Abstract
Studies of cytotoxicity by human lymphocytes revealed not only that both allogeneic and syngeneic tumor cells were lysed in a non-MHC-restricted fashion, but also that lymphocytes from normal donors were often cytotoxic. Lymphocytes from any healthy donor, as well as peripheral blood and spleen lymphocytes from several experimental animals, in the absence of known or deliberate sensitization, were found to be spontaneously cytotoxic in vitro for some normal fresh cells, most cultured cell lines, immature hematopoietic cells, and tumor cells. This type of nonadaptive, non-MHC-restricted cellmediated cytotoxicity was defined as “natural” cytotoxicity, and the effector cells mediating natural cytotoxicity were functionally defined as natural killer (NK) cells. The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation. Unlike cytotoxic T cells, NK cells cannot be demonstrated to have clonally distributed specificity, restriction for MHC products at the target cell surface, or immunological memory. NK cells cannot yet be formally assigned to a single lineage based on the definitive identification of a stem cell, a distinct anatomical location of maturation, or unique genotypic rearrangements.
References
- 1.Govaerts H. Cellular antibodies in kidney homotransplantation. J. Immunol. 1960;85:516. [PubMed] [Google Scholar]
- 2.Perlmann P., Holm G. Cytotoxic effect of lymphoid cells in vitro. Adv. Immunol. 1969;11:117. doi: 10.1016/s0065-2776(08)60479-4. [DOI] [PubMed] [Google Scholar]
- 3.Cerottini J.C., Brunner K.T. Cell mediated cytotoxicity, allograft rejection and tumor immunity. Adv. Immunol. 1974;18:67. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
- 4.Rosenau W., Moon H.D. The specificity of the cytolytic effect of sensitized lymphoid cells in vitro. J. Immunol. 1964;93:910. [PubMed] [Google Scholar]
- 5.Trinchieri G., Bernoco D., Curtoni S.E., Miggiano V.C., Ceppellini R. In: “Histocompatibility Testing—1972”: Cell-mediated lympholysis in man: Relevance of HL-A antigens and antibodies . Dausset J., editor. Munksgaard; Copenhagen: 1973. p. 509. [Google Scholar]
- 6.Eijsvoogel V.P., Koring L., De Groot-Koo Y.L., Huismans L., Van Rood J.J., Van Leenmen A., Dutoit E.D. Mixed lymphocyte culture and HL-A. Transplant. Proc. 1972;4:199. [PubMed] [Google Scholar]
- 7.Nabholz M., Vives J., Young H.M., Meo T., Miggiano V., Rijnbeek A., Schreffler D.C. Cell-mediated cell lysis in vitro: Genetic control of killer cell production and target specificities in the mouse. Eur. J. Immunol. 1974;4:378. doi: 10.1002/eji.1830040514. [DOI] [PubMed] [Google Scholar]
- 8.Hellström I., Hellström K.E., Pierce G.E., Yang J.P.S. Cellular and humoral immunity to different types of human neoplasms. Nature (London) 1968;220:1352. doi: 10.1038/2201352a0. [DOI] [PubMed] [Google Scholar]
- 9.Zinkernagel R.M., Doherty P. Immunological surveillance against altered self components by sensitized T lymphocytes in lymphochoriomeningitis. Nature (London) 1974;251:547. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]
- 10.Trinchieri G., Aden D., Knowles B.B. Cell-mediated cytotoxicity to SV40-specific tumor-associated antigens. Nature (London) 1976;261:312. doi: 10.1038/261312a0. [DOI] [PubMed] [Google Scholar]
- 11.Jondal M., Pross H. Surface markers on human B and T lymphocytes. VI. Cytotoxicity against cell lines as a functional marker for lymphocyte subpopulations. Int. J. Cancer. 1975;15:596. doi: 10.1002/ijc.2910150409. [DOI] [PubMed] [Google Scholar]
- 12.Matthews N., MacLaurin B.P., Clarke G.N. Characterization of the normal lymphocyte population cytolytic to Burkitt's lymphoma cells of the EB2 cell line. J. Exp. Biol. Med. Sci. 1975;53:389. doi: 10.1038/icb.1975.44. [DOI] [PubMed] [Google Scholar]
- 13.Ortaldo J.R., Oldham R.K., Cannon G.C., Herberman R.B. Specificity of natural cytotoxic reactivity of normal human lymphocytes against a myeloid leukemia cell line. J. Natl. Cancer Inst. (U.S.) 1977;59:77. doi: 10.1093/jnci/59.1.77. [DOI] [PubMed] [Google Scholar]
- 14.Peter H.H., Pavie-Fischer J., Fridman W.H., Aubert C., Cesarini J.P., Roubin R., Kourilsky F.M. Cell-mediated cytotoxicity in vitro of human lymphocytes against a tissue culture melanoma cell line (IGR3). J. Immunol. 1975;115:539. [PubMed] [Google Scholar]
- 15.Takasugi M., Mickey M.R., Terasaki P.I. Reactivity of lymphocytes from normal persons on cultured tumor cells. Cancer Res. 1973;33:2898. [PubMed] [Google Scholar]
- 16.West W.H., Cannon G.B., Kay H.D., Bonnard G.D., Herberman R.B. Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: Characterization of the effector cells. J. Immunol. 1977;118:355. [PubMed] [Google Scholar]
- 17.Herberman R.B., Nunn M.E., Holden H.T., Staal S., Djeu J.Y. Augmentation of natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic target cells. Int. J. Cancer. 1977;19:555. doi: 10.1002/ijc.2910190417. [DOI] [PubMed] [Google Scholar]
- 18.Bloom B.R. Natural killers to rescue immune surveillance? Nature (London) 1982;300:214. doi: 10.1038/300214a0. [DOI] [PubMed] [Google Scholar]
- 19.Patek P.Q., Collins J.L. Tumor surveillance revisited: Natural cytotoxic (NC) activity deters tumorigenesis. Cell. Immunol. 1988;116:240. doi: 10.1016/0008-8749(88)90224-9. [DOI] [PubMed] [Google Scholar]
- 20.Ritz J., Schmidt R.E., Michon J., Hercend T., Schlossman S.F. Characterization of functional surface structures on human natural killer cells. Adv. Immunol. 1988;42:181. doi: 10.1016/s0065-2776(08)60845-7. [DOI] [PubMed] [Google Scholar]
- 21.Reynolds C.W., Ortaldo J.R. Natural killer activity: The definition of a function rather than a cell type. Immunol. Today. 1987;8:172. doi: 10.1016/0167-5699(87)90032-6. [DOI] [PubMed] [Google Scholar]
- 22.Lanier L.L., Phillips J., Hackett J., Tutt M., Kumar V. Natural killer cells: Definition of a cell type rather than a function. J. Immunol. 1986;137:2735. [PubMed] [Google Scholar]
- 23.Trinchieri G., Perussia B. Human natural killer cells: Biologic and pathologic aspects. Lab. Invest. 1984;50:489. [PubMed] [Google Scholar]
- 24.Trinchieri G., Degliantoni G., Kobayashi M., London L., Perussia B. In: “Mechanisms of Cytotoxicity by NK Cells”: Surface phenotype and functions of human natural killer cells . Herberman R.B., Callewaert D.M., editors. Academic Press; Orlando, Florida: 1985. p. 29. [Google Scholar]
- 25.Lanier L.L., Phillips J.H. What are natural killer cells? ISI Atlas of Sci.: Immunol. 1988:15. [Google Scholar]
- 26.Fitzgerald-Bocarsly P., Herberman R., Hercend T., Hiserodt J., Kumar V., Lanier L., Ortaldo J., Pross H., Reynolds C., Welsh R., Wigzell H. A definition of natural killer cells. Immunol. Today. 1988;9:292. [Google Scholar]
- 27.Rosenberg S. Lymphokine-activated killer cells: A new approach to immunotherapy of cancer. JNCI, J. Natl. Cancer Inst. 1985;75:595. [PubMed] [Google Scholar]
- 28.Perussia B., Trinchieri G., Jackson A., Warner N.L., Faust J., Rumpold H., Kraft D., Lanier L.L. The Fc receptor for IgG on human natural killer cells: Phenotypic, functional and comparative studies using monoclonal antibodies. J. Immunol. 1984;133:180. [PubMed] [Google Scholar]
- 29.Kay H.D., Bonnard G.D., West W.H., Herberman R.B. A functional comparison of human Fc-receptor-bearing lymphocytes active in natural cytotoxicity and antibody-dependent cellular cytotoxicity. J. Immunol. 1977;118:2058. [PubMed] [Google Scholar]
- 30.Nelson D.B., Bundy B.M., Strober W. Spontaneous cell-mediated cytotoxicity by human peripheral blood lymphocytes. in vitro. J. Immunol. 1977;119:1401. [PubMed] [Google Scholar]
- 31.Ozer H., Strelkauskas A.J., Callery R.T., Schlossman R.T. The functional dissection of human peripheral null cells with respect to antibody-dependent cellular cytotoxicity and natural killing. Eur. J. Immunol. 1979;9:112. doi: 10.1002/eji.1830090204. [DOI] [PubMed] [Google Scholar]
- 32.Perussia B., Trinchieri G., Cerottini J.C. Functional studies of Fc receptor-bearing human lymphocytes: Effect of treatment with proteolytic enzymes. J. Immunol. 1979;123:681. [PubMed] [Google Scholar]
- 33.Perussia B., Santoli D., Trinchieri G. In: “Natural Cell-Mediated Immunity against Tumors”: Are spontaneous and antibody-dependent lysis two different mechanisms of cytotoxicity mediated by the same cells? Herberman R.B., editor. Academic Press; New York: 1980. p. 365. [Google Scholar]
- 34.Trinchieri G., Santoli D. Antiviral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J. Exp. Med. 1978;147:1314. doi: 10.1084/jem.147.5.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Saksela E., Timonen T., Ranki A., Häyry P. Morphological and functional characterization of isolated effector cells responsible for human natural killer activity to fetal fibroblasts and to cultured cell line targets. Immunol. Rev. 1979;44:71. doi: 10.1111/j.1600-065x.1979.tb00268.x. [DOI] [PubMed] [Google Scholar]
- 36.Hansson M., Kiessling R., Andersson B. Human fetal thymus and bone marrow contain target cells for natural killer cells. Eur. J. Immunol. 1981;11:8. doi: 10.1002/eji.1830110103. [DOI] [PubMed] [Google Scholar]
- 37.Lozzio B.B., Lozzio C.B., Machado E. Human myelogenous (Ph1+ leukemia cell line: Transplantation into athymic mice. J. Natl. Cancer Inst. (U.S.) 1976;56:627. doi: 10.1093/jnci/56.3.627. [DOI] [PubMed] [Google Scholar]
- 38.Andersson L., Jokinen M., Gahmberg C.G. Induction of erythroid differentiation in the human leukemia cell line K562. Nature (London) 1979;278:364. doi: 10.1038/278364a0. [DOI] [PubMed] [Google Scholar]
- 39.Huberman E., Callaham M.F. Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc. Natl. Acad. Sci. U.S.A. 1979;76:1293. doi: 10.1073/pnas.76.3.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Kiessling R., Klein E., Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 1975;5:112. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
- 41.Nunn M.E., Herberman R.B. Natural cytotoxicity of mouse, rat, and human lymphocytes against heterologous target cells. JNCI, J. Natl. Cancer Inst. 1979;62:765. [PubMed] [Google Scholar]
- 42.MacLennan I.C.M., Loewi G. Effect of specific antibody to target cells on their specific and non-specific interactions with lymphocytes. Nature (London) 1965;205:887. doi: 10.1038/2191069a0. [DOI] [PubMed] [Google Scholar]
- 43.Trinchieri G., De Marchi M., Mayr W., Savi M., Ceppellini R. Lymphocyte antibody lymphocytolytic interaction (LALI) with special emphasis on HLA. Transplant. Proc. 1973;5:1631. [PubMed] [Google Scholar]
- 44.Trinchieri G., Bauman P., De Marchi M., Tokes Z. Antibody-dependent cell-mediated cytotoxicity in humans. I. Characterization of the effector cell. J. Immunol. 1975;115:249. [PubMed] [Google Scholar]
- 45.Brunner K.T., Manuel J., Cerottini J.C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labeled allogeneic target cells in vitro: Inhibition by isoantibody and by drugs. Immunology. 1968;14:181. [PMC free article] [PubMed] [Google Scholar]
- 46.Miller R.G., Dunkley M. Quantitative analysis of the 51Cr release cytotoxic assay for cytotoxic lymphocytes. Cell. Immunol. 1974;14:284. doi: 10.1016/0008-8749(74)90212-3. [DOI] [PubMed] [Google Scholar]
- 47.Pross H.F., Baines M.G., Rubin P., Shragge P., Patterson M.S. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. IX. The quantitation of natural killer cell activity. J. Clin. Immunol. 1981;1:51. doi: 10.1007/BF00915477. [DOI] [PubMed] [Google Scholar]
- 48.Pross H.F., Callewaert D., Rubin P. In: Lotzova E., Herberman R.B., editors. Vol. 1. CRC Press; Boca Raton, Florida: 1986. p. 1. (“Immunobiology of Natural Killer Cells”: Assays for NK cell cytotoxicity—Their values and pitfalls ). [Google Scholar]
- 49.von Krogh M. J. Infect. Dis.: Colloidal chemistry and immunology. . 1916;19:452. [Google Scholar]
- 50.Kabat E.A., Mayer M.M. “Experimental Immunochemistry”. Thomas; Springfield, Illinois: 1967. [Google Scholar]
- 51.Hill A.V. J. Physiol. (London): The possible effect of the aggregation of the molecules of hemoglobin on its dissociation curves. . 1910;4:40. [Google Scholar]
- 52.Pross H.F., Baines M.G. Int. J. Cancer: Studies of human natural killer cells. I. In vivo parameters affecting normal cytotoxic function. . 1982;29:383. doi: 10.1002/ijc.2910290404. [DOI] [PubMed] [Google Scholar]
- 53.Pross H.F., Maroun J.A. J. Immunol. Methods: The standardization of NK cell assays for use in studies of biological responses modifiers. . 1984;68:235. doi: 10.1016/0022-1759(84)90154-6. [DOI] [PubMed] [Google Scholar]
- 54.Pross H.F. In: Lotzova E., Herberman R.B., editors. Vol. 2. CRC Press; Boca Raton, Florida: 1986. p. 11. (“Immunobiology of Natural Killer Cells”: The involvement of natural killer cells in human malignant disease ). [Google Scholar]
- 55.Pross H.F. In: “Natural Immunity, Cancer and Biological Response Modification”: Natural killer cell activity in human malignant disease. The prognostic value of repetitive natural killer testing . Lotzova E., Herberman R.B., editors. Karger; Basel: 1986. p. 196. [Google Scholar]
- 56.Santoli D., Trinchieri G., Zmijewski C.M., Koprowski H. J. Immunol.: HLA-related control of spontaneous and antibody-dependent cell-mediated cytotoxic activity in humans. . 1976;117:765. [PubMed] [Google Scholar]
- 57.Oldham R., Dean J.H., Cannon G.B., Ortaldo J.R., Dunston G., Applebaum F., McCoy J.L., Djeu J., Herberman R.B. Int. J. Cancer: Cryopreservation of human lymphocyte function as measured by in vitro assay. . 1976;18:145. doi: 10.1002/ijc.2910180203. [DOI] [PubMed] [Google Scholar]
- 58.Shau H., Golub S.H. Cell. Immunol.: Modulation of natural killer-mediated lysis by red blood cells. . 1988;116:60. doi: 10.1016/0008-8749(88)90210-9. [DOI] [PubMed] [Google Scholar]
- 59.Grimm E., Bonavida B. J. Immunol.: Mechanism of cell-mediated cytotoxicity at the single cell level. I. Estimation of cytotoxic T lymphocyte frequency relative lytic efficiency. . 1979;123:2861. [PubMed] [Google Scholar]
- 60.Neville M.E., Grimm E., Bonavida B. J. Immunol. Methods: Frequency determination of K cells by a single cell cytotoxic assay. . 1980;36:255. doi: 10.1016/0022-1759(80)90131-3. [DOI] [PubMed] [Google Scholar]
- 61.Targan S. J. Clin. Lab. Immunol.: A single cell marker of active NK cytotoxicity: Only a fraction of target binding lymphocytes are killer cells. . 1980;4:165. [PubMed] [Google Scholar]
- 62.Ullberg M., Jondal M. J. Exp. Med.: Recycling and target binding capacity of human natural killer cells. . 1981;153:615. doi: 10.1084/jem.153.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Rubin P., Pross H.F., Roder J.C. J. Immunol.: Studies on human natural killer cells. II. Analysis at the single cell level. . 1982;128:2553. [PubMed] [Google Scholar]
- 64.Varcas-Cortes V., Hellström U., Perlmann P. J. Immunol. Methods: Surface markers of human natural killer cells as analyzed in a modified single cell cytotoxicity assay on poly-L-lysine coated cover slip. . 1983;62:87. doi: 10.1016/0022-1759(83)90114-x. [DOI] [PubMed] [Google Scholar]
- 65.Salata R.A., Schaeter B.Z., Ellner J.J. Clin. Exp. Immunol.: Recruitment of OKMI staining lymphocytes with selective binding of K562 tumour targets by interferon. . 1983;52:185. [PMC free article] [PubMed] [Google Scholar]
- 66.Perussia B., Fanning V., Trinchieri G. J. Immunol.: A human NK and K cell subset shares with cytotoxic T cell expression of the antigen recognized by antibody OKT8. . 1983;131:223. [PubMed] [Google Scholar]
- 67.Ullberg M., Merrill J., Jondal M. Scand. J. Immunol.: Interferon-induced NK augmentation in humans. An analysis of target recognition, effector cell recruitment and effector cell recycling. . 1981;14:285. doi: 10.1111/j.1365-3083.1981.tb00566.x. [DOI] [PubMed] [Google Scholar]
- 68.Michaelis L., Menten M.L. Biochemistry: Kinetics of invertase action. . 1913;49:333. [Google Scholar]
- 69.Thorn R.M., Henney C.S. J. Immunol.: Kinetic analysis of target cell destruction by effector T cells. I. Delineation of parameters related to the frequency and lytic efficiency of killer cells. . 1976;117:2213. [PubMed] [Google Scholar]
- 70.Callewaert D.M., Johnson D.F., Kearney J. J. Immunol.: Spontaneous cytotoxicity of cultured cell lines mediated by normal peripheral blood lymphocytes. III. Kinetic parameters. . 1978;121:710. [PubMed] [Google Scholar]
- 71.Callewaert D.M., Genyea J., Mahle N.H., Dayner S., Korzeniewski C., Schult S. Scand. J. Immunol.: Simultaneous determination of the concentration and lytic activity of effector cells that mediate natural and antibody-dependent cytotoxicity. . 1983;17:479. doi: 10.1111/j.1365-3083.1983.tb00815.x. [DOI] [PubMed] [Google Scholar]
- 72.Merrill S.J. Math. Biosci.: Foundations of the use of an enzyme —Kinetic analogy in cell-mediated cytotoxicity. . 1982;62:219. [Google Scholar]
- 73.Callewaert D.M., Mahle N.H., Genyea J., Wilusz J.R., Chores J.B., Baker S., Thomas R., Ruedisveli E. Nat. Immun. Cell Growth Regul.: Experimental application of a multistep kinetic model for natural cytotoxicity: Determination of rate constants for lytic programming and killer cell-independent lysis. . 1984;3:310. [PubMed] [Google Scholar]
- 74.Callewaert D.M., Mahle N.H. In: “Mechanisms of Cytotoxicity by NK Cells”: Kinetic models for natural cytotoxicity and their use for studying activated NK cells . Herberman R.B., Callewaert D.M., editors. Academic Press; Orlando, Florida: 1985. p. 381. [Google Scholar]
- 75.Callewaert D.M., Smeekens S.P., Mahle N.H. J. Immunol. Methods: Improved quantification of cellular cytotoxicity reactions: Determination of kinetic parameters for natural cytotoxicity by a distribution-free procedure. . 1982;49:25. doi: 10.1016/0022-1759(82)90363-5. [DOI] [PubMed] [Google Scholar]
- 76.Perussia B., Trinchieri G. J. Immunol.: Inactivation of natural killer cell cytotoxic activity after interaction with target cells. . 1981;126:754. [PubMed] [Google Scholar]
- 77.Brahmi Z., Bray R.A., Abrams S.I. J. Immunol.: Evidence for an early calcium-independent event in the activation of the human natural killer cell cytolytic mechanism. . 1985;135:4108. [PubMed] [Google Scholar]
- 78.Anegón I., Cuturi M.C., Trinchieri G., Perussia B. J. Exp. Med.: Interaction of Fc receptor (CD16) with ligands induces transcription of IL-2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. . 1988;167:452. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Santoli D., Trinchieri G., Koprowski H. J. Immunol.: Cell-mediated cytotoxicity in humans against virus-infected target cells. II. Interferon induction and activation of natural killer cells. . 1978;121:532. [PubMed] [Google Scholar]
- 80.Trinchieri G., Santoli D., Dee R., Knowles B.B. J. Exp. Med.: Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. . 1978;147:1299. doi: 10.1084/jem.147.5.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Beck J., Engler H., Brunner H., Kirchner H. J. Immunol. Methods: Interferon production in cocultures between mouse spleen cells and tumor cells. Possible role of mycoplasmas in interferon induction. . 1980;38:63. doi: 10.1016/0022-1759(80)90331-2. [DOI] [PubMed] [Google Scholar]
- 82.Birke C., Peter H.H., Langenberg U., Müller-Hermes W.J., Peters J.H., Heitmann J., Leibold W., Dallugge H., Krapf E., Kirchner H. J. Immunol.: Mycoplasma contamination in human tumor cell lines: Effect on interferon induction and susceptibility to natural killing. . 1981;127:94. [PubMed] [Google Scholar]
- 83.Timonen T., Ranki A., Säkselä E., Häyry P. Cell. Immunol.: Human natural cell-mediated cytotoxicity against fetal fibroblasts. III. Morphological and functional characterization of the effector cells. . 1979;48:121. doi: 10.1016/0008-8749(79)90105-9. [DOI] [PubMed] [Google Scholar]
- 84.Timonen T., Säkselä E., Ranki A., Häyry P. Cell. Immunol.: Fractionation, morphological and functional characterization of effector cells responsible for human natural killer activity against cell line targets. . 1979;48:133. doi: 10.1016/0008-8749(79)90106-0. [DOI] [PubMed] [Google Scholar]
- 85.Timonen T., Säkselä E. Isolation of human natural killer cells by density gradient centrifugation. J. Immunol. Methods. 1980;36:285. doi: 10.1016/0022-1759(80)90133-7. [DOI] [PubMed] [Google Scholar]
- 86.Bloom E.T. Cell. Immunol.: Density gradient fractionation of effector cells in human natural cell-mediated cytotoxicity. . 1981;61:231. doi: 10.1016/0008-8749(81)90371-3. [DOI] [PubMed] [Google Scholar]
- 87.Heumann D., Colombatti M., Mach J.P. Eur. J. Immunol.: Human large granular lymphocytes contain an esterase activity usually considered as specific for the myeloid series. . 1983;13:254. doi: 10.1002/eji.1830130315. [DOI] [PubMed] [Google Scholar]
- 88.Neighbour P.A., Huberman H.S., Kress Y. Eur. J. Immunol.: Human large granular lymphocytes and natural killing: Ultrastructural studies of strontium induced degranulation. . 1982;12:588. doi: 10.1002/eji.1830120711. [DOI] [PubMed] [Google Scholar]
- 89.Ortaldo J.R., Sharrow S.O., Timonen T., Herberman R.B. J. Immunol.: Determination of surface antigens on highly purified human NK cells by flow cytometry with monoclonal antibodies. . 1981;127:2401. [PubMed] [Google Scholar]
- 90.Timonen T., Ortaldo J.R., Herberman R.B. J. Exp. Med.: Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. . 1981;153:569. doi: 10.1084/jem.153.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Dvorak A.M., Galli S.J., Marcum J.A., Nabel G., Der Simonian H., Goldin J., Monahan R.A., Pyne K., Cantor H., Rosenberg R.D., Dvorak H.F. J. Exp. Med.: Cloned mouse cells with natural killer function and cloned suppressor T cells express ultrastructural and biochemical features not shared by cloned inducer T cells. . 1983;157:843. doi: 10.1084/jem.157.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Perussia B., Fanning V., Trinchieri G. Nat. Immun. Cell Growth Regul.: A leukocyte subset bearing HLA-DR antigens is responsible for in vitro interferon production upon infection with viruses. . 1985;4:120. [PubMed] [Google Scholar]
- 93.London L., Perussia B., Trinchieri G. J. Immunol.: Induction of proliferation in vitro of resting human natural killer cells: IL-2 induces into cell cycle most peripheral blood NK cells, but only a minor subset of low density T cells. . 1986;137:3845. [PubMed] [Google Scholar]
- 94.Zarling J.M., Clouse K.A., Biddison W.E., Kung P.C. J. Immunol.: Phenotypes of human natural killer cell populations detected with monoclonal antibodies. . 1981;127:2575. [PubMed] [Google Scholar]
- 95.Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. J. Immunol.: Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. . 1983;130:2133. [PubMed] [Google Scholar]
- 96.Lanier L.L., Le A.M., Phillips J.H., Warner N.L., Babcock G.F. J. Immunol.: Subpopulations of human natural killer cells defined by expression of the Leu7 (HNK-1) and Leull (NK-15) antigens. . 1983;131:1789. [PubMed] [Google Scholar]
- 97.Brooks C.G. Nature (London): Reversible induction of natural killer cell activity in cloned murine cytotoxic T lymphocytes. . 1983;305:155. doi: 10.1038/305155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Brooks C.G., Urdal D.L., Henney C.S. Lymphokine-driven “differentiation” of cytotoxic T-cell clones into cells with NK-like specificity: Correlations with display of membrane macromolecules. Immunol. Rev. 1983;72:43. doi: 10.1111/j.1600-065x.1983.tb01072.x. [DOI] [PubMed] [Google Scholar]
- 99.Van De Griend R.J., Krimpen B.A., Ranfeltap C.P.M., Bolhuis R.H. Rapidly expanded activated human killer clones have strong antitumor cell activity and have the surface phenotype of either T, non-T, or null cells. J. Immunol. 1984;132:3185. [PubMed] [Google Scholar]
- 100.Perussia B., Ramoni C., Anegon I., Cuturi M.C., Faust J., Trinchieri G. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat. Immun. Cell Growth Regul. 1987;6:171. [PubMed] [Google Scholar]
- 101.Vujanovic N.L., Herberman R.B., Maghazachi A.A., Hiserodt J.C. Lymphokine activated killer cells in rats. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells. J. Exp. Med. 1988;167:15. doi: 10.1084/jem.167.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Ward J.M., Reynolds C.W. Large granular leukemia in F344 rats. Am. J. Pathol. 1983;111:1. [PMC free article] [PubMed] [Google Scholar]
- 103.Reynolds C.W., Foon K.A. Tγ-lymphoproliferative disease and related disorders in humans and experimental animals: A review of the clinical, cellular, and functional characteristics. Blood. 1984;64:1146. [PubMed] [Google Scholar]
- 104.Santoli D., Trinchieri G., Moretta L., Zmijewski C.M., Koprowski H. Spontaneous cell-mediated cytotoxicity in humans. Distribution and characterization of the effector cells. Clin. Exp. Immunol. 1978;33:309. [PMC free article] [PubMed] [Google Scholar]
- 105.Nocera A., Cadoni A., Zicca A., Diprimio R., Leprini A., Ferrarini M. Receptors for the third complement component on a proportion of large granular lymphocytes from human peripheral blood. Scand. J. Immunol. 1982;15:573. doi: 10.1111/j.1365-3083.1982.tb00686.x. [DOI] [PubMed] [Google Scholar]
- 106.Pross H.F., Baines M.G., Jondal M. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. II. Is the complement receptor necessarily present on the killer cells? Int. J. Cancer. 1977;20:353. doi: 10.1002/ijc.2910200306. [DOI] [PubMed] [Google Scholar]
- 107.Vierling J.M., Steer C.J., Bundy B.M., Strober W., Jones E.A., Hague N.E., Nelson D.L. Studies of complement receptor on cytotoxic effector cells in human peripheral blood. Cell. Immunol. 1978;35:403. doi: 10.1016/0008-8749(78)90159-4. [DOI] [PubMed] [Google Scholar]
- 108.Ault K.A., Springer T.A. Cross-reaction of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti-MAC-1) with human monocytes and natural killer cells. J. Immunol. 1981;126:359. [PubMed] [Google Scholar]
- 109.Beller D.L., Springer T.A., Schreiber R.D. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J. Exp. Med. 1982;156:1000. doi: 10.1084/jem.156.4.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Kay H.D., Horwitz D.A. Evidence by reactivity with hybridoma antibodies for a probable myeloid origin of peripheral blood cells active in natural cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Clin. Invest. 1980;66:847. doi: 10.1172/JCI109923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Perussia B., Trinchieri G., Lebman D., Jankiewicz J., Lange B., Rovera G. Monoclonal antibodies that detect differentiation surface antigens on human myelomonocytic cells. Blood. 1982;59:382. [PubMed] [Google Scholar]
- 112.Funaro A., Bellone G., Alessio M., De Monte L., Palestro G., Matera L., Caligaris-Cappio F., Malavasi F. Recognition by monoclonal antibody CB02 of a surface molecule shared by B lymphocytes and a discrete large granular lymphocyte subset with cytotoxic activity. Nat. Immun. Cell Growth Regul. 1988;7:106. [PubMed] [Google Scholar]
- 113.Ng A.K., Indiveri F., Pellegrino M.A., Molinaro G.A., Quaranta V., Ferrone S. Natural cytotoxicity and antibody-dependent cellular cytotoxicity of human lymphocytes depleted of HLA-DR bearing cells with monoclonal HLA-DR antibodies. J. Immunol. 1980;124:2336. [PubMed] [Google Scholar]
- 114.Perussia B., Trinchieri G. Antibody 3G8, specific for the human neutrophil Fc receptor, reacts with natural killer cells. J. Immunol. 1984;132:1410. [PubMed] [Google Scholar]
- 115.Brooks C.F., Moore M. Presentation of a soluble bacterial antigen and cell-surface alloantigens by large granular lymphocytes (LGL) in comparison with monocytes. Immunology. 1986;58:343. [PMC free article] [PubMed] [Google Scholar]
- 116.Fleit H.G., Wright S.D., Unkeless J.C. Human neutrophil Fc receptor distribution and structure. Proc. Natl. Acad. Sci. U.S.A. 1982;79:3275. doi: 10.1073/pnas.79.10.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Rumpold H., Kraft D., Obexer G., Bock G., Gebhart W. A monoclonal antibody against a surface antigen shared by human large granular lymphocytes and granulocytes. J. Immunol. 1982;129:1458. [PubMed] [Google Scholar]
