Abstract
Early events of infection of MHV were studied in comparison with those of VSV, which is known to enter cells by an endocytic pathway. Treatment of mouse L-2 fibroblasts with ammonium chloride, chloroquine, or dansylcadaverine inhibited infection of MHV to a much lesser degree than that of VSV, suggesting a relatively minor role for the endocytic pathway and functional endosomes in MHV infection. Endocytosis of MHV and VSV into L-2 cells was assayed by the recovery of infectious (i.e., not uncoated) viruses from homogenates of cells harvested within the first few minutes of infection (and treated with protease to remove surface-bound virus). The results thus suggest that while a small proportion of the MHV inoculum is internalized by endocytosis, productive infection does not depend on functional endocytosis as utilized by VSV. Studies on direct virion-mediated cell fusion showed that MHV can induce fusion at pH 7.4, whereas VSV causes fusion at pH 5.0. Taken together, the above results suggest that MHV enters L-2 cells predominantly by membrane fusion with a non-acidified compartment such as the plasma membrane, endocytic vesicles, or endosomes (prior to their acidification). Results obtained from cell lines which differed in permissiveness to MHV infection suggested that the ability to support MHV infection does not correlate with endocytosis. Rather, nonpermissive cells, such as rat astrocytoma (C-6) and Vero cells, showed higher levels of recoverable internalized MHV than did fully permissive L-2 cells. Cells which are normally nonpermissive to MHV, could be rendered MHV-susceptible by PEG-induced fusion of cell surface-bound virus. Such PEG-mediated susceptibility to MHV infection was insensitive to inhibition by ammonium chloride, supporting the idea that host cell restriction of MHV infection in C-6 and Vero cells may be due to a block in nonendosomal membrane fusion. Thus endocytic internalization of MHV, which clearly occurs in a variety of cells, does not guarantee productive infection.
References
- Arnheiter H., Baechi T., Haller O. Adult mouse hepatocytes in primary monolayer culture express genetic resistance to mouse hepatitis virus type 3. J. Immunol. 1982;129:1275–1281. [PubMed] [Google Scholar]
- Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968;161:370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
- Beushausen S., Narindrasorasak S., Sanwal B.D., Dales S. In vivo and in vitro models of demyelinating disease: Activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes. J. Virol. 1987;61:3795–3803. doi: 10.1128/jvi.61.12.3795-3803.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle J.F., Weismiller D.G., Holmes K.V. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. J. Virol. 1987;61:185–189. doi: 10.1128/jvi.61.1.185-189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chasey D., Alexander D.J. Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells. Arch. Virol. 1976;52:101–111. doi: 10.1007/BF01317869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheley S., Anderson R. A reproducible microanalytical method for the detection of specific RNA sequences by dot-blot hybridization. Anal. Biochem. 1984;137:15–19. doi: 10.1016/0003-2697(84)90339-7. [DOI] [PubMed] [Google Scholar]
- Cheng S., Maxfield F., Robbins J., Willingham M., Pastan I. Vol. 77. 1980. Receptor-mediated uptake of 3, 3′,5-triiodo-L-thyronine by cultured fibroblasts; pp. 3425–3429. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David-Ferreira J.F., Manaker R.A. An electron microscope study of the development of a mouse hepatitis virus in tissue culture cells. J. Cell Biol. 1965;24:57–78. doi: 10.1083/jcb.24.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daya M., Cervin M., Anderson R. Cholesterol enhances mouse hepatitis virus-mediated cell fusion. Virology. 1988;163:276–283. doi: 10.1016/0042-6822(88)90267-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dille B.J., Johnson T.C. Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine. J. Gen. Virol. 1982;62:91–103. doi: 10.1099/0022-1317-62-1-91. [DOI] [PubMed] [Google Scholar]
