3. 1986. Future Directions in Biological Psychiatry. (Annual Meeting American College Neuropsychopharmacology). [Google Scholar]
  44. Gray J.A. Weidenfield and Nicolson; London: 1971. The Psychology of Fear and Stress. [Google Scholar]
  45. Gray J.A. Oxford University Press; New York: 1982. The Neuropsychology of Anxiety: An Inquiry Into the Functions of the Septohippocampal System. [Google Scholar]
  46. Hester J.B., Rudzik A.D., Kamdar B.V. 6-Phenyl-4H-S-Triazolo (4, 3a) (1, 4) Benzodiazepines Which Have Central Nervous System Antidepressant Activity. J. Med. Chem. 1971;14:1078–1081. doi: 10.1021/jm00293a015. [DOI] [PubMed] [Google Scholar]
  47. Hester J.B., Rudzik A.D., Kamdar B.V. 1-(Aminoalkyl)-6-Aryl-4H-S-Triazolo (4, 3a)(1, 4) Benzodiazepines with Antianxiety and Antidepressant Activity. J. Med. Chem. 1980;23:392–402. doi: 10.1021/jm00178a009. [DOI] [PubMed] [Google Scholar]
  48. Hoehn-Saric R. Neurotransmitters in Anxiety. Arch. Gen. Psychiat. 1982;39:735–742. doi: 10.1001/archpsyc.1982.04290060075015. [DOI] [PubMed] [Google Scholar]
  49. Jacobs B.L., Azmitia E.C. Structure and Function of the Brain Serotonin System. Physiol. Rev. 1992;72:165–229. doi: 10.1152/physrev.1992.72.1.165. [DOI] [PubMed] [Google Scholar]
  50. Jefferson J.W. Social Phobia: Everyone's Disorder? J. Clin. Psychiat. 1996;57(Suppl 6):28–32. [PubMed] [Google Scholar]
  51. Kelland M.D., Freeman A.S., Chiodo L.A. Choral Hydrate Anesthesia Alters the Responsiveness of Identified Midbrain Dopamine Neurons to Dopamine Agonist Administration. Synapse. 1989;3:30–37. doi: 10.1002/syn.890030105. [DOI] [PubMed] [Google Scholar]
  52. Kline N.S. Antidepressant Medications. J. Amer. Med. Assc. 1974;227:1158–1160. doi: 10.1001/jama.227.10.1158. [DOI] [PubMed] [Google Scholar]
  53. Kostowski W., Valzelli L., Baiguerra G. Effect of Chronic Administration of Alprazolam and Adinazolam on Clonidine — or Apomorphine — Induced Aggression in Laboratory Rodents. Neuropharmacology. 1986;25(7):757–761. doi: 10.1016/0028-3908(86)90092-4. [DOI] [PubMed] [Google Scholar]
  54. Kramer M., Schoen L. Short-Term Effects of Adinazolam on Sleep and Post-Sleep Behavior. Current Therapeutic Research. 1986;40(5):924–932. [Google Scholar]
  55. Laakman G., Faltermaier-Temizel M., Bossert-Zaudig S., Baghai T., Lorkowski G. Treatment of Depressive Outpatients With Lorazepam, Alprazolam, Amytriptyline and Placebo. Psychopharmacology. 1995;120(1):109–115. doi: 10.1007/BF02246151. [DOI] [PubMed] [Google Scholar]
  56. Lafaille F., Weiner S.A., Suranyi-Cadotte B.E. Regulation of Serotonin Type 2 (5-HT2) and Beta-Adrenergic Receptors in Rat Cerebral Cortex Following Novel and Classical Antidepressant Treatment. J. Psychiat. Neurosci. 1991;16(4):209–214. [PMC free article] [PubMed] [Google Scholar]
  57. Lahti R.A., Sethy V.H., Barsuhn C., Hester J.B. Pharmacologic Profile of the Antidepressant Adinazolam, a Triazolobenzodiazepine. Neuropharmacology. 1983;22:1277–1282. doi: 10.1016/0028-3908(83)90200-9. [DOI] [PubMed] [Google Scholar]
  58. Leonard B.E. Biochemical Strategies for the Development of Antidepressants. CNS Drugs. 1994;1:285–304. [Google Scholar]
  59. Malick J.B. Inhibition of Fighting in Isolated Mice Following Repeated Administration of Lithium Chloride. Pharmacol. Biochem. Behav. 1978;8:579–587. doi: 10.1016/0091-3057(78)90391-x. [DOI] [PubMed] [Google Scholar]