- 118.Phillips J.H., Babcock G.F. NKP-15: A monoclonal antibody reactive against purified human natural killer cells and granulocytes. Immunol. Lett. 1983;6:143. doi: 10.1016/0165-2478(83)90096-2. [DOI] [PubMed] [Google Scholar]
- 119.Werner G., Von Dem Borne A.E.G.K., Bos M.J.E., Tromp J.F., Van Der Plas-Van Dalen C.M., Visser F.J., Engelfriet C.P., Tetteroo P.A.T. In: Reinherz E.L., Haynes L.M., Nadler L.M., Bernstein I.D., editors. Vol. 3. Springer-Verlag; New York: 1986. p. 109. (“Leukocyte Typing II”: Localization of the human NA1 alloantigen on neutrophil-Fc receptors ). [Google Scholar]
- 120.Malavasi F., Bellone G., Matera L., Milanese C., Ferrero E., Funaro A., Demaria S., Caligaris-Cappio F., Camussi G., Dellabona P. Murine monoclonal antibodies as probes for the phenotypical, functional and molecular analysis of a discrete peripheral blood lymphocyte population exerting natural killer activity. in vitro. Hum. Immunol. 1985;14:87. doi: 10.1016/0198-8859(85)90067-9. [DOI] [PubMed] [Google Scholar]
- 121.Malavasi F., Tetta C., Funaro A., Bellone G., Ferrero E., Collifranzone A., Dellabona P., Rusci R., Matera L., Camussi G., Caligaris-Cappio F. Fc receptor triggering induces expression of surface-activation antigens and release of platelet-activating factor in large granular lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1986;83:2443. doi: 10.1073/pnas.83.8.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Matera L., Santoli D., Garbarino G., Pegoraro L., Bellone G., Pagliardi G. Modulation of in vitro myelopoiesis by LGL: Different effects on early and late progenitor cells. J. Immunol. 1986;136:1260. [PubMed] [Google Scholar]
- 123.Clarkson S.B., Ory P.A. CD16. Developmentally regulated IgG Fc receptors on cultured human monocytes. J. Exp. Med. 1988;167:408. doi: 10.1084/jem.167.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Simmons D., Seed B. The Fc receptor of natural killer cells is a phospholipid-linked membrane protein. Nature (London) 1988;333:568. doi: 10.1038/333568a0. [DOI] [PubMed] [Google Scholar]
- 125.Lanier L.L., Ruitenberg J.J., Phillips J.H. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J. Immunol. 1988;141:3478. [PubMed] [Google Scholar]
- 126.Ravetch, J.V., and Perussia, B. (1989). “Alternative membrane form of FcγRIII (CD16) on human NK cells and neutrophils: Cell-type specific expression of two genes which differ in single nucleotide substitutions.” J. Exp. Med.(in press). [DOI] [PMC free article] [PubMed]
- 127.Huizinga T.W.J., Van Der Schoot C.E., Jost C., Klaassen R., Kleijer M., von dem Borne A.E.G.K., Ross D., Tetteroo P.A.T. The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature (London) 1988;333:667. doi: 10.1038/333667a0. [DOI] [PubMed] [Google Scholar]
- 128.Selvaraj P., Rosse F., Silber R., Springer T.A. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature (London) 1988;333:565. doi: 10.1038/333565a0. [DOI] [PubMed] [Google Scholar]
- 129.Yoda Y., Abe R. Deficient natural killer (NK) cells in paroxysmal nocturnal haemoglobinuria (PNH): Studies of lymphoid cells fractionated by discontinuous density gradient centrifugation. Br. J. Haematol. 1985;60:669. doi: 10.1111/j.1365-2141.1985.tb07471.x. [DOI] [PubMed] [Google Scholar]
- 130.Perussia, B., Tutt, M.M., Qiu, W.Q., Kuziel, W.A., Tucker, P.W., Trinchieri, G., Bennett, M., Ravetch, J.V., and Kumar, V. (1989). “Murine natural killer cells express functional Fc receptor II encoded by the FcγRα gene.” J. Exp. Med.(in press). [DOI] [PMC free article] [PubMed]
- 131.Graziano R.F., Looney R.S., Shen L., Fanger M.W. FcγR-mediated killing by eosinophils. J. Immunol. 1989;142:230. [PubMed] [Google Scholar]
- 132.Perussia B., Acuto O., Terhorst C., Faust J., Lazarus R., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking FcR functions. II. Studies of B73.1 antibody-antigen interaction on the lymphocyte membrane. J. Immunol. 1983;130:2142. [PubMed] [Google Scholar]
- 133.Trinchieri G., O'Brien T., Shade M., Perussia B. Phorbol esters enhance spontaneous cytotoxicity of human lymphocytes, abrogate Fc receptor expression and inhibit antibody-dependent lymphocyte-mediated cytotoxicity. J. Immunol. 1984;133:1869. [PubMed] [Google Scholar]
- 134.Perussia B., Trinchieri G. Structure and functions of NK cell Fc receptor. EOS—J. Immunol. Immunopharmacol. 1988;8:147. [Google Scholar]
- 135.Lanier L.L., Kipps T.J., Phillips J.H. Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leull antigen). J. Exp. Med. 1985;162:2089. doi: 10.1084/jem.162.6.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Van De Griend R.J., Bolhuis R.L.H., Stoter G., roozemond R.C. Regulation of cytolytic activity in CD3- and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. J. Immunol. 1987;138:3137. [PubMed] [Google Scholar]
- 137.Masucci M.G., Masucci G., Klein E., Berthold W. Target selectivity of interferon-induced human killer lymphocytes related to their Fc receptor expression. Proc. Natl. Acad. Sci. U.S.A. 1980;77:3620. doi: 10.1073/pnas.77.6.3620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Griffin J.D., Hercend T., Beveridge R., Schlossman S.F. Characterization of an antigen expressed on human natural killer cells. J. Immunol. 1983;130:2947. [PubMed] [Google Scholar]
- 139.McGarry R.C., Pinto A., Hammersley-Straw D.R., Trevenen C.L. Expression of markers shared between human natural killer cells and neuroblastoma lines. Cancer Immunol. Immunother. 1988;27:47. doi: 10.1007/BF00205757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Hercend T., Griffin J.D., Bensussan A., Schmidt R.E., Edson M.A., Brennan A., Murray C., Daley J.F., Schlossman S.F., Ritz J. Generation of monoclonal antibodies to a human natural killer clone. Characterization of two natural killer-associated antigens, NKH1A and NKH2, expressed on a subset of large granular lymphocytes. J. Clin. Invest. 1985;75:932. doi: 10.1172/JCI111794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Lanier L.L., Le A.M., Civin C.I., Loken M.R., Phillips J.H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J. Immunol. 1986;136:4480. [PubMed] [Google Scholar]
- 142.Hercend T., Meuer S., Brennan A., Edson M.A., Acuto O., Reinherz E.L., Schlossman S.F., Ritz J. Identification of a clonally restricted 90KD heterodimer on two human cloned natural killer cell lines. Its role in cytotoxic effector function. J. Exp. Med. 1983;158:1547. doi: 10.1084/jem.158.5.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Hercend T., Schmidt R., Brennan A., Edson M.A., Reinherz E.L., Schlossman S.F., Ritz J. Identification of a 140 kDa activation antigen as a target structure for a series of human cloned natural killer cell lines. Eur. J. Immunol. 1984;14:844. doi: 10.1002/eji.1830140914. [DOI] [PubMed] [Google Scholar]
- 144.Schmidt R.C., Murray J.F., Daley S.F., Schlossman S.F., Ritz J. A subset of natural killer cells in peripheral blood displays a mature T cell phenotype. J. Exp. Med. 1986;164:351. doi: 10.1084/jem.164.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Lanier L.L., Le A.M., Ding A., Evans E.L., Krensky A.M., Clayberger C., Philips J.H. Expression of Leu-19 (NKH-1) antigen on IL-2-dependent cytotoxic and non-cytotoxic T cell lines. J. Immunol. 1987;138:2019. [PubMed] [Google Scholar]
- 146.Abo T., Balch C.M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J. Immunol. 1981;127:1024. [PubMed] [Google Scholar]
- 147.Abo T., Balch C.M. In vitro propagation of cultured human natural killer cells expressing the HNK-1 differentiation antigen and spontaneous cytotoxic function. Eur. J. Immunol. 1983;13:383. doi: 10.1002/eji.1830130507. [DOI] [PubMed] [Google Scholar]
- 148.Abo T., Cooper M.D., Balch C.M. Postnatal expansion of the natural killer and killer cell population in humans identified by the monoclonal HNK-1 antibody. J. Exp. Med. 1982;155:321. doi: 10.1084/jem.155.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Abo T., Cooper M.D., Balch C.M. Characterization of HNK-1(+) (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J. Immunol. 1982;129:1752. [PubMed] [Google Scholar]
- 150.Velardi A., Prchal J.T., Prasthofer E.F., Grossi C.E. Expression of NK-lineage markers on peripheral blood lymphocytes with T-helper (Leu 3+ /T4+) phenotype in B cell chronic lymphocytic leukemia. Blood. 1985;65:149. [PubMed] [Google Scholar]
- 151.Velardi A., Clement L.T., Grossi C.E. Quantitative and functional analysis of a human lymphocyte subset with the T-helper (Leu 3/T4+) phenotype and natural killer (NK)-cell characteristics in patients with malignancy. J. Clin. Immunol. 1985;5:329. doi: 10.1007/BF00918252. [DOI] [PubMed] [Google Scholar]
- 152.Velardi A., Grossi C.E., Cooper M.D. A large subpopulation of lymphocytes with T helper phenotype (Leu-3/T4+) exhibits the property of binding to NK cell targets and granular lymphocyte morphology. J. Immunol. 1985;134:58. [PubMed] [Google Scholar]
- 153.Pizzolo G., Semenzato G., Chilosi M., Morittu L., Abrosetti A., Warner N., Bofill M., Janossy G. Distribution and heterogeneity of cells detected by HNK-1 monoclonal antibody in blood and tissues in normal, reactive and neoplastic conditions. Clin. Exp. Immunol. 1984;57:195. [PMC free article] [PubMed] [Google Scholar]
- 154.Velardi A., Mingari M.C., Moretta L., Grossi C.E. Functional analysis of cloned germinal center CD4+ cells with natural killer cell-related features. Divergence from typical T helper cells. J. Immunol. 1986;137:2808. [PubMed] [Google Scholar]
- 155.Abo T., Miller C.A., Gartland G.L., Balch C.M. Differentiation stages of human natural killer cells in lymphoid tissues from fetal to adult life. J. Exp. Med. 1983;157:273. doi: 10.1084/jem.157.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Phillips J.H., Lanier L.L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J. Exp. Med. 1986;164:814. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.McGarry R.G., Helfand S.L., Quarles R.H., Roder J.C. Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1. Nature (London) 1983;306:376. doi: 10.1038/306376a0. [DOI] [PubMed] [Google Scholar]
- 158.Sato S., Tanaka M., Miyatani N., Baba H., Miyatake T. Shared antigen between the myelin-associated glycoprotein (MAG) and a cell line from human T cell leukemia (HSB-2). J. Neuroimmunol. 1985;7:287. doi: 10.1016/s0165-5728(84)80028-4. [DOI] [PubMed] [Google Scholar]
- 159.Miller S., Trinchieri G., Perussia B., Kahn S. Murine and human monoclonal IgM antibodies with specificity for myelin-associated glycoprotein: Comparative binding to myelin and to lymphocytes. J. Neuroimmunol. 1987;15:229. doi: 10.1016/0165-5728(87)90118-4. [DOI] [PubMed] [Google Scholar]
- 160.Tanaka M., Nishizawa M., Inuzuka T., Baba H., Sato S., Miyatake T. Human natural killer cell activity is reduced by treatment of anti-myelin-associated glycoprotein (MAG) monoclonal mouse IgM antibody and complement. J. Neuroimmunol. 1985;10:115. doi: 10.1016/0165-5728(85)90002-5. [DOI] [PubMed] [Google Scholar]
- 161.Tanaka M., Sato S., Yanagisawa K., Miyatake T. Myelin-associated glycoprotein (MAG): Expression on the surface of human natural killer cells. Biomed. Res. 1984;5:71. [Google Scholar]
- 162.Dobersen M.J., Gascon P., Trost S., Hammer J.A., Goodman S., Noronha A.B., O'Shannessy D.J., Brady R.O., Quarles R.H. Murine monoclonal antibodies to the myelin-associated glycoprotein react with large granular lymphocytes of human blood. Proc. Natl. Acad. Sci. U.S.A. 1985;82:552. doi: 10.1073/pnas.82.2.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Ando I., Tamaki K. HNK-I antibody reacts with peripheral nerves and sweat glands in the skin. Br. J. Dermatol. 1985;113:175. doi: 10.1111/j.1365-2133.1985.tb02061.x. [DOI] [PubMed] [Google Scholar]
- 164.Stoll G., Schwendemann G., Heininger K., Steck A.J., Toyka K.V. Human monoclonal anti-MAG antibody and anti-Leu 7 recognize shared antigenic determinants in peripheral nerve and spinal cord. J. Neurol., Neurosurg. Psychiatry. 1985;48:635. doi: 10.1136/jnnp.48.7.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Hozumi I., Sato S., Tunoda H., Inuzuka T., Tanaka M., Nishizawa M., Baba H., Miyatake T. Shared carbohydrate antigenic determinant between the myelin-associated glycoprotein (MAG) and lung cancers. An immuno-histochemical study by an anti-MAG IgM monoclonal antibody. J. Neuroimmunol. 1987;15:147. doi: 10.1016/0165-5728(87)90089-0. [DOI] [PubMed] [Google Scholar]
- 166.Ball E.D., Sorenson G.D., Pettengill O.S. Expression of myeloid and major histocompatibility antigens on small cell carcinoma of the lung cell lines analyzed by cytofluorography: Modulation by gamma-interferon. Cancer Res. 1986;46:2335. [PubMed] [Google Scholar]
- 167.Bunn P.A., Jr, Linnoila I., Minna J.D., Carney D., Gazdar A.F. Small cell lung cancer, endocrine cells of the fetal bronchus, and other neuroendocrine cells express the Leu-7 antigenic determinant present on natural killer cells. Blood. 1985;65:764. [PubMed] [Google Scholar]
- 168.Rusthoven J.J., Robinson J.B., Kolin A., Pinkerton P.H. The natural-killer-cell-associated HNK-1 (Leu-7) antibody reacts with hypertrophic and malignant prostatic epithelium. Cancer (Philadelphia) 1985;56:289. doi: 10.1002/1097-0142(19850715)56:2<289::aid-cncr2820560215>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
- 169.Kruse J., Mailhammer R., Wernecke H., Faissner A., Sommer I., Goridis C., Schacher M. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature (London) 1984;311:153. doi: 10.1038/311153a0. [DOI] [PubMed] [Google Scholar]
- 170.Ilyas A.A., Quarles R.H., MacIntosh T.D., Dobersen M.J., Trapp B.D., Dalakas M.C., Brady R.O. IgM in a human neuropathy related to paraproteinemia binds to a carbohydrate determinant in the myelin-associated glycoprotein and to a ganglioside. Proc. Natl. Acad. Sci. U.S.A. 1984;81:1225. doi: 10.1073/pnas.81.4.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Chou K.H., Ilyas A.A., Evans J.E., Quarles R.H., Jungalwala F.B. Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1. Biochem. Biophys. Res. Commun. 1985;128:383. doi: 10.1016/0006-291x(85)91690-0. [DOI] [PubMed] [Google Scholar]
- 172.Braun P.E., Frail D.E., Latov N. Myelin-associated glycoprotein is the antigen for a monoclonal IgM in polyneuropathy. J. Neurochem. 1982;39:1261. doi: 10.1111/j.1471-4159.1982.tb12563.x. [DOI] [PubMed] [Google Scholar]
- 173.Steck A.J., Murray N., Meier C., Page N., Perruisseau G. Demyelineating neuropathy and monoclonal IgM antibody to myelin-associated glycoprotein. Neurology. 1983;33:19. doi: 10.1212/wnl.33.1.19. [DOI] [PubMed] [Google Scholar]
- 174.Leibowitz S., Gregson N.A., Kennedy M., Kahn S.N. IgM paraproteins with immunological specificity for a Schwann cell component and peripheral nerve myelin in patients with polyneuropathy. J. Neurol. Sci. 1983;59:153. doi: 10.1016/0022-510x(83)90034-5. [DOI] [PubMed] [Google Scholar]
- 175.Sriram S., Lanier L. NK cell function in a patient with IgM monoclonal antibody against myelin-associated glycoprotein. Neurology. 1986;36:566. doi: 10.1212/wnl.36.4.566. [DOI] [PubMed] [Google Scholar]
- 176.Della-Casa-Alberighi O., Nobile-Orazio E., Bonara P., Hu C., Spagnol G., Radelli L., Scorza-Smeraldi R. NK cells in patients with peripheral neuropathy and IgM monoclonal protein reacting with the myelin-associated glycoprotein (MAG). J. Neuroimmunol. 1988;18:207. doi: 10.1016/0165-5728(88)90098-7. [DOI] [PubMed] [Google Scholar]
- 177.Murray N., Steck A.J. Indication of a possible role in a demyelinating neuropathy for an antigen shared between myelin and NK cells. Lancet. 1984;1:711. doi: 10.1016/s0140-6736(84)92224-4. [DOI] [PubMed] [Google Scholar]
- 178.Springer T.A., Dustin M.L., Kishimoto T.K., Marlin S.D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: Cell adhesion receptors of the immune system. Annu. Rev. Immunol. 1987;5:223. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
- 179.Timonen T., Patarroyo M., Gahmberg C.G. CD11a-c/CD18 and GP84 (LB-2) adhesion molecules on human large granular lymphocytes and their participation in natural killing. J. Immunol. 1988;141:1041. [PubMed] [Google Scholar]
- 180.Breard J.E., Reinherz L., Kung P.C., Goldstein G., Schlossman S.F. A monoclonal antibody reactive with human peripheral blood monocytes. J. Immunol. 1980;124:1943. [PubMed] [Google Scholar]
- 181.Bai Y., Beverley P.C.L., Knowles R.W., Bodmer W.F. Two monoclonal antibodies identifying a subset of human peripheral mononuclear cells with natural killer cell activity. Eur. J. Immunol. 1983;13:521. doi: 10.1002/eji.1830130702. [DOI] [PubMed] [Google Scholar]
- 182.Wisniewski D., Knowles R., Wachter M., Strife A., Clarkson B. Expression of two natural killer cell antigens, H-25 and H-366, by human immature myeloid cells and by erythroid and granulocytic/monocytic colony-forming units. Blood. 1987;69:419. [PubMed] [Google Scholar]
- 183.Perussia B., Fanning V., Trinchieri G. In: “NK Cells and Other Natural Effector Cells”: Phenotypic characterization of human natural killer and antibody-dependent killer cells as an homogeneous and discrete cell subset . Herberman R.B., editor. Academic Press; New York: 1982. p. 39. [Google Scholar]
- 184.Rumpold H., Obexer G., Kraft D. In: “NK Cells and Other Natural Effector Cells”: Analysis of human NK cells by monoclonal antibodies against myelomonocytic and lymphocytic antigens . Herberman R.B., editor. Academic Press; New York: 1982. p. 47. [Google Scholar]
- 185.Zarling J.M., Kung P.C. Monoclonal antibodies which distinguish between human NK cells and cytotoxic T lymphocytes. Nature (London) 1980;288:394. doi: 10.1038/288394a0. [DOI] [PubMed] [Google Scholar]
- 186.Morgan A.C., Jr, Schroff R.W., Klein R.A., McIntyre R.F., Mason A., Herberman R.B., Ortaldo J. Occult (non-surface expression) of T, B and monocyte markers in human large granular lymphocytes. Mol. Immunol. 1987;24:117. doi: 10.1016/0161-5890(87)90083-6. [DOI] [PubMed] [Google Scholar]
- 187.Calvo C.F., Boumsell L., Kolb J.P., Laffy B., Bernard A., Senik A. Preferential elimination of NK and CTL functions by anti-D44 monoclonal antibody. J. Immunol. 1984;132:2345. [PubMed] [Google Scholar]
- 188.Nieminen P., Säkselä E. A shared antigenic specificity of human large granular lymphocytes and precursors of NK-like and allospecific cytotoxic effector cells. J. Immunol. 1984;133:702. [PubMed] [Google Scholar]
- 189.Nieminen P., Säkselä E. NK-9, a distinct sialylated antigen of the T200 family. Eur. J. Immunol. 1986;16:513. doi: 10.1002/eji.1830160509. [DOI] [PubMed] [Google Scholar]
- 190.Hercend T., Ritz S., Schlossman S.F., Reinherz E.L. Comparative expression of T9, T10 and Ia antigens on activated human T cell subsets. Hum. Immunol. 1981;3:247. doi: 10.1016/0198-8859(81)90021-5. [DOI] [PubMed] [Google Scholar]
- 191.London L., Perussia B., Trinchieri G. Induction of proliferation in vitro of resting human natural killer cells: Expression of surface activation antigens. J. Immunol. 1985;134:718. [PubMed] [Google Scholar]
- 192.Phillips J.H., Le A.M., Lanier L.L. Natural killer cells activated in a human mixed lymphocyte response culture identified by expression of Leu-11 and class II histocompatibility antigens. J. Exp. Med. 1984;159:993. doi: 10.1084/jem.159.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Biassoni R., Ferrini S., Prigione I., Moretta A., Long E.O. CD3-negative lymphokine-activated cytotoxic cells express the CD3 epsilon gene. J. Immunol. 1988;140:1685. [PubMed] [Google Scholar]
- 194.Isobe, M., Russo, G., Cuturi, M.C., Jiang, M., Kozbor, D., Sherman, F., Loudon, R., Croce, C., Perussia, B., and Trinchieri, G. (1989), “Human natural killer cells transcribe unrearranged T cell receptor” δ gene: Analysis and cloning of the transcripts. Submitted for publication.
- 195.Ritz J., Campen T.J., Schmidt R.E., Royer H.D., Hercend T., Hussey R.E., Reinherz E.L. Analysis of T-cell receptor gene rearrangement and expression in human natural killer cell clones. Science. 1985;228:1540. doi: 10.1126/science.2409597. [DOI] [PubMed] [Google Scholar]
- 196.Lanier L.L., Cwirla S., Federspiel N., Phillips J.H. Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor chain genes. J. Exp. Med. 1986;163:209. doi: 10.1084/jem.163.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Lanier L.L., Cwirla S., Phillips J.H. Genomic organization of the T cell genes in human peripheral blood natural killer cells. J. Immunol. 1986;137:3375. [PubMed] [Google Scholar]
- 198.Triebel F., Graziani M., Faure F., Jitsukawa S., Hercend T. Cloned human CD3— lymphocytes with natural killer-like activity do not express nor rearrange T cell receptor gamma genes. Eur. J. Immunol. 1987;17:1209. doi: 10.1002/eji.1830170819. [DOI] [PubMed] [Google Scholar]
- 199.Pelicci P.G., Allavena P., Subar M., Rambaldi A., Pirelli A., Di Bello M., Barbui T., Knowles D.M., Dalla-Favera R., Mantovani A. T cell receptor (alpha, beta, gamma) gene rearrangements and expression in normal and leukemic large granular lymphocytes/natural killer cells. Blood. 1987;70:1500. [PubMed] [Google Scholar]
- 200.Leiden J.M., Gottesdiener K.M., Quertermous T., Coury L., Bray R.A., Gottschalk L., Gebel H., Seidman J.G., Strominger J.L., Landay A.L.E.A. T-cell receptor gene rearrangement and expression in human natural killer cells: Natural killer activity is not dependent on the rearrangement and expression of T-cell receptor alpha, beta, or gamma genes. Immunogenetics. 1988;27:231. doi: 10.1007/BF00376117. [DOI] [PubMed] [Google Scholar]
- 201.Biondi A., Allavena P., Rossi V., Rambaldi A., Mantovani A. Expression of the T cell receptor delta gene in natural killer cells. J. Immunol. Res. 1989;1:7. [PubMed] [Google Scholar]
- 202.Nowill A., Moingeon P., Ythier A., Graziani M., Faure F., Delmon L., Rainaut M., Forrestier F., Bohuon C., Hercend T. Natural killer clones derived from fetal (25 wk) blood. Probing the human T cell receptor with WT31 monoclonal antibody. J. Exp. Med. 1986;163:1601. doi: 10.1084/jem.163.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Alarcon B., De Vries J., Pettey C., Boylston A., Yssel H., Terhorst C., Spits H. The T-cell receptor gamma chain-CD3 complex: Implication in the cytotoxic activity of a CD3+ CD4- CD8- human natural killer clone. Proc. Natl. Acad. Sci. U.S.A. 1987;84:3861. doi: 10.1073/pnas.84.11.3861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Ang S.L., Seidman J.G., Peterman G.M., Duby A.D., Benjamin D., Lee S.J., Hafler D.A. Functional gamma chain-associated T cell receptors on cerebrospinal fluid-derived natural killer-like T cell clones. J. Exp. Med. 1987;165:1453. doi: 10.1084/jem.165.5.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 205.Moingeon P., Jitsukawa S., Faure F., Troalen F., Triebel F., Graziani M., Forrestier F., Bellet D., Bohuon C., Hercend T. A gamma-chain complex forms a functional receptor on cloned human lymphocytes with natural killer-like activity. Nature (London) 1987;325:723. doi: 10.1038/325723a0. [DOI] [PubMed] [Google Scholar]
- 206.Sakamoto S., Ortaldo J.R., Young H.A. Methylation patterns of the T cell receptor beta-chain gene in T cells, large granular lymphocytes, B cells, and monocytes. J. Immunol. 1988;140:654. [PubMed] [Google Scholar]
- 207.Glimcher L., Shen F.W., Cantor H. Identification of a cell surface antigen selectively expressed on the natural killer cell. J. Exp. Med. 1977;145:1. doi: 10.1084/jem.145.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 208.Cantor H., Masai M., Shen F.W., Leclerc J.C., Glimcher L. Immunogenetic analysis of “natural killer” activity in the mouse. Immunol. Rev. 1979;44:3. doi: 10.1111/j.1600-065x.1979.tb00265.x. [DOI] [PubMed] [Google Scholar]
- 209.Koo G.C., Peppard J.R. Establishment of monoclonal anti-NK-1,1 antibody. Hybridoma. 1984;3:301. doi: 10.1089/hyb.1984.3.301. [DOI] [PubMed] [Google Scholar]
- 210.Hackett J., Tutt M., Lipscomb M., Bennett M., Koo G., Kumar V. Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK1.1+ cells. J. Immunol. 1986;136:3124. [PubMed] [Google Scholar]
- 211.Koo G.C., Durmont F.J., Tutt M., Hackett J., Kumar V. The NK-1.1(-) mouse: A model to study differentiation of murine NK cells. J. Immunol. 1986;37:3742. [PubMed] [Google Scholar]
- 212.Burton R.C., Winn H.J. Studies on natural killer (NK) cells. I. NK cell specific antibodies in CE anti-CBA serum. J. Immunol. 1981;126:1985. [PubMed] [Google Scholar]
- 213.Pollack S.B., Emmons S.L. NK-2.1: An NK-associated antigen detected with NZB anti-BALB/c serum. J. Immunol. 1982;129:2277. [PubMed] [Google Scholar]
- 214.Pollack S.B., Emmons S.L. In: “NK Cells and Other Natural Effector Cells”: Anti-NK 2.1: An activity of NZB anti-BALB/c serum . Herberman R.B., editor. Academic Press; New York: 1982. p. 113. [Google Scholar]
- 215.Burton R.C., Koo G.C., Smart Y.C., Clark D.A., Winn H.J. Surface antigens of murine natural killer cells. Int. Rev. Cytol. 1988;3:185. doi: 10.1016/s0074-7696(08)61734-9. [DOI] [PubMed] [Google Scholar]
- 216.Emmons S.L., Pollack S.B. Murine NK cell heterogeneity: A subpopulation of C37BL/6 splenic NK cells detected by NK-1.1 and NK-2.1 antisera. Nat. Immun. Cell Growth Regul. 1985;4:169. [PubMed] [Google Scholar]
- 217.Mason L., Giardina S.L., Hecht T., Ortaldo J., Mathieson B.J. LGL-1: A non-polymorphic antigen expressed on a major population of mouse natural killer cells. J. Immunol. 1988;140:4403. [PubMed] [Google Scholar]
- 218.Kasai M., Iwamori M., Nagai Y., Okumura K., Tada T. A glycolipid on the surface of mouse natural killer cells. Eur. J. Immunol. 1980;10:175. doi: 10.1002/eji.1830100304. [DOI] [PubMed] [Google Scholar]
- 219.Young W.W., Jr, Hakomori S.-I., Durdik J.M., Henney C.S. Identification of ganglio-N-tetraosylceramide as a new cell surface marker for murine natural killer (NK) cells. J. Immunol. 1980;124:199. [PubMed] [Google Scholar]
- 220.Suttles J., Schwarting G.A., Hougland M.W., Stout R.D. Expression of asialo Gml on a subset of adult murine thymocytes: Histological localization and demonstration that the asialo Gml-positive subset contains both the functionally mature and the proliferating thymocyte subpopulations. J. Immunol. 1987;138:364. [PubMed] [Google Scholar]
- 221.Mercurio A.M., Schwarting G.A., Robbins P.W. Glycolipids of the mouse peritoneal macrophage. Alterations in amount and surface exposure of specific glycolipid species occur in response to inflammation and tumoricidal activation. J. Exp. Med. 1984;160:1114. doi: 10.1084/jem.160.4.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Kasai M., Yoneda T., Habu S., Maruyama T., Okumura K., Tokunaga T. In vivo effect of anti-asialo Gml antibody on natural killer activity. Nature (London) 1981;291:334. doi: 10.1038/291334a0. [DOI] [PubMed] [Google Scholar]
- 223.Tang J., De Long D.C., Marder P., Butler L.D., Ades E.W. Identification of functional subpopulations of murine natural killer cells based on their cell surface asialo GM1 phenotype. Cell. Immunol. 1985;96:386. doi: 10.1016/0008-8749(85)90369-7. [DOI] [PubMed] [Google Scholar]
- 224.Solomon F.R., Higgins T.J. A monoclonal antibody with reactivity to asialo GM1 and murine natural killer cells. Mol. Immunol. 1987;24:57. doi: 10.1016/0161-5890(87)90111-8. [DOI] [PubMed] [Google Scholar]
- 225.Miller V.E., Legarde A.E., Longenecker B.M., Greenberg A.H. A phenyl-beta-galactoside (phi-beta-gal)-specific monoclonal antibody reactive with murine and rat NK cells. J. Immunol. 1986;136:2968. [PubMed] [Google Scholar]
- 226.Weyand C., Hammerling G.J., Hammerling U. The murine T-cell antigens Qa4 and Qa5-surface markers on natural killer cells. Immunobiology. 1980;157:298. [Google Scholar]
- 227.Chun M., Fernandes G., Hoffmann M.K. Mechanism of NK cell activation: Relationship between Qa5+ NK cells and lymphocytes. J. Immunol. 1981;126:331. [PubMed] [Google Scholar]
- 228.Hammerling G.J., Hammerling U., Flaherty L. Qat-4 and Qat-5, new murine T-cell antigens governed by the Tla region and identified by monoclonal antibodies. J. Exp. Med. 1979;150:108. doi: 10.1084/jem.150.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.M.M. Tutt. Regulation and differentiation of murine natural killer cells. Ph.D. Thesis 1988 University of Texas Southwestern Medical Center Dallas 219–231