- Fan D.P., Sefton B.M. The entry into host cells of Sindbis Virus, vesicular stomatitis virus and Sendai virus. Cell. 1978;15:985–992. doi: 10.1016/0092-8674(78)90282-9. [DOI] [PubMed] [Google Scholar]
- Fitzgerald D., Morris R., Saelinger C. Receptor-mediated internalization of Pseudomonas toxin by mouse fibroblasts. Cell. 1980;21:867–873. doi: 10.1016/0092-8674(80)90450-x. [DOI] [PubMed] [Google Scholar]
- Gruenberg J.E., Howell K.E. Reconstitution of vesicle fusions occurring in endocytosis with a cell-free system. EMBO J. 1986;5:3091–3101. doi: 10.1002/j.1460-2075.1986.tb04615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haigler H., Willingham M., Pastan I. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in Balb 3T3 cells. J. Biol. Chem. 1980;255:1239–1241. [PubMed] [Google Scholar]
- Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Marsh M., White J. Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J. Gen. Virol. 1982;58:47–61. doi: 10.1099/0022-1317-58-1-47. [DOI] [PubMed] [Google Scholar]
- Hoekstra D., Klappe K., De Boer T., Wilschut J. Characterization of the fusogenic properties of Sendai virus: Kinetics of fusion with erythrocyte membranes. Biochemistry. 1985;24:4739–4745. doi: 10.1021/bi00339a005. [DOI] [PubMed] [Google Scholar]
- Hoekstra D., Kok J.W. Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes. Biosci. Rep. 1989;9:273–305. doi: 10.1007/BF01114682. [DOI] [PubMed] [Google Scholar]
- Hsu M.-C., Scheid A., Choppin P. Vol. 79. 1982. Enhancement of membrane-fusion activity of Sendai virus by exposure of the virus to basic pH is correlated with a conformational change in the fusion protein; pp. 5862–5866. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knobler R.L., Haspel M.V., Oldstone M.B.A. Mouse hepatitis virus type 4 (JHM strain)-induced fatal central nervous system disease. I. Genetic control and the murine neuron as the susceptible site of disease. J. Exp. Med. 1981;153:832–843. doi: 10.1084/jem.153.4.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kooi C., Mizzen L., Alderson C., Daya M., Anderson R. Early events of importance in determining host cell permissiveness to mouse hepatitis virus infection. J. Gen. Virol. 1988;69:1125–1135. doi: 10.1099/0022-1317-69-6-1125. [DOI] [PubMed] [Google Scholar]
- Krzystyniak K., Dupuy J.M. Entry of mouse hepatitis virus 3 into cells. J. Gen. Virol. 1984;65:227–231. doi: 10.1099/0022-1317-65-1-227. [DOI] [PubMed] [Google Scholar]
- Lucas A., Flintoff W., Anderson R., Percy D., Coulter M., Dales S. In vivo and in vitro models of demyelinating diseases: Tropism of the JHM strain of murine hepatitis virus for cells of glial origin. Cell. 1977;12:553–560. doi: 10.1016/0092-8674(77)90131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallucci L. Effect of chloroquine on lysosomes and on growth of mouse hepatitis virus (MHV-3) Virology. 1966;28:355–362. doi: 10.1016/0042-6822(66)90046-8. [DOI] [PubMed] [Google Scholar]
- Manaker R.A., Piczak C.V., Miller A.A., Stanton M.F. A hepatitis virus complicating studies with mouse leukemia. J. Natl. Cancer Inst. 1961;27:29–44. [PubMed] [Google Scholar]
- Matlin K.S., Reggio H., Helenids A., Simons K. Pathway of vesicular stomatitis virus entry leading to infection. J. Mol. Biol. 1982;156:609–631. doi: 10.1016/0022-2836(82)90269-8. [DOI] [PubMed] [Google Scholar]