  60. Mann J.J., Aarons S.F., Wilner P.J., Keilp J.G., Sweeney J.A., Pearlstein T., Frances A.J., Kocsis J.H., Brown R.P. A Controlled Study of the Antidepressant Effects of (-)-Deprenyl, A Selective Monoamine Oxidase Inhibitor. Arch. Gen. Psychiat. 1989;46:45–50. doi: 10.1001/archpsyc.1989.01810010047007. [DOI] [PubMed] [Google Scholar]
  61. Martin P., Guillou N., Lacroix P., Billardon M. Effects of Co-Administration of an Antidepressant and an Anxiolytic Drug in the “Learned Helplessness” Paradigm: Importance of Hydroxyzine. Encephale. 1996;22(4):270–279. [PubMed] [Google Scholar]
  62. Menkes D.B., Aghajanian G.K., McCall R.B. Chronic Antidepressant Treatment Enhances Alpha-Adrenergic and Serotonergic Responses in the Facial Nucleus. Life Sci. 1980;27:45–55. doi: 10.1016/0024-3205(80)90018-1. [DOI] [PubMed] [Google Scholar]
  63. Mermet C., Sauad-Chagny M.F., Gonon F. Electrically Evoked Noradrenaline Release in the Rat Hypothalamic Paraventricular Nucleus Studied by In Vivo Electrochemistry: Autoregulation by Alpha2 Receptors. Neuroscience. 1990;34(2):423–432. doi: 10.1016/0306-4522(90)90151-s. [DOI] [PubMed] [Google Scholar]
  64. Mihic S.J., Whiting P.J., Klein R.L., Wafford K.A., Harris R.A. A Single Amino Acid of the Human Gamma-Aminobutyric Acid Type A Receptor Gamma 2 Subunit Determines Benzodiazepine Efficacy. J. Biol. Chem. 1994;269(52):32768–32773. [PubMed] [Google Scholar]
  65. Mongeau R., Blier P., De Montigny C. In Vivo Electrophysiological Evidence for Tonic Activation by Endogenous Noradrenaline of Alpha2-Adrenoreceptors on 5- Hydroxytryptamine Terminals in the Rat Hippocampus. Naunyn-Schmiedeberg's Arch. Pharmacol. 1993;347:266–272. doi: 10.1007/BF00167444. [DOI] [PubMed] [Google Scholar]
  66. Nemeroff C.B., Devane C.L., Pollock B.G. Newer Antidepressants and the Cytochrome P450System. Am. J. Psychiat. 1996;153(3):311–320. doi: 10.1176/ajp.153.3.311. [DOI] [PubMed] [Google Scholar]
  67. Oades R.D. The Role of Noradrenaline in Tuning and Dopamine in Switching Between Signals in the CNS. Neurosci. & Biobehav. Rev. 1985;9(2):261–282. doi: 10.1016/0149-7634(85)90050-8. [DOI] [PubMed] [Google Scholar]
  68. O'connor W.T., Earley B., Leonard B.E. Antidepressant Properties of the Triazolobenzodiazepines Alprazolam and Adinazolam: Studies on the Olfactory Bulbectomized Rat Model of Depression. Br. J. Clin. Pharmacol. 1985;19:45S–56S. doi: 10.1111/j.1365-2125.1985.tb02742.x. [DOI] [PubMed] [Google Scholar]
  69. Othmer S.C., Othmer E. Adinazolam, a Fast-Acting Antidepressant is Tolerated During General Anesthesia. J. Clin. Psychopharmacol. 1988;8(2):151–152. doi: 10.1097/00004714-198804000-00025. [DOI] [PubMed] [Google Scholar]
  70. Pellegrino L.J., Pellegrino A.S., Cushman A.J. Plenum Press; New York: 1979. A Stereotaxic Atlas of the Rat Brain. [Google Scholar]
  71. Petty F., Trivedi M.H., Fulton M., Rush A.J. Benzodiazepines as Antidepressants: Does GABA Play a Role In Depression? Biol. Psychiat. 1995;38(9):578–591. doi: 10.1016/0006-3223(95)00049-7. [DOI] [PubMed] [Google Scholar]