- 230.Meruelo D., Paolino A., Flieger N., Offer M. Definition of a new T lymphocyte cell surface antigen: Ly 11.2. J. Immunol. 1980;125:2713. [PubMed] [Google Scholar]
- 231.Mattes M.J., Sharrow S.O., Herberman R.B., Holden H.T. Identification and separation of THY-1 positive mouse spleen cells active in natural cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Immunol. 1979;123:2851. [PubMed] [Google Scholar]
- 232.Koo G.C., Jacobson J.B., Hammerling G.J., Hammerling U. Antigenic profile of murine natural killer cells. J. Immunol. 1980;125:1003. [PubMed] [Google Scholar]
- 233.Minato N., Reid L., Bloom B.R. On the heterogeneity of murine natural killer cells. J. Exp. Med. 1981;154:750. doi: 10.1084/jem.154.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Tutt M.M., Kuziel W.A., Hackett J.J., Bennett M., Tucker P.W., Kumar V. Murine natural killer cells do not express functional transcript of the α, β, or γ chain genes of the T cell receptor. J. Immunol. 1986;137:2998. [PubMed] [Google Scholar]
- 235.Pollack S.B., Tam M.R., Nowinski R.C., Emmons S.L. Presence of T cell-associated surface antigens on murine NK cells. J. Immunol. 1979;123:1818. [PubMed] [Google Scholar]
- 236.Holmberg L.A., Springer T.A., Ault K.A. Natural killer activity in the peritoneal exudates of mice injected with listeria monocytogenes: Characterization of the natural killer cells by using a monoclonal rat anti-murine macrophage antibody (Ml/70). J. Immunol. 1981;127:1792. [PubMed] [Google Scholar]
- 237.Holmberg L.A., Ault K.A. Characterization of natural killer cells induced in the peritoneal exudates of mice infected with Listeria monocytogenes: A study of their tumor target specificity and their expression of murine differentiation antigens and human NK-associated antigens. Cell. Immunol. 1984;89:151. doi: 10.1016/0008-8749(84)90206-5. [DOI] [PubMed] [Google Scholar]
- 238.Dennert G. Cloned lines of natural killer cells. Nature (London) 1980;287:47. doi: 10.1038/287047a0. [DOI] [PubMed] [Google Scholar]
- 239.Dennert G., Yogeeswaran G., Ymagata S. Cloned cell lines with natural killer activity. Specificity, function, and cell surface markers. J. Exp. Med. 1981;153:545. doi: 10.1084/jem.153.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 240.Brooks C.G. Reversible induction of natural killer cell activity in cloned murine cytotoxic T lymphocytes. Nature (London) 1983;305:155. doi: 10.1038/305155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 241.Brooks C.G., Urdal D.L., Henney C.S. Lymphokine-driven “differentiation” of cytotoxic T-cell clones into cells with NK-like specificity: Correlations with display of membrane macromolecules. Immunol. Rev. 1983;72:43. doi: 10.1111/j.1600-065x.1983.tb01072.x. [DOI] [PubMed] [Google Scholar]
- 242.Yanagi Y., Caccia N., Kronenberg M., Chin B., Roder J., Rohel J., Rohel P., Kiyohara T., Lauzon B., Toyonaga B., Rosenthal K., Dennert G., Acha-Orbea H., Hengartner H., Hood L., Mac T.W. Gene rearrangement in cells with natural killer activity and expression of the chain of the T-cell antigen receptor. Nature (London) 1985;314:631. doi: 10.1038/314631a0. [DOI] [PubMed] [Google Scholar]
- 243.Ikuta K., Hattori M., Wake K., Kano S., Honjo T., Yodo I.J., Minato N. Expression and rearrangement of the alpha, beta, and gamma chain genes of the T cell receptor in cloned murine large granular lymphocyte lines. No correlation with the cytotoxic spectrum. J. Exp. Med. 1986;164:428. doi: 10.1084/jem.164.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 244.Biron C.A., Van Den Elsen P., Tutt M.M., Medveczky P., Kumar V., Terhorst C. Murine natural killer cells stimulated in vivo do not express the T cell receptor α, β, γ, T3δ or T3δ genes. J. Immunol. 1987;139:1704. [PubMed] [Google Scholar]
- 245.Tutt M.M., Schuler W., Kuziel W.A., Tucker P.W., Bennett M., Bosma M.J., Kumar V. T cell receptor genes do not rearrange or express functional transcripts in natural killer cells of SCID mice. J. Immunol. 1987;138:2338. [PubMed] [Google Scholar]
- 246.Herberman R.B., Bartram S., Haskill J.S., Nunn M., Holden H.T., West W.H. Fc receptor on mouse effector cells mediating natural cytotoxicity against tumor cells. J. Immunol. 1977;119:322. [PubMed] [Google Scholar]
- 247.Ojo E., Wigzell H. Natural killer cells may be the only cells in normal mouse lymphoid cell populations endowed with cytolytic ability for antibody-coated tumor target cells. Scand. J. Immunol. 1978;7:297. doi: 10.1111/j.1365-3083.1978.tb00457.x. [DOI] [PubMed] [Google Scholar]
- 248.Santoni A., Herberman R.B., Holden H.T. Correlation between natural and antibody-dependent cell-mediated cytotoxicity against tumor targets in the mouse. I. Distribution of the reactivity. JNCI.J. Natl. Cancer Inst. 1979;62:109. [PubMed] [Google Scholar]
- 249.Beaumont T.J., Roder J.C., Elliott B.E., Kerbel R.S., Dennis J.W., Kasai M., Okumura K. A comparative analysis of cell surface markers on murine NK cells and CTL target-effector conjugates. Scand. J. Immunol. 1982;16:123. doi: 10.1111/j.1365-3083.1982.tb00706.x. [DOI] [PubMed] [Google Scholar]
- 250.Unkeless J.C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 1979;150:580. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 251.Stutman O., Paige C.J., Figarella E.R. Natural cytotoxic cells against solid tumors in mice. I. Strain and age distribution and target cell susceptibility. J. Immunol. 1978;121:1819. [PubMed] [Google Scholar]
- 252.Stutman O., Lattime E.C., Figarella E.F. Natural cytotoxic cells against solid tumors in mice: A comparison with natural killer cells. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1981;40:2699. [PubMed] [Google Scholar]
- 253.Burton R.P., Bartlett S.P., Kumar V., Winn H.J. Studies on natural killer (NK) cells. II. Serologic evidence for heterogeneity of murine NK cells. J. Immunol. 1981;127:1864. [PubMed] [Google Scholar]
- 254.Lust J.A., Kumar V., Burton R.C., Bartlett S.P., Bennett M. Heterogeneity of natural killer cells in the mouse. J. Exp. Med. 1981;154:306. doi: 10.1084/jem.154.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 255.Lattime E.C., Pecoraro G.A., Stutman O. Natural cytotoxic cells against solid tumors in mice. III. A comparison of effector cell antigenic phenotype and target cell recognition structures with those of NK cells. J. Immunol. 1981;126:2011. [PubMed] [Google Scholar]
- 256.Bykowski M.J., Stutman O. The cells responsible for murine natural cytotoxic (NC) activity: A multi-lineage system. J. Immunol. 1986;137:1120. [PubMed] [Google Scholar]
- 257.Ortaldo J.R., Mason L.H., Mathieson B.J., Liang S., Flick D.A., Herberman R.B. Mediation of mouse natural cytotoxic activity by tumor necrosis factor. Nature (London) 1986;321:700. doi: 10.1038/321700a0. [DOI] [PubMed] [Google Scholar]
- 258.Richards A.L., Okuno T., Takagaki Y., Djeu J.Y. Natural cytotoxic cell-specific cytotoxic factor produced by IL-3-dependent basophilic/mast cells. Relationship to TNF. J. Immunol. 1988;141:3061. [PubMed] [Google Scholar]
- 259.Richards, A.L., Dennert, G., Pluznik, D.H., Tagakaki, Y., and Djeu, J. (1989), “Natural cytotoxic (NC) activity in a cloned natural killer (NK) cell line is mediated by tumor necrosis factor (TNF).” Nat. Immun. Cell Growth Regul.(in press). [PubMed]
- 260.Cuturi M.C., Murphy M., Costa-Giomi M.P., Weinmann R., Perussia B., Trinchieri G. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. J. Exp. Med. 1987;165:1581. doi: 10.1084/jem.165.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 261.Reynolds C.W., Shannon S.O., Ortaldo J.R., Herberman R.B. Natural killer cell activity in the rat. II. Analysis of surface antigens on LGL by flow cytometry. J. Immunol. 1981;127:2204. [PubMed] [Google Scholar]
- 262.Woda B.A., McFadden M.L., Welsh R.M., Bain K.M. Separation and isolation of rat natural killer cells from T cells with monoclonal antibodies. J. Immunol. 1984;137:2183. [PubMed] [Google Scholar]
- 263.Young H.A., Ortaldo J.R., Herberman R.B., Reynolds C.W. Analysis of T cell receptors in highly purified rat and human large granular lymphocytes (LGL): Lack of functional 1.3 kb beta-chain mRNA. J. Immunol. 1986;130:2701. [PubMed] [Google Scholar]
- 264.Reynolds C.W., Bonyhadi M., Herberman R.B., Young H.A., Hedrick S.M. Lack of gene rearrangement and mRNA expression of the beta chain of the T cell receptor in spontaneous rat large granular lymphocyte leukemia lines. J. Exp. Med. 1985;161:1249. doi: 10.1084/jem.161.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.Loughran T.P., Jr, Deeg H.J., Storb R. Morphologic and phenotypic analysis of canine natural killer cells: Evidence for a T-cell lineage. Cell. Immunol. 1985;95:207. doi: 10.1016/0008-8749(85)90309-0. [DOI] [PubMed] [Google Scholar]
- 266.Magnuson N.S., Perryman L.E., Wyatt C.R., Mason P.H., Talmadge J.E. Large granular lymphocytes from SCID horses develop potent cytotoxic activity after treatment with human recombinant interleukin 2. J. Immunol. 1987;139:61. [PubMed] [Google Scholar]
- 267.Kim Y.B., Huh N.D., Koren H.S., Amos D.B. Natural killing (NK) and antibody-dependent cellular cytotoxicity (ADCC) in specific pathogen-free (SPF) miniature swine and germfree piglets. I. Comparison of NK and ADCC. J. Immunol. 1980;125:755. [PubMed] [Google Scholar]
- 268.Bielefeldt-Ohmann H., Davis W.C., Babiuk L.A. Functional and phenotypic characteristics of bovine natural cytotoxic cells. Immunobiology. 1985;169:503. doi: 10.1016/S0171-2985(85)80005-X. [DOI] [PubMed] [Google Scholar]
- 269.Ding A.H., Lam K.M. Enhancement by interferon of chicken splenocyte natural killer cell activity against Marek's disease tumor cells. Vet. Immunol. Immunopathol. 1986;11:65. doi: 10.1016/0165-2427(86)90088-7. [DOI] [PubMed] [Google Scholar]
- 270.Klempau A.E., Cooper E.L. T-lymphocyte and B-lymphocyte dichotomy in anuran amphibians: III. Assessment and identification of inducible killer T-lymphocytes (IKTL) and spontaneous killer T-lymphocytes (SKTL). Dev. Comp. Immunol. 1984;8:649. doi: 10.1016/0145-305x(84)90097-1. [DOI] [PubMed] [Google Scholar]
- 271.Evans D.L., Jaso-Friedmann L., Smith E.E., Jr, John A., Koren H.S., Harris D.T. Identification of a putative antigen receptor on fish nonspecific cytotoxic cells with monoclonal antibodies. J. Immunol. 1988;141:324. [PubMed] [Google Scholar]
- 272.Lucero M.A., Fridman W.H., Provost M.A., Billardon C., Pouillart P., Dumont J., Falcoff E. Effect of various interferons on the spontaneous cytotoxicity exerted by lymphocytes from normal and tumor-bearing patients. Cancer Res. 1981;41:294. [PubMed] [Google Scholar]
- 273.Reynolds C.W., Timonen T.T., Herberman R.B. Natural killer (NK) cell activity in the rat. I. Isolation and characterization of the effector cells. J. Immunol. 1981;127:282. [PubMed] [Google Scholar]
- 274.Pappenheim A., Ferrata A. Uber die verschiedenen lymphoiden Zellformen des normalen und pathologischen Blutes. Folia Haemat. 1911;10:78. [Google Scholar]
- 275.Grossi C.E., Cadoni A., Zicca A., Leprini A., Ferrarini M. Large granular lymphocytes in human peripheral blood: Ultrastructural and cytochemical characterization of the granules. Blood. 1982;59:277. [PubMed] [Google Scholar]
- 276.Babcock G.F., Phillips J.H. Human NK cells: Light and electron microscopic characteristics. Surv. Immunol. Res. 1983;2:88. doi: 10.1007/BF02918399. [DOI] [PubMed] [Google Scholar]
- 277.Payne C.M., Glasser L. Evaluation of surface markers on normal human lymphocytes containing parallel tubular arrays: A quantitative ultra-structural study. Blood. 1981;57:567. [PubMed] [Google Scholar]
- 278.Huhn D., Huber C., Gastl G. Large granular lymphocytes: Morphological studies. Eur. J. Immunol. 1982;12:985. doi: 10.1002/eji.1830121118. [DOI] [PubMed] [Google Scholar]
- 279.Caulfield J.P., Hein A., Schmidt R.E., Ritz J. Ultrastructural evidence that the granules of human natural killer cell clones store membrane in a nonbilayer phase. Am. J. Pathol. 1987;127:305. [PMC free article] [PubMed] [Google Scholar]
- 280.Kang Y.-H., Carl M., Grimley P.M., Serrate S., Yaffe L. Immunoultrastructural studies of human NK cells. I. Ultracytochemistry and comparison with T cell subsets. Anat. Rec. 1987;217:274. doi: 10.1002/ar.1092170308. [DOI] [PubMed] [Google Scholar]
- 281.Zarcone D., Prasthofer E.F., Malavasi F., Pistoia V., LoBuglio A.F., Grossi C. Ultrastructural analysis of human natural killer cell activation. Blood. 1987;69:1725. [PubMed] [Google Scholar]
- 282.Grossi C.E., Ferrarini M. In: “NK Cells and Other Natural Effector Cells”: Morphology and cytochemistry of human large granular lymphocytes . Herberman R.B., editor. Academic Press; New York: 1982. p. 1. [Google Scholar]
- 283.Manara G.C.S.P., Ferrari C., De Panfilis G. Natural killer cells expressing the Leu-11 antigen display phagocytic activity for 2-aminoethyliso-thiouronium bromide hydrobromide-treated sheep red blood cells. Lab. Invest. 1986;55:412. [PubMed] [Google Scholar]
- 284.Kang Y.-H., Carl M., Watson L., Yaffe L. Immunoultrastructural studies of human NK cells. II. Effector-target cell binding and phagocytosis. Anat. Rec. 1986;217:290. doi: 10.1002/ar.1092170309. [DOI] [PubMed] [Google Scholar]
- 285.Huhn D. Neue Organelle im Peripheren Lymphozyten? Dtsch. Med. Wochenschr. 1968;3:2099. doi: 10.1055/s-0028-1110887. [DOI] [PubMed] [Google Scholar]
- 286.Hovig T., Jeremic M., Staven P. A new type of inclusion body in lymphocytes. Scand. J. Haematol. 1968;5:81. doi: 10.1111/j.1600-0609.1968.tb01723.x. [DOI] [PubMed] [Google Scholar]
- 287.Payne C.M., Tennican P.M. A quantitative ultrastructural study of peripheral blood lymphocytes containing parallel tubular arrays in Epstein-Barr virus and cytomegalovirus mononucleosis. Am. J. Pathol. 1982;106:71. [PMC free article] [PubMed] [Google Scholar]
- 288.Payne C.M., Jones J.F., Sieber O.F.J., Fulginiti V.A. Parallel tubular arrays in severe combined immunodeficiency disease: An ultrastructural study of peripheral blood lymphocytes. Blood. 1977;50:55. [PubMed] [Google Scholar]
- 289.Payne C.M., Glasser L., Fiederlein R., Lindberg R. New ultrastructural observations: Parallel tubular arrays in human T-gamma lymphoid cells. J. Immunol. Methods. 1983;65:307. doi: 10.1016/0022-1759(83)90126-6. [DOI] [PubMed] [Google Scholar]
- 290.Smit J.W., Blom N.R., Van Luyn M., Halie M.R. Lymphocytes with parallel tubular structures: Morphologically as distinct subpopulation. Blut. 1983;46:311. doi: 10.1007/BF00320691. [DOI] [PubMed] [Google Scholar]
- 291.Smit J.W., Blom N.R., Van Luyn M.J.A., Halie M.R. Susceptibility of the expression of parallel tubular structures in lymphocytes to the exposure to ammonium chloride buffer. J. Immunol. Methods. 1983;67:49. doi: 10.1016/0022-1759(83)90007-8. [DOI] [PubMed] [Google Scholar]
- 292.Gruner S.M., Cullis P.R., Hope M.J., Tilcock C.P.S. Lipid polymorphism: The molecular basis of nonbilayer phases. Annu. Rev. Biophys. Chem. 1985;14:211. doi: 10.1146/annurev.bb.14.060185.001235. [DOI] [PubMed] [Google Scholar]
- 293.Polli N., Matutes E., Robinson D., Catovsky D. Morphological heterogeneity of Leu7, Leull and OKM1 positive lymphocyte subsets: An ultrastructural study with the immunogold method. Clin. Exp. Immunol. 1987;68:331. [PMC free article] [PubMed] [Google Scholar]
- 294.Matutes E., Catovsky D. The fine structure of normal lymphocyte subpopulations—A study with monoclonal antibodies and the immunogold technique. Clin. Exp. Immunol. 1982;50:416. [PMC free article] [PubMed] [Google Scholar]
- 295.Manara G.C., De Panfilis G., Ferrari C., Scandroglio R. Immunoperoxidase-immunogold double labeling in immunoelectromicroscopy of large granular lymphocytes. J. Immunol. Methods. 1984;75:189. doi: 10.1016/0022-1759(84)90238-2. [DOI] [PubMed] [Google Scholar]
- 296.Manara G.C., De Panfilis G., Ferrari C., Bonati A., Scandroglio R. The fine structure of HNK-1 (Leu 7) positive cells. A study using an immunoperoxidase technique. Histochemistry. 1984;81:153. doi: 10.1007/BF00490109. [DOI] [PubMed] [Google Scholar]
- 297.Manara G.C., De Panfilis G., Ferrari C. Ultrastructural characterization of human large granular lymphocyte subsets defined by the expression of HNK-1 (Leu-7), Leu-11, or both HNK-1 and Leu-11 antigens. J. Histochem. Cytochem. 1985;33:1129. doi: 10.1177/33.11.3932517. [DOI] [PubMed] [Google Scholar]
- 298.Kang Y.-H., Carl M., Watson L.P., Yaffe L. Immunoelectron microscopic identification of human NK cells by FITC-conjugated anti-Leu 11a and biotinylated anti-Leu-7 antibodies. J. Immunol. Methods. 1985;84:177. doi: 10.1016/0022-1759(85)90426-0. [DOI] [PubMed] [Google Scholar]
- 299.Arancia G., Fiorentini C., Ferrari C., De Panfilis G., Manara G.C. Morphometric characterization of NK cell subset expressing the Leu-11 antigen in comparison to Leu-7 positive 11 negative cells. Cell Biol. Int. Rep. 1986;10:845. doi: 10.1016/0309-1651(86)90101-3. [DOI] [PubMed] [Google Scholar]
- 300.Zucker-Franklin D., Grusky G., Yang J.-S. Arylsulfatase in natural killer cells: Its possible role in cytotoxicity. Proc. Natl Acad. Sci. U.S.A. 1983;80:6977. doi: 10.1073/pnas.80.22.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 301.Ferrarini M., Cadoni A., Franzi A.T., Ghigliotti C., Leprini A., Zicca A., Grossi C.E. Ultrastructure and cytochemistry of human peripheral blood lymphocytes. Similarities between the cells of the third population and Tg cells. Eur. J. Immunol. 1980;10:562. doi: 10.1002/eji.1830100714. [DOI] [PubMed] [Google Scholar]
- 302.Landay A., Clement L.T., Grossi C.E. Phenotypically and functionally distinct subpopulations of human lymphocytes with T cell markers also exhibit different cytochemical patterns of staining for lysosomal enzymes. Blood. 1984;63:1067. [PubMed] [Google Scholar]
- 303.Monahan R.A., Dvorak H.F., Dvorak A.M. Ultrastructural localization of nonspecific esterase activity in guinea pig and human monocytes, macrophages, and lymphocytes. Blood. 1981;58:1089. [PubMed] [Google Scholar]
- 304.Prasthofer F., Zarcone D., Grossi C.E. Distinctive morphological features of human peripheral blood lymphocytes. EOS—J. Immunol. Immunopharmacol. 1988;8:84. [Google Scholar]
- 305.Freundlich B., Trinchieri G., Perussia B., Zurier R.B. The cytotoxic effector cells in preparations of adherent mononuclear cells from human peripheral blood. J. Immunol. 1984;132:1255. [PubMed] [Google Scholar]
- 306.Rolstad B., Herberman R.B., Reynolds C.W. Natural killer cell activity in the rat. V. The circulation patterns and tissue localization of peripheral blood large granular lymphocytes (LGL). J. Immunol. 1986;136:2800. [PubMed] [Google Scholar]
- 307.Nieminen P. The tissue distribution of NK-9 positive lymphoid cells including NK and AK cells and their precursors. Acta Pathol. Microbiol. Immunol. Scand. 1986;94:119. doi: 10.1111/j.1699-0463.1986.tb02100.x. [DOI] [PubMed] [Google Scholar]
- 308.Fukui H., Overton W.R., Herberman R.B., Reynolds C.W. Natural killer cell activity in the rat. VI. Characterization of rat large granular lymphocytes as effector cells in natural killer and antibody-dependent cellular cytotoxic activities. J. Leuk. Biol. 1987;41:130. doi: 10.1002/jlb.41.2.130. [DOI] [PubMed] [Google Scholar]
- 309.Fresa K.L., Korngold R., Murasko D.M. Induction of natural killer cell activity of thoracic duct lymphocytes by polyinosinic-polycytidylic acid (polyI:C) or interferon. Cell. Immunol. 1985;91:336. doi: 10.1016/0008-8749(85)90231-x. [DOI] [PubMed] [Google Scholar]
- 310.Talpaz M., Spitzer G. Low natural killer cell activity in the bone marrow of healthy donors with normal killer cell activity in the peripheral blood. Exp. Hematol. (Copenhagen) 1984;12:629. [PubMed] [Google Scholar]
- 311.von Gaudecker B., Pfingsten U., Müller-Hermelink H.K. Localization and characterization of T-cell subpopulations and natural killer cells (HNK 1+ cells) in the human tonsilla palatina. An ultrastructural-immunocyto-chemical study. Cell Tissue Res. 1984;238:135. doi: 10.1007/BF00215154. [DOI] [PubMed] [Google Scholar]
- 312.Christmas S.E., Allan G., Moore M. Naturally cytotoxic tonsillar leukocytes: Phenotypic characterization of the effector population. Scand. J. Immunol. 1985;22:61. doi: 10.1111/j.1365-3083.1985.tb01860.x. [DOI] [PubMed] [Google Scholar]
- 313.Weissler J.C., Nicod L.P., Lipscomb M.F., Toews G.B. Natural killer cell function in human lung is compartmentalized. Am. Rev. Respir. Dis. 1987;135:941. doi: 10.1164/arrd.1987.135.4.941. [DOI] [PubMed] [Google Scholar]
- 314.Prichard M.G., Boerth L.W., Pennington J.E. Compartmental analysis of resting and activated pulmonary natural killer cells. Exp. Lung Res. 1987;12:239. doi: 10.3109/01902148709064303. [DOI] [PubMed] [Google Scholar]
- 315.Mann D.W., Sonnenfeld G., Stein-Streilein J. Pulmonary compartmentalization of interferon and natural killer cell activity. Proc. Soc. Exp. Biol. Med. 1985;180:224. doi: 10.3181/00379727-180-42168. [DOI] [PubMed] [Google Scholar]
- 316.Luini W., Boraschi D., Alberti S., Aleotti A., Tagliabue A. Morphological characterization of a cell population responsible for natural killer activity. Immunology. 1981;43:663. [PMC free article] [PubMed] [Google Scholar]
- 317.Ward J.M., Argilan F., Reynolds C.W. Immunoperoxidase localization of large granular lymphocytes in normal tissue and lesions of athymic nude rats. J. Immunol. 1983;131:132. [PubMed] [Google Scholar]
- 318.Nauss K.M., Pavlina T.M., Kumar V., Newberne P.M. Functional characteristics of lymphocytes isolated from the rat large intestine. Response to T-cell mitogens and natural killer cell activity. Gastroenterology. 1984;86:468. [PubMed] [Google Scholar]
- 319.Alberti S., Colotta F., Spreafico F., Delia D., Pasqualetto E., Luini W. Large granular lymphocytes from murine blood and intestinal epithelium: Comparison of surface antigens, natural killer activity, and morphology. Clin. Immunol. Immunopathol. 1985;36:227. doi: 10.1016/0090-1229(85)90124-2. [DOI] [PubMed] [Google Scholar]
- 320.Carman P.S., Ernst P.B., Rosenthal K.L., Clark D.A., Befus A.D., Bienenstock J. Intraepithelial leukocytes contain a unique subpopulation of NK-like cytotoxic cells active in the defense of gut epithelium to enteric murine coronavirus. J. Immunol. 1986;136:1548. [PubMed] [Google Scholar]
- 321.Gibson P.R., Dow E.L., Selby W.S., Strickland R.G., Jewell D.P. Natural killer cells and spontaneous cell-mediated cytotoxicity in the human intestine. Clin. Exp. Immunol. 1984;56:438. [PMC free article] [PubMed] [Google Scholar]
- 322.Gibson P.R., Verhaar H.J., Selby W.S., Jewell D.P. The mononuclear cells of human mesenteric blood, intestinal mucosa and mesenteric lymph nodes: Compartmentalization of NK cells. Clin. Exp. Immunol. 1984;56:445. [PMC free article] [PubMed] [Google Scholar]
- 323.Gibson P.R., Jewell D.P. The nature of the natural killer (NK) cell of human intestinal mucosa and mesenteric lymph node. Clin. Exp. Immunol. 1985;61:160. [PMC free article] [PubMed] [Google Scholar]
- 324.Hogan P.G., Hapel A.J., Doe W.F. Lymphokine-activated and natural killer cell activity in human intestinal mucosa. J. Immunol. 1985;135:1731. [PubMed] [Google Scholar]
- 325.Cerf-Bensussan N., Guy-Grand D., Griscelli C. Intraepithelial lymphocytes of human gut: Isolation, characterisation and study of natural killer activity. Gut. 1985;26:81. doi: 10.1136/gut.26.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 326.Shanahan F., Brogan M., Targan S. Human mucosal cytotoxic effector cells. Gastroenterology. 1987;92:1951. doi: 10.1016/0016-5085(87)90629-9. [DOI] [PubMed] [Google Scholar]
- 327.Wiltrout R.H., Mathieson B.J., Talmadge J.E., Reynolds C.W., Zhang S.R., Herberman R.B., Ortaldo J.R. Augmentation of organ-associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver. J. Exp. Med. 1984;160:1431. doi: 10.1084/jem.160.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 328.Cohen S.A., Salazar D., von Muenchhausen W., Werner-Wasik M., Nolan J.P. Natural antitumor defense system of the murine liver. J. Leuk. Biol. 1985;37:559. doi: 10.1002/jlb.37.5.559. [DOI] [PubMed] [Google Scholar]
- 329.Zhang S.R., Salup R.R., Urias P.E., Twilley T.A., Talmadge J.E., Herberman R.B., Wiltrout R.H. Augmentation of NK activity and/or macrophage-mediated cytotoxicity in the liver by biological response modifiers including human recombinant interleukin 2. Cancer Immunol. Immunother. 1986;21:19. doi: 10.1007/BF00199372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 330.Malter M., Friedrich E., Suss R. Liver as a tumor cell killing organ: Kupffer cells and natural killers. Cancer Res. 1986;46:3055. [PubMed] [Google Scholar]
- 331.Leung K.H., Salazar D., Ip M.M., Cohen S.A. Characterization of natural cytotoxic effector cells isolated from rat liver. Nat. Immun. Cell Growth Regul. 1987;6:150. [PubMed] [Google Scholar]
- 332.Malter M., Suss R., Fischer H. Natural cytotoxic cells from rat liver and spleen kill human glioma cells. J. Cancer Res. Clin. Oncol. 1987;113:498. doi: 10.1007/BF00390046. [DOI] [PubMed] [Google Scholar]
- 333.Wisse E., Van T Noordende J., Van Der Meulen J., Daems W.T. Pit cell description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res. 1976;173:423. doi: 10.1007/BF00224305. [DOI] [PubMed] [Google Scholar]
- 334.Bouwens L., Remels L., Baekeland M., Van Bossuyt H., Wisse E. Large granular lymphocytes or “Pit cells” from rat liver: Isolation, ultrastructural characterization and natural killer activity. Eur. J. Immunol. 1987;17:37. doi: 10.1002/eji.1830170107. [DOI] [PubMed] [Google Scholar]
- 335.Bouwens L., Wisse E. Immuno-electron microscopic characterization of large granular lymphocytes (natural killer cells) from rat liver. Eur. J. Immunol. 1987;17:1423. doi: 10.1002/eji.1830171006. [DOI] [PubMed] [Google Scholar]
- 336.Hornung R.L., Salup R.R., Wiltrout R.H. In: “The Role of IL2 and IL2 Activated Killer Cells in Cancer”: Tissue distribution and localization of IL2-activated killer cells after adoptive transfer in vivo . Lotzova E., Herberman R.B., editors. CRC Press; Boca Raton, Florida: 1988. p. 5. [Google Scholar]
- 337.Uksila J., Lassila O., Hirvonen T., Toivanen P. Natural killer cell activity of human fetal liver cells after allogeneic stimulation. Scand. J. Immunol. 1985;22:433. doi: 10.1111/j.1365-3083.1985.tb01901.x. [DOI] [PubMed] [Google Scholar]
- 338.Ueno Y., Miyawaki T., Seki H., Matsuda A., Taga K., Sato H., Taniguchi N. Differential effects of recombinant human interferon-gamma and interleukin 2 on natural killer cell activity of peripheral blood in early human development. J. Immunol. 1985;135:180. [PubMed] [Google Scholar]
- 339.Uksila J., Lassila O., Hirvonen T. Natural killer cell function of human neonatal lymphocytes. Clin. Exp. Immunol. 1982;48:649. [PMC free article] [PubMed] [Google Scholar]
- 340.Lubens R.G., Gard S.F., Soderberg-Warner M., Stiehm E.R. Lectin-dependent T-lymphocyte and natural killer cytotoxic deficiencies in human newborns. Cell. Immunol. 1982;74:40. doi: 10.1016/0008-8749(82)90004-1. [DOI] [PubMed] [Google Scholar]
- 341.Tarkkanen J., Säkselä E. Umbilical-cord-blood-derived suppressor cells of the human natural killer cells activity are inhibited by interferon. Scand. J. Immunol. 1982;15:149. doi: 10.1111/j.1365-3083.1982.tb00633.x. [DOI] [PubMed] [Google Scholar]
- 342.Abo T., Miller C.A., Balch C.M. Characterization of human granular lymphocyte subpopulations expressing HNK-1 (Leu-7) and Leu-11 antigens in the blood and lymphoid tissue from fetuses, neonates and adults. Eur. J. Immunol. 1984;14:616. doi: 10.1002/eji.1830140707. [DOI] [PubMed] [Google Scholar]
- 343.Huh N.D., Kim Y.B., Koren H.S., Amos D.B. Natural killing and antibody-dependent cellular cytotoxicity in specific-pathogen-free miniature swine and germ-free piglets. II. Ontogenic development of NK and ADCC. Int. J. Cancer. 1981;28:175. doi: 10.1002/ijc.2910280210. [DOI] [PubMed] [Google Scholar]
