Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2005 Mar 7;82(2):161–167. doi: 10.1016/S0248-4900(94)80018-9

Recognition ability and cytotoxicity of some oligosaccharidylsubstituted β-cyclodextrins

Fatima Attioui a, Anouar Al-Omar a, Eric Leray b, Hélène Parrot-Lopez b, Chantal Finance a, Roger Bonaly a,*
PMCID: PMC7131397  PMID: 7606211

Summary

This paper reports a chemico-enzymatic synthesis of β-CD derivatives. The recognition properties of these derivativeswere tested using flocculating yeast and isolated lectins. It was observed that the substitution of β-cyclodextrins with galactose end arms induces the better recognition by a cell-linked galactose-specific lectin. The physicochemical effects of the β-CD derivatives on membranes were estimated using red blood cells and the effects on the viability of yeast and human rectal tumor cells were appreciated by measuring the mitochondrial deshydrogenase activity. The substitutions of the β-CD ring by sugar antennae decrease the negative physicochemical effects of the β-CD, ie their, hemolytic properties. However, these substitutions induce significant modifications of the biological properties of the molecules, particularly the cytotoxicity and the growth of eukaryotic cells.

Keywords: sugar substituted, β-cyclodextrins, lectin, cell recognition, cytotoxicity

References

  • 1.Al Mahmood S., Colin S., Bonaly R. Kluyveromyces bulgaricus yeast lectins. Isolation of two galactose-specific lectin forms from the yeast cell wall. J Biol Chem. 1991;266:20882–20887. [PubMed] [Google Scholar]
  • 2.Carmichael J., Degraff W.G., Gazdar A.F., Minna J.D., Mitchell J.B. Evaluation of a tetrazolium-based semi-automated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47:936–942. [PubMed] [Google Scholar]
  • 3.David S., Auge C., Gautheron C. Enzymic methods in preparative carbohydrate chemistry. Chem Biochem. 1991;49:175–237. doi: 10.1016/s0065-2318(08)60183-3. [DOI] [PubMed] [Google Scholar]
  • 4.Duchene D. Editions de Santé; Cold Spring Harbor, NY: 1991. New trends in cyclodextrins and derivatives. [Google Scholar]
  • 5.Hussain T., Salhi O., Lematre J., Charpentier C., Bonaly R. Comparative studies of flocculation and deflocculation of Saccharomyces uvarum and Kluyveromyces bulgaricus. Appl Microbiol Biotechnol. 1986;23:269–273. [Google Scholar]
  • 6.Irie T., Otagiri M., Sunada M., Uekama K., Ohtani Y., Yamada Y., Sugiyama Y. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J Pharmacobio-Dyn. 1982;5:741–746. doi: 10.1248/bpb1978.5.741. [DOI] [PubMed] [Google Scholar]
  • 7.Isomaa B., Hagerstrand H., Paterro G., Engblom A.C. Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes. Biochim Biophys Acta. 1986;860:510–524. doi: 10.1016/0005-2736(86)90548-1. [DOI] [PubMed] [Google Scholar]
  • 8.Laporte J., Bobulesco P., Rossi F. Une lignée cellulaire particuliérement sensible à la réplication du coronavirus entérique bovin : les cellules HRT-18. CR Acad Sci Paris Série D. 1980;290:623–626. [PubMed] [Google Scholar]
  • 9.Leray E., Parrot-Lopez H., Auge C., Finance C., Bonaly R., Coleman A.W. Chemico-enzymatic synthesis of bioactive cyclodextrin derivatives. Chem Commun. 1995 in press. [Google Scholar]
  • 10.Li S., Purdy W.C. Cyclodextrins and their applications in analytical chemistry. Chem Rev. 1992;92:1457–1470. [Google Scholar]
  • 11.Okada Y., Kubota Y., Koizumi K., Hizukuri S., Ohfuji T., Oogata K. Some properties and the inclusion behavior of branched cyclodextrins. Chem Pharm Bull. 1988;36:2176–2185. doi: 10.1248/cpb.36.2176. [DOI] [PubMed] [Google Scholar]
  • 12.Parrot-Lopez H., Leray E., Coleman A.W. New β-cyclodextrin derivatives possessing biologically active saccharide antennae. Supramol Chem. 1993;3:37–42. [Google Scholar]
  • 13.Pearson C.K., Cunningham C. Multidrug resistance during cancer chemotherapy — biotechnological solutions to a clinical problem. TIBTECH. 1993;11:511–516. doi: 10.1016/0167-7799(93)90030-d. [DOI] [PubMed] [Google Scholar]
  • 14.Pitha J. Cyclodextrins: solutions to insolubility. Neurotransmissions. 1989;5(1):1–8. [Google Scholar]
  • 15.Stradford M. Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae. Yeasts. 1989:5441–5445. [PubMed] [Google Scholar]
  • 16.Szejtli J. Kluwer Academic Publishers; Paris: 1988. Cyclodextrin technology. [Google Scholar]
  • 17.Szejtli J. The significance of cyclodextrins: Biological effects. J Drug Dev. 1991;4(suppl 1):3–11. [Google Scholar]
  • 18.Uekama K., Otagiri K. Cyclodextrins in drug carrier systems. CRC. 1987;3:1–40. [PubMed] [Google Scholar]
  • 19.Yamamoto M., Yoshida A., Hirayama F., Uekama K. Some physicochemical properties of branched β-cyclodex-trins and their inclusion characteristics. Int J Pharmacol. 1989;49:163–171. [Google Scholar]

Articles from Biology of the Cell are provided here courtesy of Elsevier

RESOURCES