  72. Pickel V.M., Joh T.H., Reis D.J. A Serotonergic Innervation of Noradrenergic Neurons in Nucleus Locus Coeruleus: Demonstration by Immunocytochemical Localization of the Transmitter Specific Enzyme Tyrosine and Tryptophan Hydroxylase. Brain Res. 1977;131:197–214. doi: 10.1016/0006-8993(77)90515-7. [DOI] [PubMed] [Google Scholar]
  73. Pohl R., Berchou R., Rainey J.M. Tricyclic Antidepressants and Monoamine Oxidase Inhibitors in the Treatment of Agoraphobia. J. Clin. Psychopharmacol. 1982;2:399–407. [PubMed] [Google Scholar]
  74. Pollack M.H., Otto M.W., Tesar G.E., Cohen L.S., Meltzer-Brody S., Rosenbaum J.F. Long-Term Outcome After Acute Treatment With Alprazolam or Clonazepam for Panic Disorder. J. Clin. Psychopharmacol. 1993;13(4):257–263. [PubMed] [Google Scholar]
  75. Post R.M., Weiss S.R.B., Chuang D.M. Mechanisms of Action of Anticonvulsants in Affective Disorders: Comparison with Lithium. J. Clin. Psychopharmacol. 1992;12:23S–35S. doi: 10.1097/00004714-199202001-00005. [DOI] [PubMed] [Google Scholar]
  76. Preskorn S.H., Alderman J., Chung M., Harrison W., Messig M., Harris S. Pharmacokinetics of Desipramine Coadministered with Sertraline or Fluoxetine. J. Clin. Psychopharmacol. 1994;14:90–98. [PubMed] [Google Scholar]
  77. Price L.H., Charney D.S., Heninger G.R. Variability of Response to Lithium Augmentation in Refractory Depression. Am. J. Psychiat. 1986;143:1387–1392. doi: 10.1176/ajp.143.11.1387. [DOI] [PubMed] [Google Scholar]
  78. Pyke R.E., Cohn J.B., Feighner J.P., Smith W.T. Open-Label Studies of Adinazolam in Severe Depression. Psychopharmacol. Bull. 1983;19:96–98. [Google Scholar]
  79. Ramon Y., Cajal S. Histologie du Systeme Nerveux de L'Homme et des Vertebrates. Consejo Superior de Investigaciones. Cientificos Instituto Ramon y Cajal, Madrid. 1955;11(1911):772–779. [Google Scholar]
  80. Romach M., Busto U., Somer G., Kaplan H.L., Sellers E. Clinical Aspects of Chronic Use of Alprazolam and Lorazepam. Am. J. Psychiat. 1995;152(8):1161–1167. doi: 10.1176/ajp.152.8.1161. [DOI] [PubMed] [Google Scholar]
  81. Sauad-Chagny M.F., Mermet C., Gonon F. Electrically Evoked Noradrenaline Release in the Rat Hypothalamic Paraventricular Nucleus Studied by In Vivo Electrochemistry: Characterization and Facilitation by Increasing the Stimulation Frequency. Neuroscience. 1990;34(2):411–422. doi: 10.1016/0306-4522(90)90150-3. [DOI] [PubMed] [Google Scholar]
  82. Sethy V.H., Collins R.J., Daniels E.H. Determination of Biological Activity of Adinazolam and its Metabolites. J. Pharmacy and Pharmacology. 1984;36:546–548. doi: 10.1111/j.2042-7158.1984.tb04449.x. [DOI] [PubMed] [Google Scholar]
  83. Sethy V.H., Harris D.W. Effect of Norepinephrine Uptake on Beta-Adrenergic Receptors of the Rat Cerebral Cortex. Eur. J. Pharmacol. 1981;75:53–56. doi: 10.1016/0014-2999(81)90344-7. [DOI] [PubMed] [Google Scholar]
  84. Sethy V.H., Hodges D.H. Alprazolam in a Biochemical Model of Depression. Biochem Pharmacol. 1982;31:3155–3157. doi: 10.1016/0006-2952(82)90103-4. [DOI] [PubMed] [Google Scholar]
  85. Shader R.I., Goodman M., Gever J. Panic Disorders: Current Perspectives. J. of Clin. Psychopharmacol. 1982;(2 Suppl.):2–10. doi: 10.1097/00004714-198212001-00001. [DOI] [PubMed] [Google Scholar]
  86. Sheehan D.V. Panic Attacks and Phobias. New England J. of Med. 1980;307:56–158. doi: 10.1056/NEJM198207153070304. [DOI] [PubMed] [Google Scholar]