- 344.Bender B.S., Chrest F.J., Adler W.H. Phenotypic expression of natural killer cell associated membrane antigens and cytolytic function of peripheral blood cells from different aged humans. J. Clin. Lab. Immunol. 1986;21:31. [PubMed] [Google Scholar]
- 345.Hu C., Scorza-Smeraldi R., Radelli L., Fabio G., Vanoli M. Age-and sex-dependent changes in natural killer cell activity. Boll. Ist. Sieroter. Milan. 1987;66:289. [PubMed] [Google Scholar]
- 346.Tilden A.B., Grossi C.E., Itoh K., Cloud G.A., Dougherty P.A., Balch C.M. Subpopulation analysis of human granular lymphocytes: Associations with age, gender and cytotoxic activity. Nat. Immun. Cell Growth Regul. 1986;5:90. [PubMed] [Google Scholar]
- 347.Ligthart G.J., Van Vlokhoven P.C., Schuit H.R., Hijmans W. The expanded null cell compartment in ageing: Increase in the number of natural killer cells and changes in T-cell and NK-cell subsets in human blood. Immunology. 1986;59:353. [PMC free article] [PubMed] [Google Scholar]
- 348.Krishnaraj R., Blandford G. Age-associated alterations in human natural killer cells. 1. Increased activity as per conventional and kinetic analysis. Clin. Immunol. Immunopathol. 1987;45:268. doi: 10.1016/0090-1229(87)90042-0. [DOI] [PubMed] [Google Scholar]
- 349.Krishnaraj R., Blandford G. Age-associated alterations in human natural killer cells. 2. Increased frequency of selective NK subsets. Cell. Immunol. 1988;114:137. doi: 10.1016/0008-8749(88)90261-4. [DOI] [PubMed] [Google Scholar]
- 350.Facchini A., Mariani E., Mariani A.R., Papa S., Vitale M., Manzoli F.A. Increased number of circulating Leu 11+ (CD 16) large granular lymphocytes and decreased NK activity during human ageing. Clin. Exp. Immunol. 1987;68:340. [PMC free article] [PubMed] [Google Scholar]
- 351.Pross H.F., Rubin P., Baines M. In: “NK Cells and Other Natural Effector Cells”: The assessment of natural killer cell activity in cancer patients . Herberman R.B., editor. Academic Press; New York: 1982. p. 1175. [Google Scholar]
- 352.Gatti G., Del Ponte D., Cavallo R., Sartori M.L., Salvadori A., Carignola R., Carandente F., Angeli A. Circadian changes in human natural killer (NK) activity. Prog. Clin. Biol. Res. 1987;227:399. [PubMed] [Google Scholar]
- 353.Levi F.A., Canon C., Touitou Y., Reinberg A., Mathé G. Seasonal modulation of the circadian time structure of circulating T and natural killer lymphocyte subsets from healthy subjects. J. Clin. Invest. 1988;81:407. doi: 10.1172/JCI113333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 354.Hrushesky W.J., Gruber S.A., Sothern R.B., Hoffman R.A., Lakatua D. Natural killer cell activity: Age, estrous- and circadian-stage dependence and inverse correlation with metastatic potential. J. Natl. Cancer Inst. 1988;80:1232. doi: 10.1093/jnci/80.15.1232. [DOI] [PubMed] [Google Scholar]
- 355.Pati A.K., Florentin I., Chung V., De Sousa M., Levi F., Mathé G. Circannual rhythm in natural killer activity and mitogen responsiveness of murine splenocytes. Cell. Immunol. 1987;108:227. doi: 10.1016/0008-8749(87)90207-3. [DOI] [PubMed] [Google Scholar]
- 356.Petranyi G., Ivanyi P., Hollan S.R. Relation of HL-A and Rh systems to immune reactivity. Vox Sang. 1974;26:470. [PubMed] [Google Scholar]
- 357.Jakobisiak M., Saidman S., Schlaut J., Pazderka F., Dossetor J.B. Elevated natural killer cytotoxicity in HLA-B8 and HLA-DR3-positive individuals. Immunol. Lett. 1986;12:61. doi: 10.1016/0165-2478(86)90083-0. [DOI] [PubMed] [Google Scholar]
- 358.Warren R.P., Lum L.G., Storb R. Is the leukocyte group-5a antigen associated with reduced NK cell function? Tissue Antigens. 1985;25:107. doi: 10.1111/j.1399-0039.1985.tb00423.x. [DOI] [PubMed] [Google Scholar]
- 359.Kiessling R., Klein E., Pross H., Wigzell H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 1975;5:117. doi: 10.1002/eji.1830050209. [DOI] [PubMed] [Google Scholar]
- 360.Herberman R.B., Nunn M.F., Lavrin D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer. 1975;16:230. doi: 10.1002/ijc.2910160205. [DOI] [PubMed] [Google Scholar]
- 361.Cudkowicz G., Hochman P.S. Do natural killer cells engage in regulated reaction against self to ensure homeostasis? Immunol. Rev. 1979;44:13. doi: 10.1111/j.1600-065x.1979.tb00266.x. [DOI] [PubMed] [Google Scholar]
- 362.Clark E.A., Engle D., Windsor N.T. Immune responsiveness of SM/J mice; hyper NK cell activity mediated by NK1+ Qa5- cells. J. Immunol. 1981;127:2391. [PubMed] [Google Scholar]
- 363.Vaillier D., Legrand E., Labat V., Duplan J.F. Thymic control in expression of natural killer activity in AKR and C57BL/6 mice. Ann. Immunol. (Paris) 1984;135:1. doi: 10.1016/s0769-2625(84)80150-6. [DOI] [PubMed] [Google Scholar]
- 364.Lanza E., Djeu J.Y. Persistence of natural killer activity in murine peripheral blood lymphocytes. Fed. Proc, Fed. Am. Soc. Exp. Biol. 1982;41:601. [Google Scholar]
- 365.Kawakami K., Bloom E.T. Lymphokine-activated killer cells and aging in mice: Significance for defining the precursor cell. Mech. Ageing Dev. 1987;41:229. doi: 10.1016/0047-6374(87)90043-1. [DOI] [PubMed] [Google Scholar]
- 366.Saxena R.K., Saxena Q.B., Adler W.H. Interleukin-2-induced activation of natural killer activity in spleen cells from old and young mice. Immunology. 1984;51:719. [PMC free article] [PubMed] [Google Scholar]
- 367.Riccardi C., Giampietri A., Migliorati G., Frati L., Herberman R.B. Studies on the mechanism of low natural killer cell activity in infant and aged mice. Nat. Immun. Cell Growth Regul. 1986;5:238. [PubMed] [Google Scholar]
- 368.Irimajiri N., Bloom E.T., Makinodan T. Suppression of murine natural killer cell activity by adherent cells from aging mice. Mech. Ageing Dev. 1985;31:155. doi: 10.1016/s0047-6374(85)80026-9. [DOI] [PubMed] [Google Scholar]
- 369.Albright J.W., Albright J.F. Age-associated decline in natural killer (NK) activity reflects primarily a defect in function of NK cells. Mech. Ageing Dev. 1985;31:295. doi: 10.1016/0047-6374(85)90096-x. [DOI] [PubMed] [Google Scholar]
- 370.Mysliwska J., Mysliwski A., Witkowski J. Age-dependent decline of natural killer and antibody-dependent cell mediated cytotoxicity activity of human lymphocytes is connected with decrease of their acid phosphatase activity. Mech. Ageing Dev. 1985;31:1. doi: 10.1016/0047-6374(85)90022-3. [DOI] [PubMed] [Google Scholar]
- 371.Bash J.A., Vogel D. Cellular immunosenescence in F344 rats: Decreased natural killer (NK) cell activity involves changes in regulatory interactions between NK cells, interferon, prostaglandin and macrophages. Mech. Ageing Dev. 1984;24:49. doi: 10.1016/0047-6374(84)90175-1. [DOI] [PubMed] [Google Scholar]
- 372.Kiessling R., Wigzell H. An analysis of the murine NK cell as to structure, function, and biological relevance. Immunol. Rev. 1979;44:165. doi: 10.1111/j.1600-065x.1979.tb00270.x. [DOI] [PubMed] [Google Scholar]
- 373.Petranyi G.G., Kiessling R., Povey S., Klein G., Herzenberg L., Wigzell H. The genetic control of natural killer cell activity and its association with in vivo resistance against a Moloney isograft. Immunogenetics. 1976;3:15. [Google Scholar]
- 374.Clark E.A., Harmon R.C. Genetic control of natural cytotoxicity and hybrid resistance. Adv. Cancer Res. 1980;31:227. doi: 10.1016/s0065-230x(08)60659-4. [DOI] [PubMed] [Google Scholar]
- 375.Fleisher G., Koven N., Kamiya H., Henle W. A non-X-linked syndrome with susceptibility to severe Epstein-Barr virus infections. J. Pediatr. 1982;100:727. doi: 10.1016/s0022-3476(82)80572-6. [DOI] [PubMed] [Google Scholar]
- 376.Kaminsky S.G., Nakamura I., Cudkowicz G. Genetic control of the natural killer cell activity in SJL and other strains of mice. J. Immunol. 1985;135:665. [PubMed] [Google Scholar]
- 377.Biron C.A., Byron K.S., Sullivan J.L. Susceptibility to viral infections in an individual with a complete lack of natural killer cells. Nat. Immun. Cell Growth Regul. 1988;7:47. [Google Scholar]
- 378.Ross G.D., Thompson R.A., Walport M.J., Springer T.A., Watson J.V., Ward R.H., Lida J., Newman S.L., Harrison R.A., Lachman P.J. Characterization of patients with an increased susceptibility to bacterial infections and a genetic deficiency of leukocyte membrane complement receptor type 3 and the related membrane antigen LFA-1. Blood. 1985;66:882. [PubMed] [Google Scholar]
- 379.Seeley J.K., Bechtold T., Purtilo D.T., Lindsten T. In: “NK Cells and Other Effector Cells”: NK deficiency in X-linked lymphoproliferative syndrome . Herberman R.B., editor. Academic Press; New York: 1982. p. 1211. [Google Scholar]
- 380.Sullivan J.L., Biron K.S., Brewster F.E., Purtilo D.T. Deficient natural killer cell activity in X-linked lymphoproliferative syndrome. Science. 1980;210:543. doi: 10.1126/science.6158759. [DOI] [PubMed] [Google Scholar]
- 381.White J.G., Clawson C.C. The Chediak-Higashi syndrome; the nature of the giant neutrophil granules and their interactions with cytoplasm and foreign particulates. Am. J. Pathol. 1980;98:151. [PMC free article] [PubMed] [Google Scholar]
- 382.Dent P.B., Fish L.A., White J.F., Good R.A. Chediak-Higashi syndrome. Observations on the nature of the associated malignancy. Lab. Invest. 1966;15:1634. [PubMed] [Google Scholar]
- 383.Haliotis T., Roder J., Klein M., Ortaldo J., Fauci A.S., Herberman R.B. Chediak-Higashi gene in humans. I. Impairment of natural-killer function. J. Exp. Med. 1980;151:1039. doi: 10.1084/jem.151.5.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 384.Klein M., Roder J., Haliotis T., Korec S., Jett J.R., Herberman R.B., Katz P., Fauci A.S. Chediak-Higashi gene in humans. II. The selectivity of the defect in natural-killer and antibody-dependent cell-mediated cytotoxicity function. J. Exp. Med. 1980;151:1049. doi: 10.1084/jem.151.5.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 385.Roder J.C., Haliotis T., Klein M., Korec S., Jett J.R., Ortaldo J., Herberman R.B., Katz P., Fauci A.S. A new immunodeficiency disorder in humans involving NK cells. Nature (London) 1980;284:553. doi: 10.1038/284553a0. [DOI] [PubMed] [Google Scholar]
- 386.Roder J.C., Haliotis T., Laing L., Kozbor D., Rubin P., Pross H., Boxer L.A., White J.G., Fauci A.S., Mostowski H., Matheson D.S. Further studies of natural killer cell function in Chediak-Higashi patients. Immunology. 1982;46:555. [PMC free article] [PubMed] [Google Scholar]
- 387.Brahmi Z. Nature of natural killer cell hyporesponsiveness in the Chediak-Higashi syndrome. Hum. Immunol. 1983;6:45. doi: 10.1016/0198-8859(83)90072-1. [DOI] [PubMed] [Google Scholar]
- 388.Katz P., Zaytoun A.M., Fauci A.S. Deficiency of active natural killer cells in the Chediak-Higashi syndrome. Localization of the defect using a single cell cytotoxicity assay. J. Clin. Invest. 1982;69:1231. doi: 10.1172/JCI110562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 389.Targan S., Oseas R. The “lazy” NK cells of Chediak-Higashi syndrome. J. Immunol. 1983;130:2671. [PubMed] [Google Scholar]
- 390.Abo T., Roder J.C., Abo W., Cooper M.D., Balch C.M. Natural killer (HNK-1+) cells in Chediak-Higashi patients are present in normal numbers but are abnormal in function and morphology. J. Clin. Invest. 1982;70:193. doi: 10.1172/JCI110592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 391.Grossi C.E., Crist W.M., Abo T., Velardi A., Cooper M.D. Expression of the Chediak-Higashi lysosomal abnormality in human peripheral blood lymphocyte subpopulations. Blood. 1985;65:837. [PubMed] [Google Scholar]
- 392.Windhorst D.B., Padgett G. The Chediak-Higashi syndrome and the homologous trait in animals. J. Invest. Dermatol. 1973;60:529. doi: 10.1111/1523-1747.ep12703609. [DOI] [PubMed] [Google Scholar]
- 393.Luevano E., Kumar V., Bennett M. Hybrid resistance to EL-4 lymphoma cells. II. Association between loss of hybrid resistance and detection of suppressor cells after treatment of mice with 89Sr. Scand. J. Immunol. 1981;13:563. doi: 10.1111/j.1365-3083.1981.tb00170.x. [DOI] [PubMed] [Google Scholar]
- 394.Roder J.C., Lohmann-Matthes M., Domzig W., Wigzell H. The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J. Immunol. 1979;123:2174. [PubMed] [Google Scholar]
- 395.McGarry R.C., Walker R., Roder J.C. The cooperative effect of the satin and beige mutations in the suppression of NK and CTL activities in mice. Immunogenetics. 1984;20:527. doi: 10.1007/BF00364355. [DOI] [PubMed] [Google Scholar]
- 396.Koren H.S., Amos D.B., Buckley R.B. Natural killing in immunodeficient patients. J. Immunol. 1978;120:796. [PubMed] [Google Scholar]
- 397.Lipinski M., Dokhelar M.C., Tursz T. In: “NK Cells and Other Natural Effector Cells”: NK cell activity in patients with high risk for tumors and in patients with cancer . Herberman R.B., editor. Academic Press; New York: 1982. p. 1183. [Google Scholar]
- 398.Lipinski M., Virelizier J.L., Tursz T., Griscelli C. Natural killer and killer cell activities in patients with primary immunodeficiencies or defects in immune interferon production. Eur. J. Immunol. 1980;10:246. doi: 10.1002/eji.1830100405. [DOI] [PubMed] [Google Scholar]
- 399.Lopez C., Kirkpatrick D., Fitzgerald P.A., Ching C.Y., Pahwa R.N., Good R.A., Smithwick E. Studies of cell lineage of the effector cells that spontaneously lyse HSV-1-infected fibroblasts (NK(HSV-1)). J. Immunol. 1982;129:824. [PubMed] [Google Scholar]
- 400.Peter H.H., Friederich W., Dopfer R., Muller W., Kortmann C., Pichler W., Heinz F., Rieger C.H.L. NK cell function in severe combined immunodeficiency (SCID): Evidence of a common T cell defect in some but not all SCID patients. J. Immunol. 1983;131:2332. [PubMed] [Google Scholar]
- 401.Peter H.H., Rieger C.R., Gendvilis S., Eckert G., Pichler W.J., Stangel W. Spontaneous cell-mediated cytotoxicity (SCMC) in patients with myelodysplastic disorders and immunodeficiency syndromes. Dev. Immunol. 1982;17:341. [Google Scholar]
- 402.Pross H.F., Gupta S., Good R.A., Baines M.G. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. VII. The effect of immunodeficiency disease. Cell. Immunol. 1978;43:160. doi: 10.1016/0008-8749(79)90159-x. [DOI] [PubMed] [Google Scholar]
- 403.Tsuge I., Matsuoka H., Torii S., Okada J.-I., Mizuno T., Matsuoka M., Kodera Y., Takahashi T. Preservation of natural killer and interleukin-2 activated killer cell activity in ataxiatelangectasia with T cell deficiency. J. Clin. Lab. Immunol. 1987;23:7. [PubMed] [Google Scholar]
- 404.Sirianni M.C., Businco L., Seminara R., Aiuti F. Severe combined immunodeficiencies, primary T-cell defects and DiGeorge syndrome in human: Characterization by monoclonal antibodies and natural killer cell activity. Clin. Immunol. Immunopathol. 1983;28:361. doi: 10.1016/0090-1229(83)90103-4. [DOI] [PubMed] [Google Scholar]
- 405.Messina C., Kirkpatrick D., Fitzgerald P.A., O'Reilly R.J., Siegal F.P., Cunningham-Rundles C., Blaese M., Oleske J., Pahwa S., Lopez C. Natural killer cell function and interferon generation in patients with primary immunodeficiencies. Clin. Immunol. Immunopathol. 1986;39:394. doi: 10.1016/0090-1229(86)90167-4. [DOI] [PubMed] [Google Scholar]
- 406.Hiserodt J., Britvan L., Targan S. Differential effects of various pharmacologic agents on the cytolytic reaction mechanism of the human natural killer lymphocyte. J. Immunol. 1982;129:2266. [PubMed] [Google Scholar]
- 407.Lotzova E., Savary C.A., Gray K.N., Raulston G.L., Jardine J.H. Natural killer cell profile of two random-bred strains of athymic rats. Exp. Hematol. (Copenhagen) 1984;12:633. [PubMed] [Google Scholar]
- 408.Perussia B., Santoli D., Trinchieri G. Interferon modulation of natural killer cell activity. Ann. N.Y. Acad. Sci. 1980;350:55. doi: 10.1111/j.1749-6632.1980.tb20607.x. [DOI] [PubMed] [Google Scholar]
- 409.Sindel L.J., Buckley R.H., Schiff S.E., Ward F.E., Mickey G.H., Huang A.T., Naspitz C., Koren H. Severe combined immunodeficiency with natural killer-cell predominance: Abrogation of graft-versus-host disease and immunologic reconstitution with HLA-identical bone marrow cells. J. Allergy Clin. Immunol. 1984;73:829. doi: 10.1016/0091-6749(84)90455-x. [DOI] [PubMed] [Google Scholar]
- 410.Buckley R.H., Gard S., Haynes B.R., Sindel L.J., Davis K., Sampson H.A., Ruff M.E., Koren H.S. Severe combined immunodeficiency (SCID) with natural killer (NK) cell predominance. Birth Defects, Orig. Artic. Ser. 1983;19:101. [PubMed] [Google Scholar]
- 411.Pierce G.F., Polmar S.H. Natural cytotoxicity in immunodeficiency diseases: Preservation of natural killer activity and the in vivo appearance of radioresistant killing. Hum. Immunol. 1986;15:85. doi: 10.1016/0198-8859(86)90319-8. [DOI] [PubMed] [Google Scholar]
- 412.Hackett J.J., Bosma G.C., Bosma M.J., Bennett M., Kumar V. Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1986;83:3427. doi: 10.1073/pnas.83.10.3427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 413.Dorshkind K., Pollack S.B., Bosma M.J., Phillips R.A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J. Immunol. 1985;134:3798. [PubMed] [Google Scholar]
- 414.Seaman W.E., Gindhart T.D., Greenspan J.S., Blackman M.A., Talal N. Natural killer cells, bone, and the bone marrow: Studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J. Immunol. 1979;122:2541. [PubMed] [Google Scholar]
- 415.Seaman W.E., Merigan T.C., Talal N. Natural killing in estrogentreated mice responds poorly to poly I-C despite normal stimulation of circulating interferon. J. Immunol. 1979;123:2903. [PubMed] [Google Scholar]
- 416.Komiyama A., Kawai H., Miyagawa Y., Akabane T. Childhood lymphoblastic leukemia with natural killer activity; establishment of the leukemia cell lines retaining the activity. Blood. 1982;60:1429. [PubMed] [Google Scholar]
- 417.Komiyama A., Yamada S., Kawai H., Miyagawa Y., Akabane T. Childhood acute lymphoblastic leukemia with natural killer activity. Clinical and cellular features of three cases. Cancer (Philadelphia) 1984;54:1547. doi: 10.1002/1097-0142(19841015)54:8<1547::aid-cncr2820540814>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
- 418.Kaplan J., Ravindranath Y., Inoue S. T-cell acute lymphoblastic leukemia with natural killer cell phenotype. Am. J. Hematol. 1986;22:355. doi: 10.1002/ajh.2830220404. [DOI] [PubMed] [Google Scholar]
- 419.McKenna R.W., Parkin J., Kersey J.H., Gajl K.J., Peterson L., Brunning R.D. Chronic lymphoproliferative disorder with unusual clinical, morphologic, ultrastructural and membrane surface marker characteristics. Am. J. Med. 1977;62:588. doi: 10.1016/0002-9343(77)90422-3. [DOI] [PubMed] [Google Scholar]
- 420.Bom-van Noorloos A.A., Pegels H.G., Van Oers R.H., Silberbusch J., Feltkamp-Vroom T.M., Goudsmit R., Zeijlemaker W.P., von dem Borne A.E., Melief C.J. Proliferation of T gamma cells with killer-cell activity in two patients with neutropenia and recurrent infections. N. Engl. J. Med. 1980;302:933. doi: 10.1056/NEJM198004243021702. [DOI] [PubMed] [Google Scholar]
- 421.Waldmann T.A., Davis M.M., Bongiovanni K.F., Korsmeyer S.J. Rearrangements of genes for the antigen receptor on T cells as markers of lineage and clonality in human lymphoid neoplasms. N. Engl. J. Med. 1985;313:776. doi: 10.1056/NEJM198509263131303. [DOI] [PubMed] [Google Scholar]
- 422.Loughran T.P., Jr, Kadin M.E., Starkebaum G., Abkowitz J.L., Clark E.A., Disteche C., Lum L.G., Slichter S.J. Leukemia of large granular lymphocytes: Association with clonal chromosomal abnormalities and autoimmune neutropenia thrombocytopenia and hemolytic anemia. Ann. Intern. Med. 1985;102:169. doi: 10.7326/0003-4819-102-2-169. [DOI] [PubMed] [Google Scholar]
- 423.Rambaldi A., Pelicci P., Allavena P., Knowles D.M., Rossini S., Bassan R., Barbui T., Dalla-Favera R., Mantovani A. T cell receptor β chaingene rearragements in lymphoproliferative disorders of large granular lymphocytes/natural killer cells. J. Exp. Med. 1985;162:2156. doi: 10.1084/jem.162.6.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 424.Flug F., Pelicci P.G., Bonetti F., Knowles D.M., Dalla-Favera R. T-cell receptor gene rearrangements as markers of lineage and clonality in T-cell neoplasms. Proc. Natl. Acad. Sci. U.S.A. 1985;82:3460. doi: 10.1073/pnas.82.10.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 425.Aisenberg A.C., Krontiris T.G., Mak T.W., Wilkes B.M. Rearrangement of the gene for the beta chain of the T-cell receptor in T cell chronic lymphocytic leukemia and related disorders. N. Engl. J. Med. 1985;313:529. doi: 10.1056/NEJM198508293130901. [DOI] [PubMed] [Google Scholar]
- 426.Minden M.D., Toyonaga B., Ha K., Yanagi Y., Chin B., Gelfand E., Mak T. Somatic rearrangement of T cell antigen receptor β gene in human T cell malignancies. Proc. Natl. Acad. Sci. U.S.A. 1985;82:1224. doi: 10.1073/pnas.82.4.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 427.Foa R., Pelicci P.-G., Migone N., Lauria F., Pizzolo G., Flug F., Knowles D.M., Dalla-Favera R. Analysis of T cell receptor beta chain (Tβ) gene rearrangements demonstrates the monoclonal nature of T cell chronic lymphoproliferative disorders. Blood. 1986;67:247. [PubMed] [Google Scholar]
- 428.Berliner N., Duby A.D., Linch D.C., Murre C., Quertermous T., Knott L.J., Azin T., Newland A.C., Lewis D.L., Galvin M.C., Seidman J.D. T cell receptor β gene rearrangements define a monoclonal T cell proliferation in patients with T cell lymphocytosis and cytopenia. Blood. 1986;67:914. [PubMed] [Google Scholar]
- 429.Semenzato G., Pizzolo G., Ranucci A., Agostini C., Chilosi M., Quinti I., De Sanctis G., Vercelli B., Pandolfi F. Abnormal expansions of polyclonal large to small size granular lymphocytes: Reactive or neoplastic process? Blood. 1984;63:1271. [PubMed] [Google Scholar]
- 430.McKenna R.W., Arthur D.C., Gajl-Peczalska K.J., Flynn P., Brunning R.D. Granulated T cell lymphocytosis with neutropenia: Malignant or benign chronic lymphoproliferative disorder? Blood. 1985;66:259. [PubMed] [Google Scholar]
- 431.Van De Griend R.J., Bolhuis R.L.H. In vitro expansion and analysis of cloned cytotoxic T cells derived from patients with chronic Tγ lymphoproliferative disorders. Blood. 1985;65:1002. [PubMed] [Google Scholar]
- 432.Pistoia V., Prasthofer E.F., Tilden A.B., Barton J.C., Ferrarini M., Grossi C.E., Zuckerman K.S. Large granular lymphocytes (LGL) from patients with expanded LGL populations acquire cytotoxic functions and release lymphokines upon in vitro activation. Blood. 1986;68:1095. [PubMed] [Google Scholar]
- 433.Rambaldi A., Rossi V., Allavena P., Introna M., Landolfo S., Bassan R., Barbui T., Mantovani A. Lymphokine production in Tγ lymphoproliferative disorders. Scand. J. Immunol. 1986;23:183. doi: 10.1111/j.1365-3083.1986.tb01956.x. [DOI] [PubMed] [Google Scholar]
- 434.Oshimi K., Oshimi Y., Akahoshi M., Kobayashi Y., Hirai H., Takaku F., Hattori M., Asano S., Kodo H., Nishinarita S., Iizuka Y., Mizoguchi H. Role of T-cell antigens in the cytolytic activities of large granular lymphocytes (LGL) in patients with LGL lymphocytosis. Blood. 1988;71:473. [PubMed] [Google Scholar]
- 435.Pistoia V., Carroll A.J., Prasthofer E.F., Tilden A.B., Zuckerman K.S., Ferrarini M., Grossi C.E. Establishment of TAC-negative, IL-2 dependent cytotoxic cell lines from large granular lymphocytes (LGL) of patients with expanded LGL populations. J. Clin. Immunol. 1986;6:457. doi: 10.1007/BF00915251. [DOI] [PubMed] [Google Scholar]
- 436.Landay A., Gebel H., Levin S., Prasthofer E., Pistoia V., Downing J., Grossi C. CD16+ NK lymphoproliferative disorders: Cellular and molecular characterization. Nat. Immun. Cell Growth Regul. 1987;6:141. [PubMed] [Google Scholar]
- 437.Chan W.C., Link S., Mawle A., Check I., Brynes R.K., Winton E.G. Heterogeneity of large granular lymphocyte proliferations: Delineation of two major subtypes. Blood. 1986;68:1142. [PubMed] [Google Scholar]
- 438.Koizumi S., Seki H., Tachinami T., Taniguchi M., Matsuda A., Taga K., Nakarai T., Kato E., Taniguchi N., Nakamura H. Malignant clonal expansion of large granular lymphocytes with a Leull+, Leu-7 surface phenotype: In vitro responsiveness of malignant cells to recombinant human interleukin 2. Blood. 1986;68:1065. [PubMed] [Google Scholar]
- 439.Kadin M.E., Kamoun M., Lamberg J. Erythrophagocytic Ty lymphoma: A clinicopathologic entity resembling malignant histiocytosis. N. Engl. J. Med. 1981;304:648. doi: 10.1056/NEJM198103123041106. [DOI] [PubMed] [Google Scholar]
- 440.Pandolfi F., Pezzutto A., De Rossi G., Pasqualetti D., Semenzato G., Quinti I., Ranucci A., Raimondi R., Basso G., Strong D.M., Fontana L., Aiuti F. Characterization of two patients with lymphomas of large granular lymphocytes. Cancer (Philadelphia) 1984;53:445. doi: 10.1002/1097-0142(19840201)53:3<445::aid-cncr2820530313>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- 441.Sohn C.C., Blayney D.W., Misset J.L., Mathé G., Flandrin G., Moran E.M., Jensen F.C., Winberg C.D., Rappaport H. Leukopenic chronic T cell leukemia mimicking hairy cell leukemia: Association with human retroviruses. Blood. 1986;67:949. [PubMed] [Google Scholar]
- 442.Haller O., Wigzell H. Suppression of natural killer cell activity with radioactive strontium: Effector cells are marrow dependent. J. Immunol. 1977;118:1503. [PubMed] [Google Scholar]
- 443.Kumar V., Ben-Ezra J., Bennett M., Sonnenfeld G. Natural killer cells in mice treated with 89 strontium: Normal target-binding cell numbers but inability to kill even after interferon administration. J. Immunol. 1979;123:1832. [PubMed] [Google Scholar]
- 444.Levy E.M., Kumar V., Bennett M. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated mice. J. Immunol. 1981;127:1428. [PubMed] [Google Scholar]
- 445.Haller O., Kiessling R., Orn A., Wigzell H. Generation of natural killer cells: An autonomous function of the bone marrow. J. Exp. Med. 1977;145:1411. doi: 10.1084/jem.145.5.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 446.Roder J.C. The beige mutation in the mouse. I. A stem cells predetermined impairment in natural killer cell function. J. Immunol. 1979;123:2168. [PubMed] [Google Scholar]
- 447.Roder J.C., Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature (London) 1979;278:451. doi: 10.1038/278451a0. [DOI] [PubMed] [Google Scholar]
- 448.Johnson G.R., Metcalf D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc. Natl. Acad. Sci. U.S.A. 1977;74:3879. doi: 10.1073/pnas.74.9.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 449.Stechschulte D.J., Sharma R., Dileepan K.N., Simpson K.M., Aggarwal N., Clancy J., Jr, Jilka R.L. Effect of the mi allele on mast cells, basophils, natural killer cells, and osteoclasts in C57BL/6J mice. J. Cell. Physiol. 1987;132:565. doi: 10.1002/jcp.1041320321. [DOI] [PubMed] [Google Scholar]
- 450.Blomgren H., Baral E., Edsmyr F., Strender L.E., Petrini B., Wasserman J. Natural killer activity in peripheral lymphocyte population following local radiation therapy. Acta Radiol.: Oncol., Radiat. Phys., Biol. 1980;19:139. doi: 10.3109/02841868009130145. [DOI] [PubMed] [Google Scholar]
- 451.Brovall C., Schacter B. Radiation sensitivity of human natural killer cell activity: Control by X-linked genes. J. Immunol. 1981;126:2236. [PubMed] [Google Scholar]
- 452.Dean D.M., Pross H.F., Kennedy J.C. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. III. Stimulating and inhibitory effects of ionizing radiation. Int. J. Radiat. Oncol., Biol., Phys. 1978;4:633. doi: 10.1016/0360-3016(78)90186-4. [DOI] [PubMed] [Google Scholar]
- 453.Gorelik E., Herberman R.B. Depression of natural antitumor resistance of C57BL/6 mice by leukemogenic doses of radiation and restoration of resistance by transfer of bone marrow or spleen cells from normal, but not beige, syngeneic jmice. JNCI, J. Natl. Cancer Inst. 1982;69:89. [PubMed] [Google Scholar]
- 454.Hochman P.S., Cudkowicz G., Dausset J. Decline of natural killer cell activity in sublethally irradiated mice. J. Natl. Cancer Inst. 1978;61:265. doi: 10.1093/jnci/61.1.265. [DOI] [PubMed] [Google Scholar]
- 455.Miller S.C. Production and renweal of murine killer cells in the spleen and bone marrow. J. Immunol. 1982;129:2282. [PubMed] [Google Scholar]