- Maxfield F., Willingham M., Davies P., Pastan I. Amines inhibit the clustering of α2-macroglobulin and EGF on the fibroblast cell surface. Nature (London) 1979;277:661–663. doi: 10.1038/277661a0. [DOI] [PubMed] [Google Scholar]
- McClure M.O., Marsh M., Weiss R.A. Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J. 1988;7:513–518. doi: 10.1002/j.1460-2075.1988.tb02839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metsikko K., Van Meer G., Simons K. Reconstitution of the fusogenic activity of vesicular stomatitis virus. EMBO J. 1986;5:3429–3435. doi: 10.1002/j.1460-2075.1986.tb04665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizzen L., Hilton A., Cheley S., Anderson R. Attenuation of murine coronavirus infection by ammonium chloride. Virology. 1985;142:378–388. doi: 10.1016/0042-6822(85)90345-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai Y., Hamaguchi M., Toyoda T., Yoshida T. The uncoating of paramyxoviruses may not require a low pH mediated step. Virology. 1983;130:263–268. doi: 10.1016/0042-6822(83)90138-1. [DOI] [PubMed] [Google Scholar]
- Pastan I., Willingham M. Journey to the center of the cell: Role of the receptosome. Science. 1981;214:504–509. doi: 10.1126/science.6170111. [DOI] [PubMed] [Google Scholar]
- Pastan I., Willingham M.C. Receptor-mediated endocytosis of hormones in cultured cells. Annu. Rev. Physiol. 1981;43:239. doi: 10.1146/annurev.ph.43.030181.001323. [DOI] [PubMed] [Google Scholar]
- Roberts J., Quastel J.H. Particle uptake by polymorphonuclear leukocytes and Ehrlich Ascites-carcinoma cells. Biochem. J. 1963;89:150–156. doi: 10.1042/bj0890150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothfels K.H., Axelrad A.A., Siminovitch L., McCulloch E.A., Parker R.C. Vol. 3. 1959. The origin of altered cell lines from mouse, monkey and man as indicated by chromosome and transplantation studies; pp. 189–214. (Canad. Cancer Conf.). [Google Scholar]
- Sawicki S.G., Sawicki D.L. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. J. Virol. 1986;57:328–334. doi: 10.1128/jvi.57.1.328-334.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlegel R., Dickson R.B., Willingham M.C., Pastan I.H. Vol. 79. 1982. Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of α2-macroglobulin; pp. 2291–2295. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shif I., Bang F.B. In vitro interaction of mouse hepatitis virus and macrophages from genetically resistant mice. I. Adsorption of virus and growth curves. J. Exp. Med. 1970;131:843–850. doi: 10.1084/jem.131.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein B.S., Gowda S.D., Lifson J.D., Penhallow R.C., Bensch K.G., Engleman E.G. pH-independent HIV entry into CD4 positive cells via virus envelope fusion to the plasma membrane. Cell. 1987;49:659–668. doi: 10.1016/0092-8674(87)90542-3. [DOI] [PubMed] [Google Scholar]
- Steinman R.M., Brodie S.E., Cohn Z.A. Membrane flow during pinocytosis. A stereologic analysis. J. Cell Biol. 1976;60:665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svensson V. Role of vesicles during adenovirus 2 internalization into HeLa cells. J. Virol. 1985;55:442–449. doi: 10.1128/jvi.55.2.442-449.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svensson V., Persson R. Entry of adenovirus 2 into HeLa cells. J. Virol. 1984;51:687–694. doi: 10.1128/jvi.51.3.687-694.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dinter S., Flintoff W.F. Rat glial C6 cells are defective in murine coronavirus internalization. J. Gen. Virol. 1987;68:1677–1685. doi: 10.1099/0022-1317-68-6-1677. [DOI] [PubMed] [Google Scholar]
- White J., Matlin K., Helenius A. Cell fusion by Semliki Forest, influenza and vesicular stomatitis viruses. J. Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasumura Y., Kawakita Y. Studies on SV-40 in tissue culture. Nippon Rinsho. 1963;21:1209. [Google Scholar]