  87. Sheehan D.V., Ballenger J., Jacobson G. Treatment of Endogenous Anxiety with Phobic, Hysterical, and Hypochondriacal Symptoms. Arch. Gen. Psychiat. 1980;37:205–208. doi: 10.1001/archpsyc.1980.01780140053006. [DOI] [PubMed] [Google Scholar]
  88. Soubrie P. Reconciling the Role of Serotonin Neurons in Humans and Animal Behavior. Behav. Brain Sci. 1986;9:319–364. [Google Scholar]
  89. Sulser F. Deamplification of Noradrenergic Signal Transfer by Anti-Depressants: a Unified Catecholamine-Serotonin Hypothesis of Affective Disorders. Psychopharmacol. Bull. 1983;19:300–304. [PubMed] [Google Scholar]
  90. Teitelbaum P., Pellis S.M., Devietti T.L. Disintegration Into Stereotypy Induced Drugs or Brain Damage: A Microdescriptive Behavioral Analysis. In: Cooper S.J., Dourish C.T., editors. Neurobiology of Stereotyped Behavior. Oxford University Press; New York: 1990. pp. 169–199. [Google Scholar]
  91. Travers J.B., Huff J.C., Rola-Pleszczynski M., Gelfand E.W., Morelli J.G., Murphy R.C. Identification of Functional Platelet-Activating Factor Receptors on Human Keratinocytes. J. Investig. Dermatol. 1995;105(6):816–823. doi: 10.1111/1523-1747.ep12326581. [DOI] [PubMed] [Google Scholar]
  92. Turmel A., De Montigny C. Sensitization of Rat Forebrain Neurons to Serotonin by Adinazolam, an Antidepressant Triazolobenzodiazepine. Eur. J. Pharmacol. 1984;99:241–244. doi: 10.1016/0014-2999(84)90247-4. [DOI] [PubMed] [Google Scholar]
  93. Van Praag H.M. Management of Depression with Serotonin Precursors. Biol. Psychiat. 1981;16:291–310. [PubMed] [Google Scholar]
  94. Walinder J., Skott A., Carlsson A., Nagy A., Bjorn-Erik R. Potentiation of the Anti-Depressant Action of Clomipramine by Tryptophan. Arch. Gen. Psychiat. 1976;33:1384–1389. doi: 10.1001/archpsyc.1976.01770110112012. [DOI] [PubMed] [Google Scholar]
  95. Walters J.R., Roth R.H. Effect of Gamma-Hydroxybutyrate on Dopamine and Dopamine Metabolites in the Rat Striatum. Biochem. Pharmacol. 1972;21:2111–2121. doi: 10.1016/0006-2952(72)90164-5. [DOI] [PubMed] [Google Scholar]
  96. Walters J.R., Roth R.H. Dopaminergic Neurons: Drug Induced Antagonism of the Increase in Tyrosine Hydroxylase Activity Produced by Cessation of Impulse Flow. J. Pharmacol. Exp. Therap. 1974;191:82–91. [PubMed] [Google Scholar]
  97. Wang R.Y., Aghajanian G.K. Enhanced Sensitivity of Amygdaloid Neurons to Serotonin and Norepinephrine Antidepressant Treatment. Commun. Psychopharmacol. 1980;4:83–90. [PubMed] [Google Scholar]
  98. Winters W.D., Spooner C.E. Various Seizure Activities Following Gamma- Hydroxybutyrate. Int. J. Neuropharmacol. 1965;4:197–200. doi: 10.1016/0028-3908(65)90034-1. [DOI] [PubMed] [Google Scholar]
  99. Wright I.K., Heaton M., Upton N., Marsden C.A. Comparison of Acute and Chronic Treatment of Various Serotonergic Agents With Those of Diazepam and Idazoxan in the Rat Elevated X-Maze. Psychopharmacology. 1992;107:405–414. doi: 10.1007/BF02245168. [DOI] [PubMed] [Google Scholar]
  100. Zarcone V.P., Jr., Benson K.L., Greene K.A., Csernansky J.G., Faull K.F. The Effect of Chronic Alprazolam on Sleep and Bioamine Metabolites in Depression. J. Clin. Psychopharmacol. 1994;14(1):36–40. [PubMed] [Google Scholar]

Articles from Progress in Neuro-Psychopharmacology & Biological Psychiatry are provided here courtesy of Elsevier

RESOURCES