- 456.Onsrud M., Thorsby E. Long term changes in natural killer activity after external pelvic radiotherapy. Int. J. Radiat. Oncol., Biol., Phys. 1981;7:609. doi: 10.1016/0360-3016(81)90375-8. [DOI] [PubMed] [Google Scholar]
- 457.Parkinson D.R., Brightman R.P., Waksal S.D. Altered natural killer cell biology in C57BL/6 mice after leukemogenic split-dose irradiation. J. Immunol. 1981;126:1460. [PubMed] [Google Scholar]
- 458.Pollack S.B., Rosse C. The primary role of murine bone marrow in the production of natural killer cells. A cytokinetic study. J. Immunol. 1987;139:2149. [PubMed] [Google Scholar]
- 459.Nassiry L., Miller S.C. Renewal of natural killer cells in mice having elevated natural killer cell activity. Nat. Immun. Cell Growth Regul. 1987;6:250. [PubMed] [Google Scholar]
- 460.Rooney C.M., Wimperis J.Z., Brenner M.K., Patterson J., Hoffbrand A.V., Prentice H.G. Natural killer cell activity following T-cell depleted allogeneic bone marrow transplantation. Br. J. Haematol. 1986;62:413. doi: 10.1111/j.1365-2141.1986.tb02952.x. [DOI] [PubMed] [Google Scholar]
- 461.Lum L.G. The kinetics of immune reconstitution after human marrow transplantation. Blood. 1987;69:369. [PubMed] [Google Scholar]
- 462.Keever C.A., Welte K., Small T., Levick J., Sullivan M., Hauch M., Evans R.L., O'Reilly R.J. Interleukin 2-activated killer cells in patients following transplants of soybean lectin-separated and E rosette-depleted bone marrow. Blood. 1987;70:1893. [PubMed] [Google Scholar]
- 463.Hokland M., Jacobsen N., Ellegaard J., Hokland P. Natural killer function following allogeneic bone marrow transplantation. Very early reemergence but strong dependence of cytomegalovirus infection. Transplantation. 1988;45:1080. doi: 10.1097/00007890-198806000-00016. [DOI] [PubMed] [Google Scholar]
- 464.Sihvola M., Hurme M. Simultaneous development of antibodydependent cellular cytotoxicity (ADCC) and natural killer (NK) activity in irradiated mice reconstituted with bone marrow cells. Cell. Immunol. 1987;109:115. doi: 10.1016/0008-8749(87)90297-8. [DOI] [PubMed] [Google Scholar]
- 465.Ault K.A., Antin J.H., Ginsburg D., Orkin S.H., Rappeport J.M., Keohan M.L., Martin P., Smith B.R. Phenotype of recovering lymphoid cell populations after marrow transplantation. J. Exp. Med. 1985;161:1483. doi: 10.1084/jem.161.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 466.Hercend T., Takvorian T., Nowill A., Tantravahi R., Moingeon P., Anderson K.C., Murray C., Bohuon C., Ythier A., Ritz J. Characterization of natural killer cells with antileukemia activity following allogeneic bone marrow transplantation. Blood. 1986;67:722. [PubMed] [Google Scholar]
- 467.Dokhelar M.C., Wiels J., Lipinski M., Tetaud C., Devergie A., Gluckman E., Tursz T. Natural killer cell activity in human bone marrow recipients: Early reappearance of peripheral natural killer activity in graft-versus-host disease. Transplantation. 1981;31:61. doi: 10.1097/00007890-198101000-00014. [DOI] [PubMed] [Google Scholar]
- 468.Bowden R.A., Day L.M., Amos D.E., Meyers J.D. Natural cytotoxic activity against cytomegalovirus-infected target cells following marrow transplantation. Transplantation. 1987;44:504. doi: 10.1097/00007890-198710000-00009. [DOI] [PubMed] [Google Scholar]
- 469.Hurme M. Cell proliferation during the maturation of natural killer cells. Scand. J. Immunol. 1984;19:379. doi: 10.1111/j.1365-3083.1984.tb00945.x. [DOI] [PubMed] [Google Scholar]
- 470.Hurme M., Sihvola M. High expression of the Thy-1 antigen on natural killer cells recently derived from bone marrow. Cell. Immunol. 1984;84:276. doi: 10.1016/0008-8749(84)90099-6. [DOI] [PubMed] [Google Scholar]
- 471.Sihvola M., Hurme M. The development of NK cell activity in thymectomized bone marrow chimaeras. Immunology. 1984;53:17. [PMC free article] [PubMed] [Google Scholar]
- 472.Kaminsky S.G., Milisauskas V., Chen P.B., Nakamura I. Defective differentiation of natural killer cells in SJL mice. Role of the thymus. J. Immunol. 1987;138:1020. [PubMed] [Google Scholar]
- 473.Hackett J.J., Bennett M., Kumar V. Origin and differentiation of natural killer cells. I. Characteristics of a transplantable NK cell precursor. J. Immunol. 1985;134:3731. [PubMed] [Google Scholar]
- 474.Miller S.C. Fetal thymic pre-T cells neither demonstrate nor develop natural killer cell activity. Cell. Immunol. 1984;84:194. doi: 10.1016/0008-8749(84)90090-x. [DOI] [PubMed] [Google Scholar]
- 475.Riccardi C., Rossi R., Giampietri A., Migliorati G., Biondi R. Effects of interleukin-1 (IL-1) and interleukin-2 (IL-2) on the in vivo growth and differentiation of progenitors of natural killer (NK) cells. Chemioterapia. 1984;3:350. [PubMed] [Google Scholar]
- 476.Riccardi C., Giampietri A., Migliorati G., Cannarile L., D'Adamio L., Herberman R.B. Generation of mouse natural killer (NK) cell activity: Effect of interleukin-2 (IL-2) and interferon (IFN) on the in vivo development of natural killer cells from bone marrow (BM) progenitor cells. Int. J. Cancer. 1986;38:553. doi: 10.1002/ijc.2910380416. [DOI] [PubMed] [Google Scholar]
- 477.Kalland T. Physiology of natural killer cells. In vivo regulation of progenitors by interleukin 3. J. Immunol. 1987;139:3671. [PubMed] [Google Scholar]
- 478.Koo G.C., Peppard J.R., Hatzfeld A., Cayre Y. In: “NK Cells and Other Natural Effector Cells”: Ontogeny of NK-1 natural killer cells . Herberman R.B., editor. Academic Press; New York: 1981. p. 325. [Google Scholar]
- 479.Koo G.C., Peppard J.R., Mark W.H. Natural killer cells generated from bone marrow culture. J. Immunol. 1984;132:2300. [PubMed] [Google Scholar]
- 480.Klimpel G.R., Sarzotti M., Reyes V.E., Klimpel K.D. Characterization of cytotoxic cells generated from in vitro cultures of murine bone marrow cells. Cell. Immunol. 1985;92:1. doi: 10.1016/0008-8749(85)90059-0. [DOI] [PubMed] [Google Scholar]
- 481.Kalland T. Generation of natural killer cells from bone marrow precursors in vitro. Immunology. 1986;57:493. [PMC free article] [PubMed] [Google Scholar]
- 482.Koo G.C., Peppard J.R., Lattime E.C. Characterization of cytotoxic cells generated from bone marrow culture. Cell. Immunol. 1986;98:172. doi: 10.1016/0008-8749(86)90277-7. [DOI] [PubMed] [Google Scholar]
- 483.Migliorati G., Cannarile L., Herberman R.B., Riccardi C. Role of interleukin 2 (IL-2) and hemopoietin-1 (H-1) in the generation of mouse natural killer (NK) cells from primitive bone marrow precursors. J. Immunol. 1987;138:3618. [PubMed] [Google Scholar]
- 484.Migliorati G., Cannarile L., D'Adamio L., Herberman R.B., Riccardi C. Interleukin-1 augments the interleukin-2-dependent generation of natural killer cells from the bone marrow precursors. Nat. Immun. Cell Growth Regul. 1987;6:306. [PubMed] [Google Scholar]
- 485.Migliorati G., Cannarile L., Herberman R.B., Riccardi C. Role of interferons in natural killer cell generation from primitive bone marrow precursors. Int. J. Immunopharmacol. 1988;10:665. doi: 10.1016/0192-0561(88)90020-3. [DOI] [PubMed] [Google Scholar]
- 486.Migliorati G., Carrarile L., Herberman R.B., Riccardi C. Effect of various cytokines and growth factors on the IL-2-dependent in vitro differentiation of NK cells from bone marrow. Nat. Immun. Cell Growth Regul. 1989;8:48. [PubMed] [Google Scholar]
- 487.Kalland T. Interleukin 3 is a major negative regulator of the generation of natural killer cells from bone marrow precursors. J. Immunol. 1986;137:2268. [PubMed] [Google Scholar]
- 488.Yung Y.P., Okumura K., Moore M.A. Generation of natural killer cell lines from murine long-term bone marrow cultures. J. Immunol. 1985;134:1462. [PubMed] [Google Scholar]
- 489.Lotzova E., Savary C.A. Generation of NK cell activity from human bone marrow. J. Immunol. 1987;139:279. [PubMed] [Google Scholar]
- 490.Yoda Y., Kawakami Z., Shibuya A., Abe T. Characterization of natural killer cells cultured from human bone marrow cells. Exp. Hematol. (Copenhagen) 1988;16:712. [PubMed] [Google Scholar]
- 491.Shau H., Golub S.H. Depletion of NK cells with the lysosomotropic agent L-leucine methyl ester and the in vitro generation of NK activity from NK precursor cells. J. Immunol. 1985;134:1136. [PubMed] [Google Scholar]
- 492.Warren H.S. Differentiation of NK-like cells from OKT3-, OKT11+, and OKM1+ small resting lymphocytes by culture with autologous T cell blasts and lymphokine. J. Immunol. 1984;132:2888. [PubMed] [Google Scholar]
- 493.Warren H.S., Pembrey R.G. Cyclosporin inhibits a two-signal mechanism for the generation of cytotoxic NK-like cells from small lymphocyte precursors. Immunol. Lett. 1986;12:69. doi: 10.1016/0165-2478(86)90085-4. [DOI] [PubMed] [Google Scholar]
- 494.Torten M., Sidell N., Golub S.H. Interleukin 2 and stimulator lymphoblastoid cells induce human thymocytes to bind and kill K562 targets. J. Exp. Med. 1982;156:1545. doi: 10.1084/jem.156.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 495.Toribio M.L., De Landazuri M.O., Lopez-Botet M. Induction of natural killer-like cytotoxicity in cultured human thymocytes. Eur. J. Immunol. 1983;13:964. doi: 10.1002/eji.1830131203. [DOI] [PubMed] [Google Scholar]
- 496.Michon J.M., Caligiuri M.A., Hazanow S.M., Levine H., Schlossman S.F., Ritz J. Induction of natural killer effectors from human thymus with recombinant IL-2. J. Immunol. 1988;140:3660. [PubMed] [Google Scholar]
- 497.Blue M.L., Levine H., Daley J.F., Craig K.A., Schlossman S.F. Development of natural killer cells in human thymocyte culture: Regulation by accessory cells. Eur. J. Immunol. 1987;17:669. doi: 10.1002/eji.1830170514. [DOI] [PubMed] [Google Scholar]
- 498.Ramsdell F.J., Gray J.D., Golub S.H. Similarities between LAK cells derived from human thymocytes and peripheral blood lymphocytes: Expression of the NKH-1 and CD3 antigens. Cell. Immunol. 1988;114:209. doi: 10.1016/0008-8749(88)90267-5. [DOI] [PubMed] [Google Scholar]
- 499.Laskay T., Kiessling R. Interferon and butyrate treatment leads to a decreased sensitivity of NK target cells to lysis by homologous but not by heterologous effector cells. Nat. Immun. Cell Growth Regul. 1986;5:211. [PubMed] [Google Scholar]
- 500.Henkart P.A., Lewis J.T., Ortaldo J.R. Preparation of target antigens specifically recognized by human natural killer cells. Nat. Immun. Cell Growth Regul. 1986;5:113. [PubMed] [Google Scholar]
- 501.Roozemond R.C., Van Der Geer P., Bonavida B. Effect of altered membrane structure on NK cell-mediated cytotoxicity. II. Conversion of NK-resistant tumor cells into NK-sensitive targets upon fusion with liposomes containing NK-sensitive membranes. J. Immunol. 1986;136:3921. [PubMed] [Google Scholar]
- 502.Timonen T., Ortaldo J.R., Herberman R.B. Analysis by a single cell cytotoxicity assay of natural killer (NK) cell frequencies among human large granular lymphocytes and of the effects of IFN on their activity. J. Immunol. 1982;128:2514. [PubMed] [Google Scholar]
- 503.Trinchieri G., Granato D., Perussia B. Interferon-induced resistance of fibroblasts to cytolysis mediated by natural killer cells: Specificity and mechanism. J. Immunol. 1981;126:335. [PubMed] [Google Scholar]
- 504.Wright S.C., Bonavida B. Lysis of NK targets by natural killer cytotoxic factors (NKCF): Dual effects of interferon-treatment of effector or target cells. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1982;41:476. (abstr.) [Google Scholar]
- 505.Yefenof E., Yron I., Klein E. Complement-dependent cellular cytotoxicity due to alternative pathway C3 activation by the target cell membrane. Cell. Immunol. 1987;87:698. doi: 10.1016/0008-8749(84)90038-8. [DOI] [PubMed] [Google Scholar]
- 506.Kai C., Sarmay G., Ramos O., Yefenof E., Klein E. Elevated NK sensitivity of Raji cells carrying acceptor-bound C3 fragments. Cell. Immunol. 1988;113:227. doi: 10.1016/0008-8749(88)90022-6. [DOI] [PubMed] [Google Scholar]
- 507.Van De Griend R.J., Bolhuis R.L.H., Stoter G., Roozemond R.C. Regulation of cytolytic activity in CD3- and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. J. Immunol. 1987;138:3137. [PubMed] [Google Scholar]
- 508.Titus J.A., Perez P., Kaubisch A., Garrido M.A., Segal D.M. Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth. in vivo. J. Immunol. 1987;139:3153. [PubMed] [Google Scholar]
- 509.Segal D.M., Wunderlich J.R. Targeting of cytotoxic cells heterocrosslinked antibodies. Cancer Invest. 1988;6:83. doi: 10.3109/07357908809077031. [DOI] [PubMed] [Google Scholar]
- 510.Bandyopadhyay S., Perussia B., Trinchieri G., Miller D.S., Starr S.E. Requirement for HLA-DR positive accessory cells in natural killing of cytomegalovirus-infected fibroblasts. J. Exp. Med. 1986;164:180. doi: 10.1084/jem.164.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 511.Bukowski J.F., Welsh R.M. Inability of interferon to protect virusinfected cells against lysis by natural killer (NK) cells correlates with NK cell-mediated antiviral effects. in vivo. J. Immunol. 1985;135:3537. [PubMed] [Google Scholar]
- 512.Bishop G.A., McCurry L., Schwartz S.A., Glorioso J.C. Activation of human natural killer cells by herpes simplex virus type 1-infected cells. Intervirology. 1987;28:78. doi: 10.1159/000149999. [DOI] [PubMed] [Google Scholar]
- 513.Borysiewicz L.K., Rodgers B., Morris S., Graham S., Sissons J.G. Lysis of human cytomegalovirus infected fibroblasts by natural killer cells: Demonstration of an interferon-independent component requiring expression of early viral proteins and characterization of effector cells. J. Immunol. 1985;134:2695. [PubMed] [Google Scholar]
- 514.Uchida A., Yanagawa E. Natural killer cell activity and autologous tumor killing activity in cancer patients: Overlapping involvement of effector cells as determined in two-target conjugate cytotoxicity assay. J. Natl. Cancer Inst. 1984;73:1093. [PubMed] [Google Scholar]
- 515.Oshimi K., Oshimi Y., Yamada O., Mizoguchi H. Lysis of lymphoma cells by autologous and allogeneic natural killer cells. Blood. 1985;65:638. [PubMed] [Google Scholar]
- 516.Ames I.H., Gates C.E., Garcia A.M., John P.A., Hennig A.K., Tomar R.H. Lysis of fresh murine mammary tumor cells by syngeneic natural killer cells and lymphokine-activated killer cells. Cancer Immunol. Immunother. 1987;25:161. doi: 10.1007/BF00199142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 517.Lotzova E., Savary C.A., Freedman R.S., Edwards C.L., Wharton J.T. Recombinant IL-2-activated NK cells mediate LAK activity against ovarian cancer. Int. J. Cancer. 1988;42:225. doi: 10.1002/ijc.2910420214. [DOI] [PubMed] [Google Scholar]
- 518.Moingeon P., Ythier A., Nowill A., Delmon L., Bayle C., Pico J.L., Bohuon C., Hercend T. Short-term culture of acute myeloid leukemia blasts: Analysis of acquired susceptibility to activated natural killer cells. Blood. 1986;67:777. [PubMed] [Google Scholar]
- 519.Spitz D.L., Zucker-Franklin D., Nabi Z.F. Unmasking of cryptic natural killer (NK) cell recognition sites on chronic lymphocytic leukemia lymphocytes. Am. J. Hematol. 1988;28:155. doi: 10.1002/ajh.2830280305. [DOI] [PubMed] [Google Scholar]
- 520.Becker S., Kiessling R., Lee N., Klein G. Modulation of sensitivity to natural killer (NK) cell lysis after in vitro explantation of a mouse lymphoma. JNCI, J. Natl. Cancer Inst. 1979;61:1495. [PubMed] [Google Scholar]
- 521.Hansson M., Kiessling R., Andersson B., Welsh R.M. Effect of interferon and interferon inducers on the NK sensitivity of normal mouse thymocytes. J. Immunol. 1980;125:2225. [PubMed] [Google Scholar]
- 522.Timonen T., Lehtovirta P., Säkselä E. Interleukin-2-stimulated natural killer activity against malignant and benign endometrium. Int. J. Cancer. 1987;40:479. doi: 10.1002/ijc.2910400408. [DOI] [PubMed] [Google Scholar]
- 523.Trimble W.S., Johnson P.W., Hozumi N., Roder J.C. Inducible cellular transformation by a metallothionein-ras hybrid oncogene leads to natural killer cell susceptiblity. Nature (London) 1986;321:782. doi: 10.1038/321782a0. [DOI] [PubMed] [Google Scholar]
- 524.Lanza L.A., Wilson D.J., Ikejiri B., Roth J.A., Grimm E.A. Human oncogene-transfected tumor cells display differential susceptibility to lysis by lymphokine-activated killer cells (LAK) and natural killer cells. J. Immunol. 1986;137:2716. [PubMed] [Google Scholar]
- 525.Greenberg A.H., Egan S.E., Jarolim L., Wright J.A. NK sensitivity of H-ras transfected fibroblasts is transformation-independent. Cell. Immunol. 1987;109:444. doi: 10.1016/0008-8749(87)90327-3. [DOI] [PubMed] [Google Scholar]
- 526.Nabi Z.F., Zucker-Franklin D., Lipkin G., Rosenberg M. Susceptibility to NK cell lysis is abolished in tumor cells by a factor which restores their contact inhibited growth. Cancer (Philadelphia) 1986;58:1461. doi: 10.1002/1097-0142(19861001)58:7<1461::aid-cncr2820580714>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- 527.Lattime E.C., Bykowsky M.J., Stutman O. Susceptibility to lysis by natural killer and natural cytotoxic cells is independent of the mototic stage of the target cell cycle. Cell. Immunol. 1986;100:79. doi: 10.1016/0008-8749(86)90008-0. [DOI] [PubMed] [Google Scholar]
- 528.Landay A.L., Zarcone D., Grossi C.E., Bauer K. Relationship between target cell cycle and susceptibility to natural killer lysis. Cancer Res. 1987;47:2767. [PubMed] [Google Scholar]
- 529.Kiessling R., Wigzell H. Surveillance of primitive cells by natural killer cells. Curr. Top. Microbiol. Immunol. 1981;92:107. doi: 10.1007/978-3-642-68069-4_7. [DOI] [PubMed] [Google Scholar]
- 530.Stern P., Gidlund M., Orn A., Wigzell H. Natural killer cells mediate lysis of embryonal carcinoma cells lacking MHC. Nature (London) 1980;285:341. doi: 10.1038/285341a0. [DOI] [PubMed] [Google Scholar]
- 531.Hagner G. Induction of erythroid differentiation in K562 cells and natural killer cell-mediated lysis: Distinct effects at the level of recognition and lysis in relation to target cell proliferation. Immunobiology. 1984;167:389. doi: 10.1016/S0171-2985(84)80010-8. [DOI] [PubMed] [Google Scholar]
- 532.Dokhelar M.C., Garson D., Wakasugi H., Tabilio A., Testa U., Vainchecker W., Tursz T. K562 cells induced to differentiate by phorbol ester tumor promoters resist NK lysis. Cell. Immunol. 1984;87:389. doi: 10.1016/0008-8749(84)90008-x. [DOI] [PubMed] [Google Scholar]
- 533.Dokhelar M.C., Garson D., Testa U., Tursz T. Target structure for natural killer cells: Evidence against a unique role for transferrin receptor. Eur. J. Immunol. 1984;14:340. doi: 10.1002/eji.1830140412. [DOI] [PubMed] [Google Scholar]
- 534.Zucker-Franklin D., Nabi Z.F. Phorbol ester-induced loss of cell surface sialic acid enhances target cell sensitivity to cytolysis by natural killer (NK) cells. Trans. Assoc. Am. Physicians. 1987;100:339. [PubMed] [Google Scholar]
- 535.Kimber I., Moore M., Harrison C.J. Influence of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the susceptibility of K562 to natural cytotoxicity: Evidence for clonal variation in differentiation-induced changes of lytic sensitivity. Int. J. Cancer. 1984;33:693. doi: 10.1002/ijc.2910330522. [DOI] [PubMed] [Google Scholar]
- 536.Patarrayo M., Biberfeld P., Klein E., Klein G. 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment elevates the natural killer (NK) sensitivity of certain lymphoid cell lines. Cell. Immunol. 1981;63:237. doi: 10.1016/0008-8749(81)90003-4. [DOI] [PubMed] [Google Scholar]
- 537.Yogeeswaran G., Gronberg A., Hansson M., Dalianis T., Kiessling R., Welsh R.M. Correlation of glycosphingolipids and sialic acid in YAC-1 lymphoma variants with their sensitivity to natural killer-cell-mediated lysis. Int. J. Cancer. 1981;28:517. doi: 10.1002/ijc.2910280419. [DOI] [PubMed] [Google Scholar]
- 538.Einhorn S., Anderbring E. Human peripheral blood monocytes are susceptible to interferon-activated natural killer cells. J. Clin. Lab. Invest. 1985;16:197. [PubMed] [Google Scholar]
- 539.Djeu J.Y., Blanchard D.K. Lysis of human monocytes by lymphokine-activated killer cells. Cell. Immunol. 1988;111:55. doi: 10.1016/0008-8749(88)90050-0. [DOI] [PubMed] [Google Scholar]
- 540.Hansson M., Karre K., Kiessling R., Roder J., Andersson B., Häyry P. Natural NK-cell targets in the mouse thymus: Characteristics of the sensitive cell population. J. Immunol. 1979;123:765. [PubMed] [Google Scholar]
- 541.Ljunggren H.G., Karre K. Experimental strategies and interpretations in the analysis of changes in MHC gene expression during tumour progression. Opposing influences of T cell and natural killer mediated resistance? J. Immunogenet. 1986;13:141. doi: 10.1111/j.1744-313x.1986.tb01095.x. [DOI] [PubMed] [Google Scholar]
- 542.Karre K., Ljunggren H.G., Piontek G., Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature (London) 1986;319:675. doi: 10.1038/319675a0. [DOI] [PubMed] [Google Scholar]
- 543.Piontek G.E., Taniguchi K., Ljunggren H.G., Gronberg A., Kiessling R., Klein G., Karre K. YAC-1 MHC class I variants reveal an association between decreased NK sensitivity and increased H-2 expression after interferon treatment or in vivo passage. J. Immunol. 1985;135:4281. [PubMed] [Google Scholar]
- 544.Harel-Bellan A., Quillet A., Marchiol C., DeMars R., Tursz T., Fradelizi D. Natural killer susceptibility of human cells may be regulated by genes in the HLA region on chromosome 6. Proc. Natl. Acad. Sci. U.S.A. 1986;83:5688. doi: 10.1073/pnas.83.15.5688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 545.Storkus W.J., Howell D.N., Salter R.D., Dawson J.R., Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 1987;138:1657. [PubMed] [Google Scholar]
- 546.Yamasaki T., Klein G., Ljunggren H.G., Hoglund P., Ohlen C., Petersson M.G., Karre K. Effects of dimethyl sulfoxide treatment on H-2 expression and susceptibility to NK- or cytotoxic T-lymphocyte-mediated lysis of the YAC-1 lymphoma and its beta 2-microglobulin-deficient variant. J. Natl. Cancer Inst. 1988;80:263. doi: 10.1093/jnci/80.4.263. [DOI] [PubMed] [Google Scholar]
- 547.Chervenak R., Wolcott R.M. Target cell expression of MHC antigens is not (always) a turn-off signal to natural killer cells. J. Immunol. 1988;140:3712. [PubMed] [Google Scholar]
- 548.Gorelik E., Gunji Y., Herberman R.B. H-2 antigen expression and sensitivity of BL6 melanoma cells to natural killer cell cytotoxicity. J. Immunol. 1988;140:2096. [PubMed] [Google Scholar]
- 549.Gopas J., Segal S., Hammerling G., Bar-Eli M., Rager-Zisman B. Influence of H-2K transfection on susceptibility of fibrosarcoma tumor cells to natural killer (NK) cells. Immunol. Lett. 1988;17:261. doi: 10.1016/0165-2478(88)90039-9. [DOI] [PubMed] [Google Scholar]
- 550.Dennert G., Landon C., Lord E.M., Bahler D.W., Frelinger J.G. Lysis of a lung carcinoma by poly I:C-induced natural killer cells is independent of the expression of class I histocompatibility antigens. J. Immunol. 1988;140:2472. [PubMed] [Google Scholar]
- 551.Sawada Y., Fohring B., Shenk T.E., Raska K., Jr Tumorigenicity of adenovirus-transformed cells: Region E1A of adenovirus 12 confers resistance to natural killer cells. Virology. 1985;147:413. doi: 10.1016/0042-6822(85)90143-6. [DOI] [PubMed] [Google Scholar]
- 552.Lazarus A.H., Baines M.G. Studies on the mechanism of specificity of human natural killer cells for tumor cells: Correlation between target cell transferrin receptor expression and competitive activity. Cell. Immunol. 1985;96:255. doi: 10.1016/0008-8749(85)90358-2. [DOI] [PubMed] [Google Scholar]
- 553.Alarcon B., Fresno M. Specific effect of anti-transferrin antibodies on natural killer cells directed against tumor cells. Evidence for the transferrin receptor being one of the target structures recognized by NK cells. J. Immunol. 1985;134:1286. [PubMed] [Google Scholar]
- 554.Zanyk M.J., Banerjee D., McFarlane D.L. Transferrin receptor and 4F2 expression by NK-sensitive and NK-resistant tumour cell lines. Carcinogenesis (London) 1988;9:1377. doi: 10.1093/carcin/9.8.1377. [DOI] [PubMed] [Google Scholar]
- 555.Bridges K.R., Smith B.R. Discordance between transferrin receptor expression and susceptibility to lysis by natural killer cells. J. Clin. Invest. 1985;76:913. doi: 10.1172/JCI112089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 556.Rieber E.P., Rank G., Riethmuller G. Transferrin receptors on tumor and bone marrow cells: Lack of involvement as target structure for natural killer cells. Klin. Wochenschr. 1986;64:1119. doi: 10.1007/BF01726872. [DOI] [PubMed] [Google Scholar]
- 557.Perl A., Looney R.J., Ryan D.H., Abraham G.N. The low affinity 40,000 Fc gamma receptor and the transferrin receptor can be alternative or simultaneous target structures on cells sensitive for natural killing. J. Immunol. 1986;136:4714. [PubMed] [Google Scholar]
- 558.Zarcone D., Tilden A.B., Friedman H.M., Crossi C.E. Human leukemia-derived cell lines and clones as models for mechanistic analysis of natural killer cell-mediated cytotoxicity. Cancer Res. 1987;47:2674. [PubMed] [Google Scholar]
- 559.Harris J.F., Chin J., Jewett M.A., Kennedy M., Gorczynski R.M. Monoclonal antibodies against SSEA-1 antigen: Binding properties and inhibition of human natural killer cell activity against target cells bearing SSEA-1 antigen. J. Immunol. 1984;132:2502. [PubMed] [Google Scholar]
- 560.Chin A.I., Yen T.S. Natural killer cell-target interactions: The role of 4F2 antigen in the human system. Cell. Immunol. 1987;106:180. doi: 10.1016/0008-8749(87)90161-4. [DOI] [PubMed] [Google Scholar]
- 561.Jaso-Friedmann L., Evans D.L., Grant C.C., John A.S., Harris D.T., Koren H.S. Characterization by monoclonal antibodies of a target cell antigen complex recognized by nonspecific cytotoxic cells. J. Immunol. 1988;141:2861. [PubMed] [Google Scholar]
- 562.Forbes J.T., Beretthauser R.K., Oeltmann T.N. Mannose 6-, fructose 1-, and fructose 6-phosphates inhibit human natural killer cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. U.S.A. 1981;78:5797. doi: 10.1073/pnas.78.9.5797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 563.Ortaldo J.R., Timonen T.T., Herberman R.B. Inhibition of activity of human NK and K cells by simple sugars: Discrimination between binding and postbinding events. Clin. Immunol. Immunopathol. 1984;31:439. doi: 10.1016/0090-1229(84)90096-5. [DOI] [PubMed] [Google Scholar]
- 564.Chambers W.H., Oeltmann T.N. The effects of hexose 6-O-sulfate esters on human natural killer cell lytic function. J. Immunol. 1986;137:1469. [PubMed] [Google Scholar]
- 565.Decker J.M., Hinson A., Ades E.W. Inhibition of human NK cell cytotoxicity against K562 cells with glycopeptides from K562 plasma membrane. J. Clin. Lab. Immunol. 1984;15:137. [PubMed] [Google Scholar]
- 566.Werkmeister J.A., Pross H.F. Studies on natural antibody-dependent, and interleukin-2-activated killer-cell activity of a patient with mucolipidosis III as a test of the mannose-6-phosphate lytic acceptor hypothesis. J. Clin. Immunol. 1985;5:228. doi: 10.1007/BF00929457. [DOI] [PubMed] [Google Scholar]
- 567.Haubeck H.D., Kolsch E., Imort M., Hasilik A., von Figura K. Natural killer cell-mediated cytotoxicity does not depend on recognition of mannose 6-phosphate residues. J. Immunol. 1985;134:65. [PubMed] [Google Scholar]
- 568.Pospisil M., Kubrycht J., Bezouska T., Taborsky O., Novak M., Kocourek J. Lactosamine type asialooligosaccharide recognition in NK cytotoxicity. Immunol. Lett. 1986;12:83. doi: 10.1016/0165-2478(86)90087-8. [DOI] [PubMed] [Google Scholar]
- 569.Trinchieri G., Santoli D., Granato D., Perussia B. Antagonistic effects of interferons on the cytotoxicity mediated by natural killer cells. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1981;40:2705. [PubMed] [Google Scholar]
- 570.Welsh R.M., Karre K., Hansson M., Kunkel L.A., Kiessling R.W. Interferon-mediated protection of normal and tumor target cells against lysis by mouse natural killer cells. J. Immunol. 1981;126:219. [PubMed] [Google Scholar]
- 571.Wallach D. Interferon-induced resistance to the killing by NK cells: A preferential effect of IFN-gamma. Cell. Immunol. 1983;75:390. doi: 10.1016/0008-8749(83)90337-4. [DOI] [PubMed] [Google Scholar]
- 572.Cunningham-Rundles S. In: “NK Cells and Other Natural Effector Cells”: Control of natural cytotoxicity in the regional lymph node in breast cancer . Herberman R.B., editor. Academic Press; New York: 1982. p. 1133. [Google Scholar]
- 573.Wright S.C., Bonavida B. Studies on the mechanism of natural killer cell-mediated cytotoxicity. IV. Interferon-induced inhibition of NK target cell susceptibility to lysis is due to a defect in their ability to stimulate release of natural killer cytotoxic factors (NKCF). J. Immunol. 1983;130:2965. [PubMed] [Google Scholar]
- 574.Uchida A., Vanky F., Klein E. Natural cytotoxicity of human blood lymphocytes and monocytes and their cytotoxic factors: Effect of interferon on target cell susceptibility. J. Natl. Cancer Inst. 1985;75:849. doi: 10.1093/jnci/75.5.849. [DOI] [PubMed] [Google Scholar]
- 575.Gronberg A., Ferm M.T., Ng J., Reynolds C.W., Ortaldo J.R. IFN-gamma treatment of K562 cells inhibits natural killer cell triggering and decreases the susceptibility to lysis by cytoplasmic granules from large granular lymphocytes. J. Immunol. 1988;140:4397. [PubMed] [Google Scholar]
- 576.De Fries R.U., Golub S.H. Characteristics and mechanism of IFN-gamma-induced protection of human tumor cells from lysis by lymphokine-activated killer cells. J. Immunol. 1988;140:3686. [PubMed] [Google Scholar]
- 577.Djeu J.Y., Blanchard D.K. Interferon-gamma-induced alterations of monocyte susceptibility to lysis by autologous lumphokine-activated killer (LAK) cells. Int. J. Cancer. 1988;42:449. doi: 10.1002/ijc.2910420323. [DOI] [PubMed] [Google Scholar]
- 578.Yogeeswaran G., Fujinami R., Kiessling R., Welsh R.M. Interferon-induced alterations in sialic acid and glycoconjugates of L-929 cells. Virology. 1982;121:363. doi: 10.1016/0042-6822(82)90174-x. [DOI] [PubMed] [Google Scholar]
- 579.Reiter Z., Fischer D.G., Rubinstein M. The protective effect of interferon against natural killing activity is not mediated via the expression of class I MHC antigens. Immunol. Lett. 1988;17:323. doi: 10.1016/0165-2478(88)90005-3. [DOI] [PubMed] [Google Scholar]
- 580.Zoller M., Strubel A., Hammerling G., Andrighetto G., Raz A., Ben-Zeev A. Interferon-gamma treatment of B16 melanoma cells: Opposing effects for non-adaptive and adaptive immune defense and its reflection by metastatic spread. Int. J. Cancer. 1988;41:256. doi: 10.1002/ijc.2910410217. [DOI] [PubMed] [Google Scholar]
- 581.Tai A., Safilian B., Warner N.L. Identification of distinct target-specific subsets of NK cells in peripheral blood of normal donors. Hum. Immunol. 1982;4:123. doi: 10.1016/0198-8859(82)90012-x. [DOI] [PubMed] [Google Scholar]
- 582.Takasugi M., Mickey M.R. Interaction analysis of selective and nonselective cell-mediated cytotoxicity. J. Natl. Cancer Inst. (U.S.) 1976;57:255. doi: 10.1093/jnci/57.2.255. [DOI] [PubMed] [Google Scholar]
- 583.Bolhuis R.L.H., Van De Griend R.J., Roteltap C.P.H. Clonal expansion of human B73.1 positive NK cells or large granular lymphocytes exerting strong antibody dependent and independent cytotoxicity and occasionally lectin dependent cytotoxicity. Nat. Immun. Cell Growth Regul. 1983;3:61. [PubMed] [Google Scholar]
- 584.Krensky A.M., Ault K.A., Reiss C.S., Strominger J.L., Burakoff S.J. Generation of long-term human cytolytic cell lines with persistent natural killer activity. J. Immunol. 1982;129:1748. [PubMed] [Google Scholar]
- 585.Ciccone E., Viale O., Pende D., Malnati M., Biassoni R., Melioli G., Moretta A., Long E.O., Moretta L. Specific lysis of allogeneic cells after activation of CD3- lymphocytes in mixed lymphocyte culture. J. Exp. Med. 1988;168:2403. doi: 10.1084/jem.168.6.2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 586.Koide Y., Takasugi M. Determination of specificity in natural cell-mediated cytotoxicity by natural antibodies. J. Natl. Cancer Inst. (U.S.) 1977;59:1099. doi: 10.1093/jnci/59.4.1099. [DOI] [PubMed] [Google Scholar]
- 587.Takasugi J., Koide Y., Takasugi M. Reconstitution of natural cell-mediated cytotoxicity with specific antibodies. Eur. J. Immunol. 1977;7:887. doi: 10.1002/eji.1830071213. [DOI] [PubMed] [Google Scholar]
- 588.Dennert G., Anderson C.G., Warner J. Induction of bone marrow allograft rejection and hybrid resistance in non responder recipients by antibody: Is there avidence for a dual receptor interaction in acute marrow graft rejection? J. Immunol. 1986;136:3981. [PubMed] [Google Scholar]
- 589.Harfast B., Torbjorn A., Stejskal V., Perlmann P. Interactions between human lymphocytes and paramyxovirus-infected cells: Adsorption and cytotoxicity. J. Immunol. 1977;118:1132. [PubMed] [Google Scholar]
- 590.Kay H.D., Bonnard G.D., Herberman R.B. Evaluation of the role of IgG antibodies in human natural cell-mediated cytotoxicity against the myeloid cell line K562. J. Immunol. 1979;122:675. [PubMed] [Google Scholar]
- 591.Trinchieri G., Santoli D., Koprowski H. Spontaneous cell-mediated cytotoxicity in humans. J. Immunol. 1978;120:1849. [PubMed] [Google Scholar]
- 592.Cordier G., Samarut C., Revillard J.P. Changes of Fc receptor-related properties induced by interaction of human lymphocytes with insoluble immune complexes. J. Immunol. 1977;119:1943. [PubMed] [Google Scholar]
- 593.Pape G.R., Moretta L., Troye M., Perlmann P. Natural cytotoxicity of human Fc-receptor-positive T lymphocytes after surface modulation with immune complexes. Scand. J. Immunol. 1979;9:291. doi: 10.1111/j.1365-3083.1979.tb02734.x. [DOI] [PubMed] [Google Scholar]
- 594.Ziegler H.K., Henney C.S. Studies on the cytotoxic activity of human lymphocytes. II. Interactions between IgG and Fc receptors leading to inhibition of K cell function. J. Immunol. 1977;119:1010. [PubMed] [Google Scholar]
- 595.Heiskala M. Effect of interferons on the inhibition of human natural killers by primary monolayer cell cultures. Immunology. 1987;60:167. [PMC free article] [PubMed] [Google Scholar]
- 596.Abrams S.I., Brahmi Z. The functional loss of human natural killer cell activity induced by K562 is reversible via an interleukin-2-dependent mechanism. Cell. Immunol. 1986;101:558. doi: 10.1016/0008-8749(86)90166-8. [DOI] [PubMed] [Google Scholar]
- 597.Abrams S.I., Brahmi Z. Target cell directed NK inactivation. Concomitant loss of NK and antibody-dependent cellular cytotoxicity activities. J. Immunol. 1988;140:2090. [PubMed] [Google Scholar]
- 598.Brahmi Z., Bray R.A., Abrams S.I. Evidence for an early calcium-independent event in the activation of the human natural killer cell cytolytic mechanism. J. Immunol. 1985;135:4108. [PubMed] [Google Scholar]
- 599.Seaman W.E., Eriksson E., Dobrow R., Imboden J.B. Inositol trisphosphate is generated by a rat natural killer cell tumor in response to target cells or to crosslinked monoclonal antibody OX-34: Possible signaling role for the OX-34 determinant during activation by target cells. Proc. Natl. Acad. Sci. U.S.A. 1987;84:4239. doi: 10.1073/pnas.84.12.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 600.Gerrard J.M., Hildes E., Atkinson E.A., Greenberg A.H. Activation of inositol cycle in large granular lymphocyte leukemia RNK following contact with an NK-sensitive tumor. Adv. Prostaglandin, Thromboxane Leukotriene Res. 1987;17A:573. [PubMed] [Google Scholar]
- 601.Steele T.A., Brahmi Z. Phosphatidylinositol metabolism accompanies early activation events in tumor target cell-stimulated human natural killer cells. Cell. Immunol. 1988;112:402. doi: 10.1016/0008-8749(88)90309-7. [DOI] [PubMed] [Google Scholar]
- 602.Chow S.C., Ng J., Nordstedt C., Fredholm B.B., Jondal M. Phosphoinositide breakdown and evidence for protein kinase C involvement during human NK killing. Cell. Immunol. 1988;114:96. doi: 10.1016/0008-8749(88)90257-2. [DOI] [PubMed] [Google Scholar]
- 603.Jondal M., Ng J., Patarroyo M., Broliden P.A. Phorbol ester regulation of Ca2+ flux during natural, lectin and antibody-dependent killing. Immunology. 1986;59:347. [PMC free article] [PubMed] [Google Scholar]
- 604.Windebank K.P., Abraham R.T., Powis G., Olsen R.A., Barna T.J., Leibson P.J. Signal transduction during human natural killer cell activation: Inositol phosphate generation and regulation by cyclic AMP. J. Immunol. 1988;141:3951. [PubMed] [Google Scholar]
- 605.Pantaleo G., Olive D., Poggi A., Pozzan T., Moretta L., Moretta A. Antibody-induced modulation of the CD3/T cell receptor complex causes T cell refractoriness by inhibiting the early metabolic steps involved in T cell activation. J. Exp. Med. 1987;166:619. doi: 10.1084/jem.166.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 606.Schrezenmeier H., Ahnert-Hilger G., Fleischer B. Inactivation of a T cell receptor-associated GTP-binding protein by antibody-induced modulation of the T cell receptor/CD3 complex. J. Exp. Med. 1988;168:817. doi: 10.1084/jem.168.2.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 607.Kohl S., Springer T.A., Schmalstieg F.C., Loo L.S., Anderson D.C. Defective natural killer cytotoxicity and polymorphonuclear leukocyte antibody-dependent cellular cytotoxicity in patients with LFA-1/OKM-1 deficiency. J. Immunol. 1984;133:2972. [PubMed] [Google Scholar]
- 608.Mentzer S.J., Krensky A.M., Burakoff S.J. Mapping Functional epitopes of the human LFA-1 glycoprotein: Monoclonal antibody inhibition of NK and CTL effectors. Hum. Immunol. 1986;17:288. doi: 10.1016/0198-8859(86)90280-6. [DOI] [PubMed] [Google Scholar]
- 609.Axberg I., Ramstedt U., Patarroyo M., Beatty P., Wigzell H. Inhibition of natural killer cell cytotoxicity by a monoclonal antibody directed against adhesion-mediating protein gp 90 (CD18). Scand. J. Immunol. 1987;26:547. doi: 10.1111/j.1365-3083.1987.tb02288.x. [DOI] [PubMed] [Google Scholar]
- 610.Hart M.K., Kornbluth J., Main E.K., Spear B.T., Taylor J., Wilson D.B. Lymphocyte function-associated antigen 1 (LFA-1) and natural killer (NK) cell activity: LFA-1 is not necessary for all killer:target cell interactions. Cell. Immunol. 1987;109:306. doi: 10.1016/0008-8749(87)90314-5. [DOI] [PubMed] [Google Scholar]
- 611.Schmidt R.E., Bartley G., Levine H., Schlossman S.F., Ritz J. Functional characterization of LFA-1 antigens in the interaction of human NK clones and target cells. J. Immunol. 1985;135:1020. [PubMed] [Google Scholar]
- 612.Ramos O.F., Kai C., Yefenof E., Klein E. The elevated natural killer sensitivity of targets carrying surface-attached C3 fragments require the availability of the iC3b receptor (CR3) on the effectors. J. Immunol. 1988;140:1239. [PubMed] [Google Scholar]
- 613.Pawelec G., Newman W., Schwulera U., Wernet P. Heterogeneity of human natural killer recognition demonstrated by cloned effector cells and differential blocking of cytotoxicity with monoclonal antibodies. Cell. Immunol. 1985;92:31. doi: 10.1016/0008-8749(85)90062-0. [DOI] [PubMed] [Google Scholar]
- 614.Starling G.C., Davidson S.E., McKenzie J.L., Hart D.N. Inhibition of natural killer-cell mediated cytolysis with monoclonal antibodies to restricted and non-restricted epitopes of the leucocyte common antigen. Immunology. 1987;61:351. [PMC free article] [PubMed] [Google Scholar]
- 615.Burns G.F., Werkmeister J.A., Triglia T. A novel antigenic cell surface protein associated with T200 is involved in the post-activation stage of human NK cell-mediated lysis. J. Immunol. 1984;133:1391. [PubMed] [Google Scholar]
- 616.Werkmeister J.A., Burns G.F., Triglia T. Anti-idiotype antibodies to the 9.1C3 blocking antibody used to probe the lethal hit stage of NK cell mediated cytolysis. J. Immunol. 1984;133:1385. [PubMed] [Google Scholar]
- 617.Hiserodt J.C., Laybourn K.A., Varani J. Laminin inhibits the recognition of tumor target cells by murine natural killer (NK) and natural cytotoxic (NC) lymphocytes. Am. J. Pathol. 1985;121:148. [PMC free article] [PubMed] [Google Scholar]
- 618.Hiserodt J.C., Laybourn K.A., Varani J. Expression of a laminin like substance on the surface of murine natural killer (NK) lymphocytes and its role in NK recognition of tumor target cells. J. Immunol. 1985;135:1484. [PubMed] [Google Scholar]
- 619.Schwarz R.E., Whiteside T.L., Hiserodt J.C. In: “Cellular Basis of Immune Modulation”: A laminin B2-like surface receptor (human P48 protein equivalent) is involved in tumor cell recognition by lymphokine activated killer cells expressing a Leu19+/CD3- or a Leu19+/CD3 + surface phenotype . Kaplan J.G., Green D.R., editors. Liss; New York: 1989. (in press) [Google Scholar]
- 620.Schwarz R.E., Hiserodt J.C. The expression and functional involvement of laminin-like molecules in non-MHC restricted cytotoxicity by human Leu-19+/CD3- natural killer lymphocytes. J. Immunol. 1988;141:3318. [PubMed] [Google Scholar]
- 621.Baum L.L., James K.K., Glaviano R.R., Gewurz H. Possible role for C-reactive protein in the human natural killer cell response. J. Exp. Med. 1983;157:301. doi: 10.1084/jem.157.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 622.Samberg N.L., Bray R.A., Gewurz H., Landay A.L., Potempa L.A. Preferential expression of neo-CRP epitopes on the surface of human peripheral blood lymphocytes. Cell. Immunol. 1988;116:86. doi: 10.1016/0008-8749(88)90212-2. [DOI] [PubMed] [Google Scholar]
- 623.Baum L.L., Johnson B., Berman S., Graham D., Mold C. C-reactive protein is involved in natural killer cell-mediated lysis but does not mediate effector-target cell recognition. Immunology. 1987;61:93. [PMC free article] [PubMed] [Google Scholar]
- 624.Meuer S.C., Hussey R.E., Fabbi M., Fox D., Acuto O., Fitzgerald K.A., Hodgdon J.C., Protentis J.P., Schlossman S.F., Reinherz E.L. An alternative pathway of T-cell activation: A functional role for the 50 Kd TII sheep erythrocyte receptor protein. Cell (Cambridge, Mass.) 1984;36:897. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
- 625.Ythier A., Delmon L., Reinherz E., Nowill A., Mingeon P., Mishal Z., Bohuon C., Hercend T. Proliferative responses of circulating human NK cells: Delineation of a unique pathway involving both direct and helper signals. Eur. J. Immunol. 1985;15:1209. doi: 10.1002/eji.1830151213. [DOI] [PubMed] [Google Scholar]
- 626.Pantaleo G., Zocchi M.R., Ferrini S., Poggi A., Tambussi G., Bottino C., Moretta L., Moretta A. Human cytolytic cell clones lacking surface expression of T cell receptor alpha/beta or gamma/delta. Evidence that surface structures other than CD3 or CD2 molecules are required for signal transduction. J. Exp. Med. 1988;168:13. doi: 10.1084/jem.168.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 627.Schmidt R.E., Hercend T., Fox D.A., Bensussan A., Bartley G., Daley J.F., Schlossman S.F., Reinherz E.L., Ritz J. The role of interleukin 2 and T11 E rosette antigen in activation and proliferation of human NK clones. J. Immunol. 1985;135:672. [PubMed] [Google Scholar]
- 628.Schmidt R.E., Michon J.M., Woronicz J., Schlossman S.F., Reinherz E.L., Ritz J. Enhancement of natural killer function through activation of the T11 E rosette receptor. J. Clin. Invest. 1987;79:305. doi: 10.1172/JCI112800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 629.Siliciano R.F., Pratt J.C., Schmidt R.E., Ritz J., Reinherz E.L. Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein. Nature (London) 1985;317:428. doi: 10.1038/317428a0. [DOI] [PubMed] [Google Scholar]
- 630.Schmidt R.E., Caulfield J.P., Michon J., Hein A., Kamada M.M., MacDermott R.P., Stevens R.L., Ritz J. T11/CD2 activation of cloned human natural killer cells results in increased conjugate formation and exocytosis of cytolytic granules. J. Immunol. 1988;140:991. [PubMed] [Google Scholar]
- 631.Anasetti C., Martin P.J., June C.H., Hellström K.E., Ledbetter J.A., Rabinovitch P.S., Morishita Y., Hellström I., Hansen J.A. Induction of calcium flux and enhancement of cytolytic activity in natural killer cells by cross-linking of the sheep erythrocyte binding protein (CD2) and the Fc-receptor (CD16). J. Immunol. 1987;139:1772. [PubMed] [Google Scholar]
- 632.Harris D.T., Koren H.S., Devlin R.B., Jaso-Friedmann L., Evans D.L. In: “Natural Killer Cells and the Host Defense”: Analysis of a human natural killer cell antigen receptor . Ades E.W., Lopez C., editors. Karger; Basel: 1989. (in press) [Google Scholar]
- 633.Harris, D.T., Jaso-Friedman, L., Devlin, R.B., Koren, H.S., and Evans, D.L. (1989). “Identification of a structure on human natural killer cells involved in antigen recognition.” J. Immunol. (in press). [PubMed]
- 634.Ortaldo J.R., Kantor R.R.S., Segal D., Giardina S.L., Bino T. Definition of a proposed NK receptor. Nat. Immun. Cell Growth Regul. 1988;7:62. [Google Scholar]
- 635.Timonen T., Carpén O., Seppälä I. Reactivity of antiimmunoglobulin antibodies with functional determinants of natrual killer cells. Nat. Immun. Cell Growth Regul. 1988;7:59. [Google Scholar]
- 636.Cassatella M.A., Anegón I., Cuturi M.C., Griskey P., Trinchieri G., Perussia B. NK receptors and target antigens involved in cytotoxicity. Nat. Immun. Cell Growth Regul. 1989;7:637. [Google Scholar]
- 137.Hiserodt J.C. FcR (CD16) interaction with ligand induces Ca2+ mobilization and phosphoinositide turnover in human natural killer cells. Differential role of Ca2+ in FcR (CD16) and II-2-induced transcription and expression of lymphokine genes. J. Exp. Med. 1989;169:549. doi: 10.1084/jem.169.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 638.Young J.D.-E., Cohn Z.A. Cellular and humoral mechanisms of cytotoxicity: Structural and functional analogies. Adv. Immunol. 1987;41:269. doi: 10.1016/s0065-2776(08)60033-4. [DOI] [PubMed] [Google Scholar]
- 639.Carpén O., Säkselä E. Directed exocytosis in the NK cell-mediated cytotoxicity. A review. Nat. Immun. Cell. Growth Regul. 1988;7:1. [PubMed] [Google Scholar]
- 640.Roder J.C., Argov S., Klein M., Petersson C., Kiessling R., Andersson K., Hansson M. Target-effector cell interaction in the natural killer cell system. V. Energy requirements, membrane integrity, and the possible involvement of lysosomal enzymes. Immunology. 1980;40:107. [PMC free article] [PubMed] [Google Scholar]
- 641.Roder J.C., Kiessling R., Biberfield P., Andersson B. Target-effector interactions in the natural killer (NK) cell system. II. Isolation and characterization of the effector cells. J. Immunol. 1978;121:2509. [PubMed] [Google Scholar]
- 642.Hiserodt J., Britvan L., Targans S. Characterization of the cytolytic reaction mechanism of the human natural killer lymphocyte. J. Immunol. 1982;129:1782. [PubMed] [Google Scholar]
- 643.Quan P.C., Ishizaka T., Bloom B.R. Studies on the mechanism of NK cell lysis. J. Immunol. 1982;128:1786. [PubMed] [Google Scholar]
- 644.Roder J.C., Haliotis T. In: “Natural Cell-Mediated Immunity against Tumors”: A comparative analysis of the NK cytolytic mechanism and regulatory genes . Herberman R.B., editor. Academic Press; New York: 1980. [Google Scholar]
- 645.Hiserodt J., Britvan L., Targans S. Inhibition of human natural killer cytotoxicity by heterologous and monoclonal antibodies. J. Immunol. 1982;129:2248. [PubMed] [Google Scholar]
- 646.Solovera J.J., Alvarez-Mon M., Casas J., Carballido J., Durantez A. Inhibition of human natural killer (NK) activity by calcium channel modulators and a calmodulin antagonist. J. Immunol. 1987;139:876. [PubMed] [Google Scholar]
- 647.Ng J., Fredholm B.B., Jondal M. Studies on the calcium dependence of human NK cell killing. Biochem. Pharmacol. 1987;36:3943. doi: 10.1016/0006-2952(87)90462-x. [DOI] [PubMed] [Google Scholar]
- 648.Steele T.A., Brahmi Z. Chlorpromazine inhibits human natural killer cell activity and antibody-dependent cell-mediated cytotoxicity. Biochem. Biophys. Res. Commun. 1988;155:597. doi: 10.1016/s0006-291x(88)80536-9. [DOI] [PubMed] [Google Scholar]
- 649.Ullberg M., Jondal M., Lanefelt F., Fredholm B.B. Inhibition of human NK cell cytotoxicity by induction of cyclic AMP depends on impaired target cell recognition. Scand. J. Immunol. 1983;17:365. doi: 10.1111/j.1365-3083.1983.tb00801.x. [DOI] [PubMed] [Google Scholar]
- 650.Bancu A.C., Gherman M., Sulica A., Goto T., Farrar W., Herberman R.B. Regulation of human natural cytotoxicity by IgG. II. Cyclic AMP as a mediator of monomeric IgG-induced inhibition of natural killer cell activity. Cell. Immunol. 1988;114:246. doi: 10.1016/0008-8749(88)90319-x. [DOI] [PubMed] [Google Scholar]
- 651.Frey T., Petty H.R., McConnell H.M. Electron microscopic study of natural killer cell-tumor cell conjugates. Proc. Natl. Acad. Sci. U.S.A. 1982;79:5317. doi: 10.1073/pnas.79.17.5317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 652.Burns E.R., Zucker-Franklin D., Valentine F. Cytotoxicity of natural killer cells. Correlation with emperipolesis and surface enzymes. Lab. Invest. 1982;47:99. [PubMed] [Google Scholar]
- 653.Hoffman T., Hirata F., Bougnoux P., Fraser B.A., Goldfarb R.H., Herberman R.B., Axelrod J. Phospholipid methylation and phospholipase A2 activation in cytotoxicity by human natural killer cells. Proc. Natl. Acad. Sci. U.S.A. 1981;78:3839. doi: 10.1073/pnas.78.6.3839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 654.Carine K., Hudig D. Assessment of a role for phospholipase A2 and arachidonic acid metabolism in human lymphocyte natural cytotoxicity. Cell. Immunol. 1984;87:270. doi: 10.1016/0008-8749(84)90151-5. [DOI] [PubMed] [Google Scholar]
- 655.Leung K.H., Koren H.S. Regulation of human natural killing. III. Mechanism for interferon induction of loss of susceptibility to suppression by cyclic AMP elevating agents. J. Immunol. 1984;132:1445. [PubMed] [Google Scholar]
- 656.Ramstedt U., Ng J., Wigzell H., Serhan C.N., Samuelsson B. Action of novel eicosanoids lipoxin A and B on human natural killer cell cytotoxicity: Effects on intracellular cAMP and target cell binding. J. Immunol. 1985;135:3434. [PubMed] [Google Scholar]
- 657.Imir T., Sibbitt W., Bankhurst A. The relative resistance of lymphokine activated killer cells to suppression by prostaglandins and glucocorticoids. Prostaglandins, Leukotrienes Med. 1987;28:111. doi: 10.1016/0262-1746(87)90156-9. [DOI] [PubMed] [Google Scholar]
- 658.Seaman W.E. Human natural killer cell activity is reversibly inhibited by antagonists of lipoxygenation. J. Immunol. 1983;131:2953. [PubMed] [Google Scholar]
- 659.Leung K.H. Selective inhibition of leukotriene C4 synthesis and natural killer activity by ethacrynic acid. Cell. Immunol. 1988;114:359. doi: 10.1016/0008-8749(88)90328-0. [DOI] [PubMed] [Google Scholar]
- 660.Sevilla C.L., Radcliff G., Mahle N.H., Swartz S., Sevilla M.D., Chores J., Callewaert D.M. Multiple mechanisms of target cell disintegration are employed in cytotoxicity reaction mediated by human natural killer cells. Nat. Immun. Cell Growth Regul. 1989;8:20. [PubMed] [Google Scholar]
- 661.Carpén O., Virtanen I., Säkselä E. The cytotxic activity of human natural killer cells requires an intact secretory apparatus. Cell. Immunol. 1981;58:97. doi: 10.1016/0008-8749(81)90152-0. [DOI] [PubMed] [Google Scholar]
- 662.Hiserodt J., Britvan L., Targan S. Studies on the mechanism of the human natural killer cell lethal hit. Analysis of the mechanism of protease inhibition of the lethal hit. J. Immunol. 1983;131:2705. [PubMed] [Google Scholar]
- 663.Hiserodt J., Britvan L., Targan S. Studies on the mechanism of human natural killer cell lethal hit. Evidence for transfer of protease sensitive structures requisite for target cell lysis. J. Immunol. 1983;131:2710. [PubMed] [Google Scholar]
- 664.Wright S.C., Bonavida B. Selective lysis of NK-sensitive target cells by a soluble mediator released from murine spleen cells and human peripheral blood lymphocytes. J. Immunol. 1981;126:1516. [PubMed] [Google Scholar]
- 665.Wright S.C., Bonavida B. Studies on the mechanism of natural killer (NK) cell-mediated cytotoxicity (CMC). I. Release of cytotoxic factors specific for NK-sensitive target cells (NKCF) during coculture of NK effector cells with NK target cells. J. Immunol. 1982;129:433. [PubMed] [Google Scholar]
- 666.Wright S.C., Bonavida B. Studies on the mechanism of natural killer cytotoxicity. II. Coculture of human PBL with NK-sensitive or resistant cell lines stimulates release of natural killer cytotoxic factors (NKCF) selectively cytotoxic to NK-sensitive target cells. J. Immunol. 1983;130:2479. [PubMed] [Google Scholar]
- 667.Farram E., Targan S.R. Identification of human natural killer soluble cytotoxic factor(s) (NKCF) derived from NK-enriched lymphocyte populations: Specificity of generation and killing. J. Immunol. 1983;130:1252. [PubMed] [Google Scholar]
- 668.Degliantoni G., Murphy M., Kobayashi M., Francis M.-K., Perussia B., Trinchieri G. Natural killer (NK) cell-derived hematopoietic colony inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J. Exp. Med. 1985;162:1512. doi: 10.1084/jem.162.5.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 669.Wright S.C., Bonavida B. Studies on the mechanism of natural killer cell-mediated cytotoxicity. VII. Functional comparison of human natural killer cytotoxic factors with recombinant lymphotoxin and tumor necrosis factor. J. Immunol. 1987;138:1791. [PubMed] [Google Scholar]
- 670.Ortaldo J.R., Ransom J.R., Sayers T.J., Herberman R.B. Analysis of cytostatic/cytotoxic lymphokines: Relationship of natural killer cytotoxic factor to recombinant lymphotoxin, recombinant tumor necrosis factor, and leukoregulin. J. Immunol. 1986;137:2857. [PubMed] [Google Scholar]
- 671.Bialas T., Kolitz J., Levi E., Polivka A., Oez S., Miller G., Welte K. Distinction of partially purified human natural killer cytotoxic factor from recombinant human tumor necrosis factor and recombinant human lymphotoxin. Cancer Res. 1988;48:891. [PubMed] [Google Scholar]
- 672.Ortaldo J.R., Winkler-Pickett R., Morgan A.C., Woodhouse C., Kantor R., Reynolds C.W. Analysis of rat natural killer cytotoxic factor (NKCF) produced by rat NK cell lines and the production of a murine monoclonal antibody that neutralizes NKCF. J. Immunol. 1987;139:3159. [PubMed] [Google Scholar]
- 673.Liu C.-C., Steffen M., King F., Young J.D. Identification, isolation, and characterization of a novel cytotoxin in murine cytolytic lymphocytes. Cell (Cambridge, Mass.) 1987;51:393. doi: 10.1016/0092-8674(87)90635-0. [DOI] [PubMed] [Google Scholar]
- 674.Lichtenheld M.G., Olsen K.J., Lu P., Lowrey D.M., Hameed A., Hengartner H., Podack E.R. Structure and function of human perforin. Nature (London) 1988;335:448. doi: 10.1038/335448a0. [DOI] [PubMed] [Google Scholar]
- 675.Liu C.-C., Perussia B., Cohn Z.A., Young J.D. Identification and characterization of a pore-forming protein of human peripheral blood NK cells. J. Exp. Med. 1986;164:2061. doi: 10.1084/jem.164.6.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 676.Zalman L.S., Brothers M.A., Müller-Eberhard H.J. A C9 related channel forming protein in the cytoplasmic granules of human large granular lymphocytes. Biosci. Rep. 1985;5:1093. doi: 10.1007/BF01119631. [DOI] [PubMed] [Google Scholar]
- 677.Shinkai Y., Ishikawa H., Hattori M., Okumura K. Resistance of mouse cytolytic cells to pore-forming protein-mediated cytolysis. Eur. J. Immunol. 1988;18:29. doi: 10.1002/eji.1830180106. [DOI] [PubMed] [Google Scholar]
- 678.Jiang S., Pereschini P., Zychlinsky A., Liu C.-C., Perussia B., Young J.D. Resistance of cytolytic lymphocytes to perforin mediated killing: Lack of correlation with complement-associated homologous species restriction. J. Exp. Med. 1988;168:2207. doi: 10.1084/jem.168.6.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 679.Müller-Eberhard H.J. The molecular basis of target cell killing by human lymphocytes and of killer cell self-protection. Immunol. Rev. 1988;103:87. doi: 10.1111/j.1600-065x.1988.tb00751.x. [DOI] [PubMed] [Google Scholar]
- 680.Zalman L.S., Brothers M.A., Müller-Eberhard H.J. Self-protection of cytotoxic lymphocytes: A soluble form of homologous restriction factor in cytoplasmic granules. Proc. Natl. Acad. Sci. U.S.A. 1988;85:4827. doi: 10.1073/pnas.85.13.4827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 681.Berke G. Multiple mechanisms of lymphocyte-mediated killing. Immunol. Today. 1988;9:294. doi: 10.1016/0167-5699(88)91318-7. [DOI] [PubMed] [Google Scholar]
- 682.Tirosh R., Berke G. T-lymphocyte-mediated cytolysis as an excitatory process of the target. I. Evidence that the target cell may be the site of Ca2+ action. Cell. Immunol. 1985;95:113. doi: 10.1016/0008-8749(85)90300-4. [DOI] [PubMed] [Google Scholar]
- 683.Goldstein P., Smith E.T. In: “Contemporary Topics in Immunology: T Cells”: Mechanism of T-cell-mediated cytolysis: The lethal hit stage . Stutman O., editor. Plenum; New York: 1977. [DOI] [PubMed] [Google Scholar]
- 684.Trinchieri G., De Marchi M. Antibody-dependent cell-mediated cytotoxicity in humans. II. Energy requirement. J. Immunol. 1975;115:256. [PubMed] [Google Scholar]
- 685.Young J.D., Cohn Z.A. Cellular and humoral mechanisms of cytotoxicity: Structural and functional analogies. Adv. Immunol. 1987;41:269. doi: 10.1016/s0065-2776(08)60033-4. [DOI] [PubMed] [Google Scholar]
- 686.Russell J.H. Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol. Rev. 1983;72:97. doi: 10.1111/j.1600-065x.1983.tb01074.x. [DOI] [PubMed] [Google Scholar]
- 687.Duke R.C., Cohen J.J., Chervenak R. Differences in target cell DNA fragmentation induced by mouse cytotoxic T lymphocytes and natural killer cells. J. Immunol. 1986;137:1442. [PubMed] [Google Scholar]
- 688.Gromkowski S.H., Brown T.C., Cerutti P.A., Cerottini J.-C. DNA of human Raji target cells is damaged upon lymphocyte-mediated lysis. J. Immunol. 1986;136:752. [PubMed] [Google Scholar]
- 689.Christiaansen J.E., Sears D.W. Lack of lymphocyte-induced DNA fragmentation in human targets during lysis represents a species-specific difference between human and murine cells. Proc. Natl. Acad. Sci. U.S.A. 1985;82:4482. doi: 10.1073/pnas.82.13.4482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 690.Trinchieri G., De Marchi M. Antibody-dependent cell-mediated cytotoxicity in humans. III. Effect of protease inhibitors and substrates. J. Immunol. 1976;116:885. [PubMed] [Google Scholar]
- 691.Hudig D., Haverty T., Fulcher C., Redelman D., Mendelsohn J. Inhibition of human natural cytotoxicity by macromolecular antiproteases. J. Immunol. 1981;126:1569. [PubMed] [Google Scholar]
- 692.Hudig D., Redelman D., Minning L.L. The requirement for proteinase activity for human lymphocyte-mediated natural cytotoxicity (NK): Evidence that the proteinase is serine dependent and has aromatic amino acid specficity of cleavage. J. Immunol. 1984;133:2647. [PubMed] [Google Scholar]
- 693.Carpén O., Säkselä O., Säkselä E. Identification and localization of urokinase-type plasminogen activator in human NK-cells. Int. J. Cancer. 1986;38:355. doi: 10.1002/ijc.2910380309. [DOI] [PubMed] [Google Scholar]
- 694.Young J.D., Leong L.G., Liu C.-C., Damiano A., Wall D.A., Cohn Z.A. Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell (Cambridge, Mass.) 1986;47:183. doi: 10.1016/0092-8674(86)90441-1. [DOI] [PubMed] [Google Scholar]
- 695.Gershenfeld H.K., Hershberger R.J., Shows T.B., Weissman I.L. Cloning and chromosomal assignment of a human cDNA encoding a T cell-and natural killer cell-specific trypsin-like serine protease. Proc. Natl. Acad. Sci. U.S.A. 1988;85:1184. doi: 10.1073/pnas.85.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 696.Trapani J.A., Klein J.L., White P.C., Dupont B. Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1988;85:6924. doi: 10.1073/pnas.85.18.6924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 697.Krahenbuhl O., Rey C., Jenne D., Lanzavecchia A., Groscurth P., Carrel S., Tschopp J. Characterization of granzymes A and B isolated from granules of cloned human cytotoxic T lymphocytes. J. Immunol. 1988;141:3471. [PubMed] [Google Scholar]
- 698.Zucker-Franklin D., Yang J., Fuks A. Different enzyme classes associated with human natural killer cells may mediate disparate functions. J. Immunol. 1984;132:1451. [PubMed] [Google Scholar]
- 699.Hudig D., Gregg N.J., Kam C.-M., Powers J.C. Lymphocyte granule-mediated cytolysis requires serine protease activity. Biochem. Biophys. Res. Commun. 1987;149:882. doi: 10.1016/0006-291x(87)90490-6. [DOI] [PubMed] [Google Scholar]
- 700.Zunino S.J., Allison N.J., Kam C.-M., Powers J.C., Hudig D. Localization, function and gene expression of chymotrypsin-like proteases of cytotoxic RNK-16 lymphocytes. Biochim. Biophys. Acta. 1989;967:331. doi: 10.1016/0304-4165(88)90095-5. [DOI] [PubMed] [Google Scholar]
- 701.MacDermott R.P., Schmidt R.E., Caulfield J.P., Hein A., Bartley G.T., Ritz J., Schlossman S.F., Austen K.F., Stevens R.L. Proteoglycans in cell-mediated cytotoxicity. Identification, localization, and exocytosis of a chondroitin sulfate proteoglycan from human cloned natural killer cells during target cell lysis. J. Exp. Med. 1985;162:1771. doi: 10.1084/jem.162.6.1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 702.Schmidt R.E., MacDermott R.P., Bartley G., Bertovich M., Amato D.A., Austen K.F., Schlossman S.F., Stevens R.L., Ritz J. Specific release of proteoglycans from human natural killer cells during target lysis. Nature (London) 1985;318:289. doi: 10.1038/318289a0. [DOI] [PubMed] [Google Scholar]
- 703.Stevens R.L., Otsu K., Weis J.H., Tantravahi R.V., Austen K.F., Henkart P.A., Galli M.C., Reynolds C.W. Co-sedimentation of chondroitin sulfate A glycosaminoglycans and proteoglycans with the cytolytic secretory granules of rat large granular lymphocyte (LGL) tumor cells, and identification of a mRNA in normal and transformed LGL that encodes proteoglycans. J. Immunol. 1987;139:863. [PubMed] [Google Scholar]
- 704.Christmas S.E., Steward W.P., Lyon M., Gallagher J.T., Moore M. Chondroitin sulphate proteoglycan production by NK cells and T cells: Effects of xylosides on proliferation and cytotoxic function. Immunology. 1988;63:225. [PMC free article] [PubMed] [Google Scholar]
- 705.Wolfe S.A., Tracey D.E., Henney C.S. Induction of “natural” killer cells by BCG. Nature (London) 1976;262:584. doi: 10.1038/262584a0. [DOI] [PubMed] [Google Scholar]
- 706.Trinchieri G., Santoli D., Knowles B.B. Tumor cell lines induce interferon in human lymphocytes. Nature (London) 1977;270:611. doi: 10.1038/270611a0. [DOI] [PubMed] [Google Scholar]
- 707.Weigent D.A., Langford M.P., Fleishmann W.R., Stanton G.J. In: “Human Lymphokines”: Enhancement of natural killing activity by different types of interferon . Khan A., Hill N.O., editors. Academic Press; New York: 1982. [Google Scholar]
- 708.Trinchieri G., Matsumoto-Kobayashi M., Clark S.C., Sheehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin-2. J. Exp. Med. 1984;160:1147. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 709.Platsoucas C.D. Regulation of natural killer cytotoxicity by Escherichia coli-derived human interferon gamma. Scand. J. Immunol. 1986;24:93. doi: 10.1111/j.1365-3083.1986.tb02073.x. [DOI] [PubMed] [Google Scholar]
- 710.Brunda M.J., Tarnowski D., Davatelis V. Interaction of recombinant interferons with recombinant interleukin-2: Differential effects on natural killer cell activity and interleukin-2-activated killer cells. Int. J. Cancer. 1986;37:787. doi: 10.1002/ijc.2910370522. [DOI] [PubMed] [Google Scholar]
- 711.Weigent D.A., Stanton G.J., Johnson H.M. Recombinant gamma interferon enhances natural killer cell activity similar to natural gamma interferon. Biochem. Biophys. Res. Commun. 1983;111:525. doi: 10.1016/0006-291x(83)90338-8. [DOI] [PubMed] [Google Scholar]
- 712.Faltynek C.R., Princler G.L., Ortaldo J.R. Expression of IFN-alpha and IFN-gamma receptors on normal human small resting T lymphocytes and large granular lymphocytes. J. Immunol. 1986;136:4134. [PubMed] [Google Scholar]
- 713.Black P.L., Henderson E.E., Pfleiderer W., Charubala R., Suhadolnik R.J. 2',5'-Oligoadenylate trimer core and the cordycepin analog augment the tumoricidal activity of human natural killer cells. J. Immunol. 1984;133:2773. [PubMed] [Google Scholar]
- 714.Schmidt A., Crisp B., Krause D., Silverman R.H., Herberman R.B., Ortaldo J.R. Involvement of the 2'-5' A pathway in the augmentation of natural killer activity. Nat. Immun. Cell Growth Regul. 1987;6:19. [PubMed] [Google Scholar]
- 715.Ortaldo J.R., Herberman R.B., Harvey C., Osheroff P., Pan Y.C., Kelder B., Pestka S. A species of human alpha interferon that lacks the ability to boost human natural killer activity. Proc. Natl. Acad. Sci. U.S.A. 1984;81:4926. doi: 10.1073/pnas.81.15.4926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 716.Langer J.A., Ortaldo J.R., Pestka S. Binding of human alpha interferons to natural killer cells. J. Interferon Res. 1986;6:97. doi: 10.1089/jir.1986.6.97. [DOI] [PubMed] [Google Scholar]
- 717.Vanky F., Argov S., Einhorn S., Klein E. The role of alloantigens in natural killing. Allogeneic but not autologous tumor biopsy cells are sensitive for interferon induced cytotoxicity of human blood lymphocytes. J. Exp. Med. 1980;151:1151. doi: 10.1084/jem.151.5.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 718.Säkselä E., Timonen T., Cantell K. Human natural killer cell activity is augmented by interferon via recruitment of “pre-NK” cells. Scand. J. Immunol. 1979;10:257. doi: 10.1111/j.1365-3083.1979.tb01348.x. [DOI] [PubMed] [Google Scholar]
- 719.Silva A., Bonavida B., Targan S. Mode of action of interferon-mediated modulation of natural killer cytotoxic activity: Recruitment of pre-NK cells and enhanced kinetics of lysis. J. Immunol. 1980;125:479. [PubMed] [Google Scholar]
- 720.Targan S., Dorey F. Interferon activation of “pre-spontaneous killer” (pre-SK) cells and alteration in kinetics of lysis of both ‘pre-SK’ and active SK cells. J. Immunol. 1980;124:2157. [PubMed] [Google Scholar]
- 721.Targan S., Dorey F. Dual mechanism of interferon augmentation of natural killer cytotoxicity (NKCC). Ann. N.Y. Acad. Sci. 1980;350:121. doi: 10.1111/j.1749-6632.1980.tb20613.x. [DOI] [PubMed] [Google Scholar]
- 722.Droller M.J., Borg H., Perlmann P. In vitro enhancement of natural and antibody-dependent lymphocyte-mediated cytotoxicity against tumor target cells by interferon. Cell. Immunol. 1979;47:248. doi: 10.1016/0008-8749(79)90335-6. [DOI] [PubMed] [Google Scholar]
- 723.Herberman R.B., Ortaldo J.R., Bonnard G.D. Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature (London) 1979;277:221. doi: 10.1038/277221a0. [DOI] [PubMed] [Google Scholar]
- 724.Ortaldo J.R., Pestka S., Slease R.B., Rubinstein N., Herberman R.B. Augmentation of human K-cell activity with interferon. Scand. J. Immunol. 1980;12:365. doi: 10.1111/j.1365-3083.1980.tb00079.x. [DOI] [PubMed] [Google Scholar]
- 725.Rumpold H., Kraft D., Scheiner O., Meindl P., Bodo G. Enhancement of NK, but not K cell activity by different interferons. Int. Arch. Allergy Appl. Immunol. 1980;62:152. doi: 10.1159/000232507. [DOI] [PubMed] [Google Scholar]
- 726.Warren R., Kalamasz D., Storb R. Enhancement of human ADCC with interferon. Clin. Exp. Immunol. 1982;50:183. [PMC free article] [PubMed] [Google Scholar]
- 727.Basham T.Y., Smith W.K., Merigan T.C. Interferon enhances antibody-dependent cellular cytotoxicity when suboptimal concentrations of antibody are used. Cell. Immunol. 1984;88:393. doi: 10.1016/0008-8749(84)90172-2. [DOI] [PubMed] [Google Scholar]
- 728.Einhorn S., Blomgren H., Strander H. Interferon and spontaneous cytotoxicity in man. II. Studies in patients receiving exogenous leukocyte interferon. Acta Med. Scand. 1978;204:477. [PubMed] [Google Scholar]
- 729.Huddlestone J.F., Merigan T.C., Oldstone M.B. Induction and kinetics of natural killer cells in humans following interferon therapy. Nature (London) 1979;282:417. doi: 10.1038/282417a0. [DOI] [PubMed] [Google Scholar]
- 730.Kariniemi A.L., Timonen T., Kousa M. Effect of leukocyte interferon on natrual killer cells in healthy volunteers. Scand. J. Immunol. 1980;12:371. doi: 10.1111/j.1365-3083.1980.tb00080.x. [DOI] [PubMed] [Google Scholar]
- 731.Lotzova E., Savary C.A., Gutterman J.U., Hersh E.M. Modulation of natural killer cell-mediated cytotoxicity by partially purified and cloned interferon. Cancer Res. 1982;42:2480. [PubMed] [Google Scholar]
- 732.Pape G.R., Hadam M.R., Eisenburg J., Riethmuller G. Kinetics of natural cytotoxicity in patients treated with human fibroblast interferon. Cancer Immunol. Immunother. 1981;11:1. [Google Scholar]
- 733.Maluish A.E., Ortaldo J.R., Conlon J.C., Sherwin S.A., Leavitt R., Strong D.M., Wirnik P., Oldham R., Herberman R.B. Depression of natural killer cytotoxicity after in vivo administration of recombinant leukocyte interferon. J. Immunol. 1983;131:503. [PubMed] [Google Scholar]
- 734.Biron C.A., Sonnenfeld G., Welsh R.M. Interferon induces natural killer cell blastogenesis. in vivo. J. Leuk. Biol. 1984;35:31. doi: 10.1002/jlb.35.1.31. [DOI] [PubMed] [Google Scholar]
- 735.Brunda M.J., Taramelli D., Holden H.T., Varesio L. In: “NK Cells and Other Natural Effector Cells”: Suppression of murine natural killer cell activity by normal peritoneal macrophages . Herberman R.B., editor. Academic Press; New York: 1982. p. 535. [Google Scholar]
- 736.Hochman P.S., Cudkowicz G., Evans P.D. Carrageenan-induced decline of natural killer activity. II. Inhibition of cytolysis by adherent non-T Ia-negative suppressor cells activated in vivo. Cell. Immunol. 1981;61:200. doi: 10.1016/0008-8749(81)90366-x. [DOI] [PubMed] [Google Scholar]
- 737.Brunda M.J., Taramelli D., Holden H.T., Varesio L. Suppression of in vitro maintenance and interferon-mediated augmentation of natural killer cell activity by adherent peritoneal cells from normal mice. J. Immunol. 1983;130:1974. [PubMed] [Google Scholar]
- 738.Nair M.P., Schwartz S.A., Fernandes G., Pahwa R., Ikehara S., Good R.A. Suppression of natural killer (NK) cell activity of spleen cells by thymocytes. Cell. Immunol. 1981;58:9. doi: 10.1016/0008-8749(81)90144-1. [DOI] [PubMed] [Google Scholar]
- 739.Riccardi C., Santoni A., Barlozzari T., Herberman R.B. Suppression of natural killer (NK) activity by splenic adherent cells of low NK-reactive mice. Int. J. Cancer. 1981;28:811. doi: 10.1002/ijc.2910280621. [DOI] [PubMed] [Google Scholar]
- 740.Santoni A., Riccardi C., Barlozzari T., Herberman R.B. Suppression of activity of mouse natural killer (NK) cells by activated macrophages from mice treated with pyran copolymer. Int. J. Cancer. 1980;26:837. doi: 10.1002/ijc.2910260619. [DOI] [PubMed] [Google Scholar]
- 741.Zoller M., Wigzell H. Normally occurring inhibitory cells for natural killer cell activity. I. Organ distribution. Cell. Immunol. 1982;74:14. doi: 10.1016/0008-8749(82)90002-8. [DOI] [PubMed] [Google Scholar]
- 742.Zoller M., Wigzell H. Normally occurring inhibitory cells for natural killer cell activity. II. Characterization of the inhibitory cell. Cell. Immunol. 1982;74:27. doi: 10.1016/0008-8749(82)90003-x. [DOI] [PubMed] [Google Scholar]
- 743.Brunda M.J., Herberman R.B., Holden H.T. Inhibition of murine natural killer cell activity by prostaglandins. J. Immunol. 1980;124:2682. [PubMed] [Google Scholar]
- 744.Tanaka Y. Natural killer (NK) activity of normal human peripheral blood lymphocytes against erythroleukemic cell lines K562. Hiroshima J. Med. Sci. 1981;30:115. [PubMed] [Google Scholar]
- 745.Yang J., Zucker-Franklin D. Modulation of natural killer (NK) cells by autologous neutrophils and monocytes. Cell. Immunol. 1984;86:171. doi: 10.1016/0008-8749(84)90370-8. [DOI] [PubMed] [Google Scholar]
- 746.Allavena P., Introna M., Mangioni C., Mantovani A. Inhibition of natural killer activity by tumor-associated lymphoid cells from ascites ovarian carcinomas. JNCI, J. Natl. Cancer Inst. 1981;67:319. [PubMed] [Google Scholar]
- 747.Eremin O., Coombs R.R., Ashby J. Lymphocytes infiltrating human breast cancers lack K cell activity and show low levels of NK cell activity. Br. J. Cancer. 1981;44:166. doi: 10.1038/bjc.1981.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 748.Herberman R.B., Holden H.T., Djeu J.Y., Jerrells T.R., Varesio L., Tagliabue A., White S.L., Oehler J.R., Dean J.H. Macrophages as regulators of immune responses against tumors. Adv. Exp. Med. Biol. 1979;121B:361. doi: 10.1007/978-1-4684-8914-9_35. [DOI] [PubMed] [Google Scholar]
- 749.Uchida A., Micksche M. Suppressor cells for natural killer activity in carcinoma pleural effusions of cancer patients. Cancer Immunol. Immunother. 1981;11:255. [Google Scholar]
- 750.Young M.R., Wheeler E., Newby M. Macrophage-mediated suppression of natural killer cell activity in mice bearing Lewis lung carcinoma. J. Natl. Cancer Inst. 1986;76:745. doi: 10.1093/jnci/76.4.745. [DOI] [PubMed] [Google Scholar]
- 751.Koren H.S., Leung K.H. Modulation of human NK cells by interferon and prostaglandin E2. Mol. Immunol. 1982;19:1341. doi: 10.1016/0161-5890(82)90302-9. [DOI] [PubMed] [Google Scholar]
- 752.Droller M.J., Schneider M.U., Perlmann P. A possible role of prostaglandins in the inhibition of natural and antibody-dependent cell-mediated cytotoxicity against tumor cells. Cell. Immunol. 1978;39:165. doi: 10.1016/0008-8749(78)90091-6. [DOI] [PubMed] [Google Scholar]
- 753.Kendall R.A., Targan S. The dual effect of prostaglandin (PGE2) and ethanol on the natural killer cytolytic process: Effector activation and NK-cell-target cell conjugate lytic inhibition. J. Immunol. 1980;125:2770. [PubMed] [Google Scholar]
- 754.Lang N.P., Ortaldo J.R., Bonnard G.D., Herberman R.B. Interferon and prostaglandin: Effects of human natural and lectin-induced cytotoxicity. JNCI, J. Natl. Cancer Inst. 1982;69:339. [PubMed] [Google Scholar]
- 755.Leung K.H., Koren H.S. In: “NK Cells and Other Natural Effector Cells”: Regulation of cytotoxic reactivity of NK cells by interferon and PGE2 . Herberman R.B., editor. Academic Press; New York: 1982. p. 615. [Google Scholar]
- 756.D'Amore P.J., Golub S.H. Suppression of human NK cytotoxicity by an MLC-generated cell population. J. Immunol. 1985;134:272. [PubMed] [Google Scholar]
- 757.Nair M.P., Schwartz S.A. Suppression of natural killer activity and antibody-dependent cellular cytotoxicity by cultured human lymphocytes. J. Immunol. 1981;126:2221. [PubMed] [Google Scholar]
- 758.Rook A.H., Kehrl J.H., Wakefield L.M., Roberts A.B., Sporn M.B., Burlington D.B., Lane H.C., Fauci A.S. Effects of transforming growth factor beta on the functions of natural killer cells: Depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol. 1986;136:3916. [PubMed] [Google Scholar]
- 759.Gersuk G.M., Holloway J.M., Chang W.C., Pattengale P.K. Inhibition of human natural killer cell activity by platelet-derived growth factor. Nat. Immun. Cell Growth Regul. 1986;5:283. [PubMed] [Google Scholar]
- 760.Henney C.S., Kuribayashi K., Kern D.E., Gillis S. Interleukin 2 augments natural killer cell activity. Nature (London) 1981;291:335. doi: 10.1038/291335a0. [DOI] [PubMed] [Google Scholar]
- 761.Weigent D.A., Stanton G.J., Johnson H.M. Interleukin 2 enhances natural killer cell activity through induction of gamma interferon. Infect. Immun. 1983;41:992. doi: 10.1128/iai.41.3.992-997.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 762.Hefeneider S.H., Henney C.S., Gillis S. In: “NK Cells and Other Natural Effector Cells”: In vivo interleukin-2 induced augmentation of natural killer cell activity . Herberman R.B., editor. Academic Press; New York: 1982. p. 421. [Google Scholar]
- 763.Ortaldo J.R., Mason A.T., Gerard J.P., Henderson L.E., Farrar W., Hopkins R.F. Effects of natural and recombinant IL 2 on regulation of IFN gamma production and natural killer activity: Lack of involvement of the Tac antigen for these immunoregulatory effects. J. Immunol. 1984;133:779. [PubMed] [Google Scholar]
- 764.Phillips J.H., Gemlo B.T., Myers W.W., Rayner A.A., Lanier L.L. In vivo and in vitro activation of natural killer cells in advanced cancer patients undergoing combined recombinant interleukin-2 and LAK cell therapy. J. Clin. Oncol. 1987;5:1933. doi: 10.1200/JCO.1987.5.12.1933. [DOI] [PubMed] [Google Scholar]
- 765.Sharon M., Klausner R.D., Cullen B.R., Chizzonite R., Leonard W.J. Novel interleukin 2 receptor subunit detected by crosslinking under high affinity conditions. Science. 1986;234:859. doi: 10.1126/science.3095922. [DOI] [PubMed] [Google Scholar]
- 766.Kehri J.H., Dukovich M., Whalen G., Katz P., Fauci A.S., Greene W.C. Novel interleukin 2 (IL-2) receptor appears to mediate IL-2-induced activation of natural killer cells. J. Clin. Invest. 1988;81:200. doi: 10.1172/JCI113295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 767.Siegel J.P., Sharon M., Smith P.L., Leonard W.J. The IL-2 receptor beta chain (p70): Role in mediating signals for LAK, NK, and proliferative activities. Science. 1987;238:75. doi: 10.1126/science.3116668. [DOI] [PubMed] [Google Scholar]
- 768.Sayers T.J., Mason A.T., Ortaldo J.R. Regulation of human natural killer cell activity by interferon-gamma: Lack of a role in interleukin 2-mediated augmentation. J. Immunol. 1986;136:2176. [PubMed] [Google Scholar]
- 769.Kabelitz D., Kirchner H., Armerding D., Wagner H. Recombinant interleukin 2 rapidly augments human natural killer cell activity. Cell. Immunol. 1985;93:38. doi: 10.1016/0008-8749(85)90386-7. [DOI] [PubMed] [Google Scholar]
- 770.Svedersky L.P., Shepard H.M., Spencer S.A., Shalaby M.R. Augmentation of human interleukin 2. J. Immunol. 1984;133:714. [PubMed] [Google Scholar]
- 771.Brunda M.J., Tarnowski D., Davatelis V. Interaction of recombinant interferons with recombinant interleukin-2: Differential effects on natural killer cell activity and interleukin-2-activated killer cells. Int. J. Cancer. 1986;37:787. doi: 10.1002/ijc.2910370522. [DOI] [PubMed] [Google Scholar]
- 772.Vose B.M., Riccardi C., Bonnard G.B., Herberman R.B. Limiting dilution analysis of the frequency of human T cells and large granular lymphocytes proliferating in response to interleukin 2. II. Regulatory role of interferon on proliferative and cytotoxic precursors. J. Immunol. 1983;130:768. [PubMed] [Google Scholar]
- 773.Itoh K., Shiiba K., Shimizu Y., Suzuki R., Kumagai K. Generation of activated killer (AK) cells by recombinant interleukin 2 (rIL 2) in collaboration with interferon-γ (IFN-γ). J. Immunol. 1985;134:3124. [PubMed] [Google Scholar]
- 774.Landolfo S., Cofano F., Giovarelli M., Prat M., Cavallo G., Forni G. Inhibition of interferon-gamma may suppress allograft reactivity by T lymphocytes in vitro and in vivo. Science. 1985;229:176. doi: 10.1126/science.3160110. [DOI] [PubMed] [Google Scholar]
- 775.Lanier L.L., Buck D.W., Rhodes L., Ding A., Evans E., Barney C., Phillips J.H. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J. Exp. Med. 1988;167:1572. doi: 10.1084/jem.167.5.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 776.Grimm E.A., Mazumder A., Zhang H.Z., Rosenberg S.A. Lymphokine-activated killer cells phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 1982;155:1823. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 777.Grimm E.A., Ramsey K.M., Mazumder A., Wilson D.J., Djeu J.Y., Rosenberg S.A. Lymphokine activated killer cell phenomenon. II. Precursor phenotype is serologically distinct from peripheral T lymphocytes, memory cytotoxic thymus-derived lymphocytes and natural killer cells. J. Exp. Med. 1983;157:884. doi: 10.1084/jem.157.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 778.Grimm E.A., Robb R.J., Roth J.A., Neckers L.M., Lachman L.B., Wilson D.J., Rosenberg S.A. Lymphokine activated killer cell phenomenon. III. Evidence that IL-2 alone is sufficient for direct activation of PBL to LAK. J. Exp. Med. 1983;158:1356. doi: 10.1084/jem.158.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 779.Itoh K., Tilden A.B., Kumagai K., Balch C.M. Leu-ll + lymphocytes with natural killer (NK) activity are precursors of recombinant interleukin 2 (rIL 2)-induced activated killer (AK) cells. J. Immunol. 1985;134:802. [PubMed] [Google Scholar]
- 780.Shau H., Gray D., Mitchell M.S. Studies on the relationship of human natural killer and lymphokine-activated killer cells with lysosomal staining and analysis of surface marker phenotypes. Cell. Immunol. 1988;115:13. doi: 10.1016/0008-8749(88)90158-x. [DOI] [PubMed] [Google Scholar]
- 781.Atzpodien J., Wisniewski D., Gulati S., Welte K., Knowles R., Clarkson B. Interleukin-2- and mitogen-activated NK-like killer cells from highly purified human peripheral blood T cell (CD3+ N901-) cultures. Nat. Immun. Cell Growth Regul. 1987;6:129. [PubMed] [Google Scholar]
- 782.Bolhuis R.L.H., Schellekens H. Induction of natural killer cell activity and allocytotoxicity in human peripheral blood lymphocytes after mixed lymphocyte culture. Scand. J. Immunol. 1981;13:401. doi: 10.1111/j.1365-3083.1981.tb00151.x. [DOI] [PubMed] [Google Scholar]
- 783.Rimm I.J., Schlossman S.F., Reinherz E.L. Antibody-dependent cellular cytotoxicity and natural killer-like activity are mediated by subsets of activated T cells. Clin. Immunol. Immunopathol. 1981;21:134. doi: 10.1016/0090-1229(81)90202-6. [DOI] [PubMed] [Google Scholar]
- 784.Seeley J.K., Masucci G., Poros A., Klein E., Golub S.H. Studies on cytotoxicity generated in human mixed lymphocyte cultures. II. Anti K562 effectors are distinct from allospecific CTL and can be generated from NK-depleted T cells. J. Immunol. 1979;123:1303. [PubMed] [Google Scholar]
- 785.Strassman G., Back F.H., Zarling J.M. Depletion of human NK cells with monoclonal antibodies allows the generation of cytotoxic T lymphocytes without NK-like cells in mixed cultures. J. Immunol. 1983;130:1556. [PubMed] [Google Scholar]
- 786.Zarling J.M., Bach F.H., Kung P.C. Sensitization of lymphocytes against pooled allogeneic cells. II. Characterization of effector cells cytotoxic for autologous effector cell lines. J. Immunol. 1981;126:375. [PubMed] [Google Scholar]
- 787.Bottazzi B., Introna M., Allavena P., Villa A., Mantovani A. In vitro migration of human large granular lymphocytes. J. Immunol. 1985;134:2316. [PubMed] [Google Scholar]
- 788.Pohajdak B., Gomez J., Orr F.W., Khalil N., Talgoy M., Greenberg A.H. Chemotaxis of large granular lymphocytes. J. Immunol. 1986;136:278. [PubMed] [Google Scholar]
- 789.Polentarutti N., Bottazzi B., Balotta C., Erroi A., Mantovani A. Modulation of the locomotory capacity of human large granular lymphocytes. Cell. Immunol. 1986;101:204. doi: 10.1016/0008-8749(86)90198-x. [DOI] [PubMed] [Google Scholar]
- 790.Pirelli A., Allavena P., Mantovani A. Activated adherent large granular lymphocytes/Natural Killer (LGL/NK) cells change their migratory behavior. Immunology. 1988;65:651. [PMC free article] [PubMed] [Google Scholar]
- 791.Ramos O.F., Masucci M.G., Bejarano M.T., Klein E. The tumor promoter phorbol-12,13-dibutyrate P(Bu)2 stimulates cytotoxic activity of human blood lymphocytes. Immunobiology. 1983;165:403. doi: 10.1016/S0171-2985(83)80064-3. [DOI] [PubMed] [Google Scholar]
- 792.Argov S., Hebdon M., Cuatrecasas P., Koren H.S. Phorbol ester-induced lymphocyte adherence: Selective action of NK cells. J. Immunol. 1985;134:2215. [PubMed] [Google Scholar]
- 793.Bender J.R., Pardi R., Karasek M.A., Engleman E.G. Phenotypic and functional characterization of lymphocytes that bind human microvascular endothelial cells in vitro Evidence for preferential binding of natural killer cells. Clin. Invest. 1987;79:1679. doi: 10.1172/JCI113007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 794.Aronson F.R., Libby P., Brandon E.P., Janicka M.W., Mier J.W. IL-2 rapidly induces natural killer cell adhesion to human endothelial cells. A potential mechanism for endothelial injury. J. Immunol. 1988;141:158. [PubMed] [Google Scholar]
- 795.Vujanovic N.L., Herberman R.B., Maghazachi A.A., Hiserodt J.C. Lymphokine-activated killer cells in rats. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells. J. Exp. Med. 1988;167:15. doi: 10.1084/jem.167.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 796.Melder R.J., Whiteside T.L., Vujanovic N.L., Hiserodt J.C., Herberman R.B. A new approach to generating antitumor effectors for adoptive immunotherapy using human adherent lymphokine-activated killer cells. Cancer Res. 1988;48:3461. [PubMed] [Google Scholar]
- 797.Hercend T., Meuer S.C., Reinherz E.L., Schlossman S.F., Ritz J. Generation of a cloned NK cell line derived from the “null cell” fraction of human peripheral blood. J. Immunol. 1982;129:1299. [PubMed] [Google Scholar]
- 798.Phillips J.H., Lanier L.L. A model for the differentiation of human natural killer cells. Studies on the in vitro activation of Leu 11+ granular lymphocytes with a natural killer-sensitive tumor cell, K562. J. Exp. Med. 1985;161:1464. doi: 10.1084/jem.161.6.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 799.Cuturi M.C., Anegón I., Sherman F., Loudon R., Clark S.C., Perussia B., Trinchieri G. Production of hematopoietic colony-stimulating factors by human natural killer cells. J. Exp. Med. 1989;169:569. doi: 10.1084/jem.169.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 800.Procopio A., Gismondi A., Paolini R., Morrone S., Testi R., Piccoli M., rati L., Herberman R.B., Santoni A. Proliferative effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and calcium ionophores on human large granular lymphocytes (LGL). Cell. Immunol. 1988;113:70. doi: 10.1016/0008-8749(88)90007-x. [DOI] [PubMed] [Google Scholar]
- 801.Spits H., Yssel H., Paliard X., Kastelein R., Figdor C., De Vries J.E. IL-4 inhibits IL-2-mediated induction of human lymphokine-activated killer cells, but not the generation of antigen-specific cytotoxic T lymphocytes in mixed leukocyte cultures. J. Immunol. 1988;141:29. [PubMed] [Google Scholar]
- 802.Nagler A., Lanier L.L., Phillips J.H. The effects of IL-4 on human natural killer cells. A potent regulator of IL-2 activation and proliferation. J. Immunol. 1988;141:2349. [PubMed] [Google Scholar]
- 803.Mule J.J., Smith C.A., Rosenberg S.A. Interleukin 4 (B cell stimulatory factor 1) can mediate the induction of lymphokine-activated killer cell activity directed against fresh tumor cells. J. Exp. Med. 1987;166:792. doi: 10.1084/jem.166.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 804.Peace D.J., Kern D.E., Schultz K.R., Greenberg P.D., Cheever M.A. IL-4-induced lymphokine-activated killer cells. Lytic activity is mediated by phenotypically distinct natural killer-like and T cell-like large granular lymphocytes. J. Immunol. 1988;140:3679. [PubMed] [Google Scholar]
- 805.Dinarello C.A., Conti P., Mier J.W. Effects of human interleukin-1 on natural killer cell activity: Is fever a host defense mechanism for tumor killing? Yale J. Biol. Med. 1986;59:97. [PMC free article] [PubMed] [Google Scholar]
- 806.Shirakawa F., Tanaka Y., Eto S., Suzuki H., Yodoi J., Yamashita U. Effect of interleukin 1 on the expression of interleukin 2 receptor (Tac antigen) on human natural killer cells and natural killer-like cell line (YT cells). J. Immunol. 1986;137:551. [PubMed] [Google Scholar]
- 807.Ostensen M.E., Thiele D.L., Lipsky P.E. Tumor necrosis factor-alpha enhances cytolytic activity of human natural killer cells. J. Immunol. 1987;138:4185. [PubMed] [Google Scholar]
- 808.Chouaib S., Bertoglio J., Blay J.Y., Marchiol F.C., Fradelizi D. Generation of lymphokine-activated killer cells: Synergy between tumor necrosis factor and interleukin 2. Proc. Natl. Acad. Sci. U.S.A. 1988;85:6875. doi: 10.1073/pnas.85.18.6875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 809.Gomez J., Pohajdak B., O'Neill S., Wilkins J., Greenberg A.H. Activation of rat and human alveolar macrophage intracellular microbial activity by a preformed LGL cytokine. J. Immunol. 1985;135:1194. [PubMed] [Google Scholar]
- 810.Greenberg A.H., Khalil N., Pohajdak B., Talgoy M., Henkart P., Orr F.W. NK-leukocyte chemotactic factor (NK-LCF): A large granular lymphocyte (LGL) granule-associated chemotactic factor. J. Immunol. 1986;137:3224. [PubMed] [Google Scholar]
- 811.Roussel E., Greenberg A.H. Identification of a macrophage activating factor (MAF) in granules of the RNK large granular leukemia. J. Immunol. 1989;142:543. [PubMed] [Google Scholar]
- 812.Pohajdak B., Gomez J.L., Wilkins J.A., Greenberg A.H. Tumor-activated NK cells trigger monocyte oxidative metabolism. J. Immunol. 1984;133:2430. [PubMed] [Google Scholar]
- 813.Helfand S.L., Werkmeister J., Roder J.C. Chemiluminescence response of human natural killer cells. J. Exp. Med. 1982;156:492. doi: 10.1084/jem.156.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 814.Werkmeister J., Helfand S., Roder J., Pross H. The chemiluminescence response of human natural killer cells. II. Assocation of a decreased response with low natural killer activity. Eur. J. Immunol. 1983;13:514. doi: 10.1002/eji.1830130615. [DOI] [PubMed] [Google Scholar]
- 815.Duwe A.K., Roder J.C. Involvement of hydroxyl free radical, but not superoxide, in the cytolytic pathway of natural killer cells. Revision of an earlier hypothesis. Med. Biol. 1984;62:95. [PubMed] [Google Scholar]
- 816.Ramstedt U., Rossi P., Kullman C., Warren E., Palmblad J., Jondal M. Free oxygen radicals are not detectable by chemiluminescence during human natural killer cell cytotoxicity. Scand. J. Immunol. 1984;19:457. doi: 10.1111/j.1365-3083.1984.tb00954.x. [DOI] [PubMed] [Google Scholar]
- 817.Storkus W.J., Dawson J.R. Oxygen-reactive metabolites are not detected at the effector-target interface during natural killing. J. Leuk. Biol. 1986;39:547. doi: 10.1002/jlb.39.5.547. [DOI] [PubMed] [Google Scholar]
- 818.El Hag A., Clark R.A. Intact natural killer activity in chronic granulomatous disease: Evidence against an oxygen-dependent cytotoxic mechanism. J. Immunol. 1984;132:569. [PubMed] [Google Scholar]
- 819.Suthanthiran M., Solomon S.D., Williams P.S., Rubin A.L. Hydroxyl radical scavengers inhibit human natural killer cell activity. Nature (London) 1984;307:276. doi: 10.1038/307276a0. [DOI] [PubMed] [Google Scholar]
- 820.Gibboney J.J., Haak R.A., Kleinhaus F.W., Brahmi Z. Electron spin spectroscopy does not reveal hydroxyl radical production in activated natural killer lymphocytes. J. Leuk. Biol. 1988;44:545. doi: 10.1002/jlb.44.6.545. [DOI] [PubMed] [Google Scholar]
- 821.Djeu J.Y., Stocks N., Zoon K., Stanton G.J., Timonen T., Herberman R.B. Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes virus. J. Exp. Med. 1982;156:1222. doi: 10.1084/jem.156.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 822.Trinchieri G., Perussia B., Santoli D. In: “Natural Cell-Mediated Cytotoxicity Against Tumors”: Interferon production in lymphocytes cultured with tumor-derived cells . Herberman R.B., editor. Academic Press; New York: 1980. p. 1199. [Google Scholar]
- 823.Djeu J.Y., Timonen T., Herberman R.B. In: “NK Cells and Other Natural Effector Cells”: Production of interferon by human natural killer cells in response to mitogens, viruses and bacteria . Herberman R.B., editor. Academic Press; New York: 1982. p. 669. [Google Scholar]
- 824.Kasahara T., Djeu J.Y., Dougherty S.F., Oppenheim J.S. Capacity of human large granular lymphocytes (LGL) to produce mutiple lymphokines: Interleukin 2, interferon and colony stimulating factor. J. Immunol. 1983;131:2379. [PubMed] [Google Scholar]
- 825.Saksela E. In: “Interferon 3”: Interferon and natural killer cells . Gresser I., editor. Academic Press; London: 1982. p. 46. [Google Scholar]
- 826.Timonen T., Säkselä E., Virtanen I., Cantell K. Natural killer cells are responsible for the interferon production induced in human lymphocytes by tumor cell contact. Eur. J. Immunol. 1980;10:422. [Google Scholar]
- 827.Abb J., Abb H., Deinhardt F. Phenotype of human α-interferon producing leukocytes identified by monoclonal antibodies. Clin. Exp. Immunol. 1983;52:179. [PMC free article] [PubMed] [Google Scholar]
- 828.Perussia B., Fanning V., Trinchieri G. In: “Natural Killer Activity and Its Regulation”: Characterization of human peripheral blood IFNα-producing cells . Hoshino T., editor. Excerpta Medica; Tokyo: 1984. p. 107. [Google Scholar]
- 829.Ronnblom L., Ramstedt U., Alm G.V. Properties of human natural interferon-producing cells stimulated by tumor cell lines. Eur. J. Immunol. 1983;13:471. doi: 10.1002/eji.1830130608. [DOI] [PubMed] [Google Scholar]
- 830.Young H.A., Ortaldo J.R. One-signal requirement for interferon-production by human large granular lymphocytes. J. Immunol. 1987;139:724. [PubMed] [Google Scholar]
- 831.Wilson A.B., Harris J.M., Coombs R.R. Interleukin-2-induced production of interferon-gamma by resting human T cells and large granular lymphocytes: Requirement for accessory cell factors, including interleukin-1. Cell. Immunol. 1988;113:130. doi: 10.1016/0008-8749(88)90012-3. [DOI] [PubMed] [Google Scholar]
- 832.Domzig W., Stadler B.M. In: “NK Cells and Other Natural Effector Cells”: The relation between human natural killer cells and interleukin 2 . Herberman R.B., editor. Academic Press; New York: 1982. p. 409. [Google Scholar]
- 833.Mingari M.C., Ferrini S., Pende D., Bottino C., Prigione I., Moretta A., Moretta L. Phenotypic and functional analysis of human CD3+ and CD3- clones with “lymphokine-activated killer” (LAK) activity. Frequent occurrence of CD3+ LAK clones which produce interleukin-2. Int. J. Cancer. 1987;40:495. doi: 10.1002/ijc.2910400411. [DOI] [PubMed] [Google Scholar]
- 834.Pistoia V., Cozzolino F., Torcia M., Castigli E., Ferrarini M. Production of B cell growth factor by a Leu7+, OKM1+ non-T cell with the features of large granular lymphocytes (LGL). J. Immunol. 1985;134:3179. [PubMed] [Google Scholar]
- 835.Procopio A.D., Allavena P., Ortaldo J.R. Noncytotoxic functions of natural killer (NK) cells: Large granular lymphocytes (LGL) produce a B cell growth factor (BCGF). J. Immunol. 1985;135:3264. [PubMed] [Google Scholar]
- 836.Yamamoto R.S., Ware C.F., Granger G.A. The human LT system. XI. Identification of LT and “TNF-like” forms from stimulated natural killers, specific and nonspecific cytotoxic human T cells in vitro. J. Immunol. 1986;137:1878. [PubMed] [Google Scholar]
- 837.Peters P.M., Ortaldo J.R., Shalaby M.R., Svedersky L.P., Nedwin G.E., Bringman T.S., Hass P.E., Aggarwal B.B., Herberman R.B., Goeddel D.V., Palladino M.A., Jr Natural killer-sensitive targets stimulate production of TNF-alpha not TNF-beta (lymphotoxin) by highly purified human peripheral blood large granular lymphocytes. J. Immunol. 1986;137:2592. [PubMed] [Google Scholar]
- 838.Rambaldi A., Alessio G., Rossi V., Donati M.B., Semeraro N., Mantovani A. Production of interleukin 1 but not of procoagulant activity by large granular lymphocytes. Scand. J. Immunol. 1985;22:363. doi: 10.1111/j.1365-3083.1985.tb01893.x. [DOI] [PubMed] [Google Scholar]
- 839.Scala G., Allavena P., Djeu J.Y., Kasahara T., Ortaldo J.R., Herberman R.B., Oppenheim J.J. Human large granular lymphocytes are potent producers of interleukin-1. Nature (London) 1984;309:56. doi: 10.1038/309056a0. [DOI] [PubMed] [Google Scholar]
- 840.Payan D.G., McGillis J.P. Neuroimmunology. Adv. Immunol. 1986;39:244. doi: 10.1016/s0065-2776(08)60353-3. [DOI] [PubMed] [Google Scholar]
- 841.Cross R.J., Markesbery W.R., Brooks W.H., Roszman T.L. Hypothalamic-immune interactions: Neuromodulation of natural killer activity by lesioning of the anterior hypothalamus. Immunology. 1984;51:399. [PMC free article] [PubMed] [Google Scholar]
- 842.Belluardo N., Mudo G., Cella S., Santoni A., Forni G., Bindoni M. Hypothalamic control of certain aspects of natural immunity in the mouse. Immunology. 1987;62:321. [PMC free article] [PubMed] [Google Scholar]
- 843.Aoki T., Usuda Y., Miyakoshi H., Tamura K., Herberman R.B. Low natural killer syndrome: Clinical and immunologic features. Nat. Immun. Cell Growth Regul. 1987;6:116. [PubMed] [Google Scholar]
- 844.Caligiuri M., Murray C., Buchwald D., Levine H., Cheney P., Peterson D., Komaroff A.L., Ritz J. Phenotypic and functional deficiency of natural killer cells in patients with chronic fatigue syndrome. J. Immunol. 1987;139:3306. [PubMed] [Google Scholar]
- 845.Irwin M., Smith T.L., Gillin J.C. Low natural killer cytotoxicity in major depression. Life Sci. 1987;41:2127. doi: 10.1016/0024-3205(87)90531-5. [DOI] [PubMed] [Google Scholar]
- 846.Levy S., Herberman R.B., Lippman M., D'Angelo T. Correlation of stress factors with sustained depression of natural killer cell activity and predicted prognosis in patients with breast cancer. J. Clin. Oncol. 1987;5:348. doi: 10.1200/JCO.1987.5.3.348. [DOI] [PubMed] [Google Scholar]
- 847.Irwin M., Daniels M., Smith T.L., Bloom E., Weiner H. Impaired natural killer cell activity during bereavement. Brain Behav. Immunol. 1987;1:98. doi: 10.1016/0889-1591(87)90011-0. [DOI] [PubMed] [Google Scholar]
- 848.Irwin M., Daniels M., Risch S.C., Bloom E., Weiner H. Plasma Cortisol and natural killer cell activity during bereavement. Biol. Psychiatry. 1988;24:173. doi: 10.1016/0006-3223(88)90272-7. [DOI] [PubMed] [Google Scholar]
- 849.Glaser R., Rice J., Speicher C.E., Stout J.C., Kiecolt-Glaser J.K. Stress depresses interferon production by leukocytes concomitant with a decrease in natural killer cell activity. Behav. Neurosci. 1986;100:675. doi: 10.1037//0735-7044.100.5.675. [DOI] [PubMed] [Google Scholar]
- 850.Locke S.E., Kraus L., Leserman J., Hurst M.W., Heisel J.S., Williams R.M. Life change stress, psychiatric symptoms, and natural killer cell activity. Psychosom. Med. 1984;46:441. doi: 10.1097/00006842-198409000-00005. [DOI] [PubMed] [Google Scholar]
- 851.Yoshihara H., Tanaka N., Orita K. Suppression of natural killer cell activity by surgical stress in cancer patients and the underlying mechanisms. Acta Med. Okayama. 1986;40:113. doi: 10.18926/AMO/31919. [DOI] [PubMed] [Google Scholar]
- 852.Tnnesen E., Brinklv M.M., Christensen N.J., Olesen A.S., Madsen T. Natural killer cell activity and lymphocyte function during and after coronary artery bypass grafting in relation to the endocrine stress response. Anesthesiology. 1987;67:526. doi: 10.1097/00000542-198710000-00014. [DOI] [PubMed] [Google Scholar]
- 853.Pollock R.E., Lotzova E. Surgical-stress-related suppression of natural killer cell activity: A possible role in tumor metastasis. Nat. Immun. Cell Growth Regul. 1987;6:269. [PubMed] [Google Scholar]
- 854.Ghoneum M., Gill G., Assanah P., Stevens W. Susceptibility of natural killer cell activity of old rats to stress. Immunology. 1987;60:461. [PMC free article] [PubMed] [Google Scholar]
- 855.Okimura T., Ogawa M., Yamauchi T. Stress and immune responses. III. Effect of restraint stress on delayed type hypersensitivity (DTH) response, natural killer (NK) activity and phagocytosis in mice. Jpn. J. Pharmacol. 1986;41:229. doi: 10.1254/jjp.41.229. [DOI] [PubMed] [Google Scholar]
- 856.Kandil O., Borysenko M. Decline of natural killer cell target binding and lytic activity in mice exposed to rotation stress. Health Psychol. 1987;6:89. doi: 10.1037//0278-6133.6.2.89. [DOI] [PubMed] [Google Scholar]
- 857.Aguila H.N., Pakes S.P., Lai W.C., Lu Y.S. The effect of transportation stress on splenic natural killer cell activity in C57BL/6J mice. Lab. Anim. Sci. 1988;38:148. [PubMed] [Google Scholar]
- 858.Shavit Y., Lewis J.W., Terman G.W., Gale R.P., Liebeskind J.C. Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science. 1984;223:188. doi: 10.1126/science.6691146. [DOI] [PubMed] [Google Scholar]
- 859.Shavit Y., Terman G.W., Lewis J.W., Zane C.J., Gale R.P. Effects of footshock stress and morphine on natural killer lymphocytes in rats: Studies of tolerance and cross-tolerance. Brain Res. 1986;372:382. doi: 10.1016/0006-8993(86)91149-2. [DOI] [PubMed] [Google Scholar]
- 860.Shavit Y., Martin F.C., Yirmiya R., Ben-Eliyahu S., Terman G.W., Weiner H., Gale R.P., Liebeskind J.C. Effects of a single administration of morphine or footshock stress on natural killer cell cytotoxicity. Brain Behav. Immunol. 1987;1:318. doi: 10.1016/0889-1591(87)90034-1. [DOI] [PubMed] [Google Scholar]
- 861.Shavit Y., Depaulis A., Martin F.C., Terman G.W., Pechnick R.N., Zane C.J., Gale R.P., Liebeskind J.C. Involvement of the brain opiate receptors in the immune suppressive effects of morphine. Proc. Natl. Acad. Sci. U.S.A. 1986;83:7114. doi: 10.1073/pnas.83.18.7114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 862.Irwin M.R., Vale W., Britton K.T. Central corticotropin-releasing factor suppresses natural killer cytotoxicity. Brain Behav. Immunol. 1987;1:81. doi: 10.1016/0889-1591(87)90009-2. [DOI] [PubMed] [Google Scholar]
- 863.Hellstrand K., Hermodsson S., Strannegard O. Evidence for a β-adrenoreceptor-mediated regulation of human natural killer cells. J. Immunol. 1985;134:4095. [PubMed] [Google Scholar]
- 864.Kraut R.P., Greenberg A.H. Effects of endogenous and exogenous opioids on splenic natural killer cell activity. Nat. Immun. Cell Growth Regul. 1986;5:28. [PubMed] [Google Scholar]
- 865.Faith R.E., Liang H.J., Murgo A.J., Plotnikoff N.P. Neuro-immunomodulation with enkephalins: Enhancement of human natural killer (NK) cell activity. in vitro. Clin. Immunol. Immunopathol. 1984;31:412. doi: 10.1016/0090-1229(84)90093-x. [DOI] [PubMed] [Google Scholar]
- 866.Faith R.E., Liang H.J., Plotnikoff N.P., Murgo A.J., Nimeh N.F. Neuroimmunomodulation with enkephalins: In vitro enhancement of natural killer cell activity in peripheral blood lymphocytes from cancer patients. Nat. Immun. Cell Growth Regul. 1987;6:88. [PubMed] [Google Scholar]
- 867.Froelich C.J., Bankhurst A.D. The effect of β-endorphin on natural cytotoxicity and antibody dependent cellular cytotoxicity. Life Sci. 1984;35:261. doi: 10.1016/0024-3205(84)90109-7. [DOI] [PubMed] [Google Scholar]
- 868.Mandler R.N., Biddison W.E., Mandler R., Serrate S.A. β-Endorphin augments the cytolytic activity and interferon production of natural killer cells. J. Immunol. 1986;136:934. [PubMed] [Google Scholar]
- 869.Wybran J. Enkephalins and endorphins: Activation molecules for the immune system and natural killer activity? Neuropeptides (Edinburgh) 1985;5:371. doi: 10.1016/0143-4179(85)90031-9. [DOI] [PubMed] [Google Scholar]
- 870.Williamson S.A., Knight R.A., Lightman S.L., Hobbs J.R. Differential effects of β-endorphin fragments on human natural killing. Brain Behav. Immunol. 1987;1:329. doi: 10.1016/0889-1591(87)90035-3. [DOI] [PubMed] [Google Scholar]
- 871.Kay N., Morley J.E., Van Ree J.M. Enhancement of human lymphocyte natural killing function by non-opioid fragments of β-endorphin. Life Sci. 1987;40:1083. doi: 10.1016/0024-3205(87)90571-6. [DOI] [PubMed] [Google Scholar]
- 872.Mathews P.M., Froelich C.J., Sibbitt W.L., Bankhurst A.D. Enhancement of natural cytotoxicity by β-endorphin. J. Immunol. 1983;130:1658. [PubMed] [Google Scholar]
- 873.Pross H., Mitchell H., Werkmeister J. The sensitivity of placental trophoblast cells to intraplacental and allogeneic cytotoxic lymphocytes. Am. J. Reprod. Immunol. Microbiol. 1985;8:1. doi: 10.1111/j.1600-0897.1985.tb00304.x. [DOI] [PubMed] [Google Scholar]
- 874.Gruber S.A., Hoffman R.A., Sothern R.B., Lakatua D., Carlson A., Simmons R.L., Hrushesky W.J. Splenocyte natural killer cell activity and metastatic potential are inversely dependent on estrous stage. Surgery (St. Louis) 1988;104:398. [PubMed] [Google Scholar]
- 875.Okamura K., Furukawa K., Nakakuki M., Yamada K., Suzuki M. Natural killer cell activity during pregnancy. Am. J. Obstet. Gynecol. 1984;149:396. doi: 10.1016/0002-9378(84)90152-2. [DOI] [PubMed] [Google Scholar]
- 876.Russell A.S., Miller C.L. Sequential studies of NK cell activity in human pregnancy. J. Clin. Lab. Immunol. 1986;19:5. [PubMed] [Google Scholar]
- 877.Gregory C.D., Lee H., Rees G.B., Scott I.V., Shah L.P., Golding P.R. Natural killer cells in normal pregnancy: Analysis using monoclonal antibodies and single-cell cytotoxicity assays. Clin. Exp. Immunol. 1985;62:121. [PMC free article] [PubMed] [Google Scholar]
- 878.Lee H., Gregory C.D., Rees G.B., Scott I.V., Golding P.R. Cytotoxic activity and phenotypic analysis of natural killer cells in early normal human pregnancy. J. Reprod. Immunol. 1987;12:35. doi: 10.1016/0165-0378(87)90079-9. [DOI] [PubMed] [Google Scholar]
- 879.Vaquer S., De La Hera A., Jorda J., Martinez C., Escudero M., Alvarez- Mon M. Diminished natural killer activity in pregnancy: Modulation by interleukin 2 and interferon gamma. Scand. J. Immunol. 1987;26:691. doi: 10.1111/j.1365-3083.1987.tb02305.x. [DOI] [PubMed] [Google Scholar]
- 880.Gregory C.D., Lee H., Scott I.V., Golding P.R. Phenotypic hetergeneity and recycling capacity of natural killer cells in normal human pregnancy. J. Reprod. Immunol. 1987;11:135. doi: 10.1016/0165-0378(87)90017-9. [DOI] [PubMed] [Google Scholar]
- 881.Gabrilovac J., Zadjelovic J., Osmak M., Suchanek E., Zupanovic Z., Boranic M. NK cell activity and estrogen hormone levels during normal human pregnancy. Gynecol. Obstet. Invest. 1988;25:165. doi: 10.1159/000293766. [DOI] [PubMed] [Google Scholar]
- 882.Kalland T. Exposure of neonatal female mice to diethylstilbestrol persistently impairs NK activity through reduction of effector cells at the bone marrow level. Immunopharmacology. 1984;7:127. doi: 10.1016/0162-3109(84)90062-6. [DOI] [PubMed] [Google Scholar]
- 883.Pfeifer R.W., Patterson R.M. Modulation of nonpsecific cellmediated growth inhibition by estrogen metabolites. Immunopharmacology. 1985;10:127. doi: 10.1016/0162-3109(85)90038-4. [DOI] [PubMed] [Google Scholar]
- 884.Screpanti I., Santoni A., Gulino A., Herberman R.B., Frati L. Estrogen and antiestrogen modulation of the levels of mouse natural killer activity and large granular lymphocytes. Cell. Immunol. 1987;106:191. doi: 10.1016/0008-8749(87)90163-8. [DOI] [PubMed] [Google Scholar]
- 885.Kalland T., Campbell T. Effects of diethylstilbestrol on human natural killer cells. in vitro. Immunopharmacology. 1984;8:19. doi: 10.1016/0162-3109(84)90053-5. [DOI] [PubMed] [Google Scholar]
- 886.Ferguson M.M., McDonald F.G. Oestrogen as an inhibitor of human NK cell cytolysis. FEBS Lett. 1985;191:145. doi: 10.1016/0014-5793(85)81011-5. [DOI] [PubMed] [Google Scholar]
- 887.Ablin R.J., Bartkus J.M., Gonder M.J. In vitro effects of diethylstilbestrol and the LHRH analogue leuprolide on natural killer cell activity. Immunopharmacology. 1988;15:95. doi: 10.1016/0162-3109(88)90056-2. [DOI] [PubMed] [Google Scholar]
- 888.Sulke A.N., Jones D.B., Wood P.J. Hormonal modulation of human natural killer cell activity. in vitro. J. Reprod. Immunol. 1985;7:105. doi: 10.1016/0165-0378(85)90064-6. [DOI] [PubMed] [Google Scholar]
- 889.Uksila J. Human NK activity is not inhibited by pregnancy and cord serum factors and female steroid hormones. in vitro. J. Reprod. Immunol. 1985;7:111. doi: 10.1016/0165-0378(85)90065-8. [DOI] [PubMed] [Google Scholar]
- 890.Ritson A., Bulmer J.N. Endometrial granulocytes in human decidua react with a natural-killer (NK) cell marker, NKH1. Immunology. 1987;62:329. [PMC free article] [PubMed] [Google Scholar]
- 891.Croy B.A., Waterfield A., Wood W., King G.J. Normal murine and porcine embryos recruit NK cells to the uterus. Cell. Immunol. 1988;115:471. doi: 10.1016/0008-8749(88)90199-2. [DOI] [PubMed] [Google Scholar]
- 892.Croy B.A., Gambel P., Rossant J., Wegmann T.G. Characterization of murine decidual natural killer (NK) cells and their relevance to the success of pregnancy. Cell. Immunol. 1985;93:315. doi: 10.1016/0008-8749(85)90137-6. [DOI] [PubMed] [Google Scholar]
- 893.Starkey P.M., Sargent I.L., Redman C.W.G. Cell populations in human early pregancy decidua: Characterization and isolation of large granular lymphocytes by flow cytometry. Immunology. 1988;65:129. [PMC free article] [PubMed] [Google Scholar]
- 894.Bulmer J.N., Sunderland C.A. Immunohistological characterization of lymphoid cell populations in the early human placental bed. Immunology. 1984;52:349. [PMC free article] [PubMed] [Google Scholar]
- 895.Bulmer J.N., Sunderland C.A. Bone-marrow origin of endometrial granulocytes in the early human placental bed. J. Reprod. Immunol. 1983;5:383. doi: 10.1016/0165-0378(83)90247-4. [DOI] [PubMed] [Google Scholar]
- 896.Kearns M., Lala P.K. Characterization of hematogenous cellular constituents of the murine decidua: A surface marker study. J. Reprod. Immunol. 1985;8:213. doi: 10.1016/0165-0378(85)90042-7. [DOI] [PubMed] [Google Scholar]
- 897.Zuckerman F.A., Head J.R. Murine trophoblast resists cell-mediate lysis. II. Resistance to natural cell-mediated cytotoxicity. Cell. Immunol. 1988;116:274. doi: 10.1016/0008-8749(88)90230-4. [DOI] [PubMed] [Google Scholar]
- 898.Athanassakis I., Bleackley R.C., Paetkau V., Guilbert L., Barr P.J., Wegmann T.G. The immunostimulatory effect of T cells and T cell lymphokines on murine fetally derived placental cells. J. Immunol. 1987;138:37. [PubMed] [Google Scholar]
- 899.McIntyre K.W., Welsh R.M. Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection. J. Exp. Med. 1986;164:1667. doi: 10.1084/jem.164.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 900.Kolb J.P., Chaouat G., Chassoux D. Immunoactive products of placenta. III. Suppression of natural killing activity. J. Immunol. 1984;132:2305. [PubMed] [Google Scholar]
- 901.Clark D.A., Chaouat G. Characterization of the cellular basis for the inhibition of cytolytic effector cells by murine placenta. Cell. Immunol. 1986;102:43. doi: 10.1016/0008-8749(86)90324-2. [DOI] [PubMed] [Google Scholar]
- 902.Slapsys R.M., Richards C.D., Clark D.A. Active suppression of host-versus-graft reaction in pregnant mice. VIII. The uterine decidua-associated suppressor cell is distinct from decidual NK cells. Cell. Immunol. 1986;99:140. doi: 10.1016/0008-8749(86)90223-6. [DOI] [PubMed] [Google Scholar]
- 903.Szekeres-Bartho J., Hadnagy J., Csernus V., Balazs L., Magyarlaki T., Pacsa A.S. Increased NK activity is responsible for higher cytotoxicity to HEF cells by lymphocytes of women with threatened preterm delivery. AJRI, Am. J. Reprod. Immunol., Microbiol. 1985;7:22. doi: 10.1111/j.1600-0897.1985.tb00258.x. [DOI] [PubMed] [Google Scholar]
- 904.Gendron R.L., Baines M.G. Infiltrating decidual natural killer cells are associated with spontaneous abortion in mice. Cell. Immunol. 1988;113:261. doi: 10.1016/0008-8749(88)90025-1. [DOI] [PubMed] [Google Scholar]
- 905.De Fougerolles A.R., Baines M.G. Modulation of the natural killer cell activity in pregnant mice alters the spontaneous abortion rate. J. Reprod. Immunol. 1987;11:147. doi: 10.1016/0165-0378(87)90018-0. [DOI] [PubMed] [Google Scholar]
- 906.Bagby G.C., Lawrence H.J., Neerhout R.C. T-lymphocyte-mediated granulopoietic failure. In vitro identification of prednisone-responsive patients. N. Engl. J. Med. 1983;309:1073. doi: 10.1056/NEJM198311033091801. [DOI] [PubMed] [Google Scholar]
- 907.Cudkowicz G., Stimpfling J.H. Deficient growth of C57BL mouse marrow cells transplanted in F1 hybrid mice. Association with the histocompatibility-2 locus. Immunology. 1964;7:291. [PMC free article] [PubMed] [Google Scholar]
- 908.Kiessling R., Hochman P.S., Haller O., Shearer G.M., Wigzell H., Cudkowicz G. Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur. J. Immunol. 1977;7:655. doi: 10.1002/eji.1830070915. [DOI] [PubMed] [Google Scholar]
- 909.Cudkowicz G., Bennett M. Peculiar immunobiology of bone marrow allografts. I. Graft rejection by heavily “responder” mice. J. Exp. Med. 1971;134:83. doi: 10.1084/jem.134.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 910.Okumura K., Habu S., Shimamura K. In: “NK Cells and Other Natural Effector Cells”: The role of asialo GM1+ (GA1+) cells in the resistance to transplants of bone marrow or other tissues . Herberman R.B., editor. Academic Press; New York: 1982. p. 1527. [Google Scholar]
- 911.Lotzova E., Pollack S.B., Savary C.A. In: “NK Cells and Other Natural Effector Cells”: Direct evidence for the involvement of natural killer cells in bone marrow transplantation . Herberman R.B., editor. Academic Press; New York: 1982. p. 1535. [Google Scholar]
- 912.Harrison D.E., Carlson G.A. Effect of the beige mutation on natural resistance to marrow grafts. J. Immunol. 1983;130:484. [PubMed] [Google Scholar]
- 913.Warner J.F., Dennert G. Effects of a cloned cell line with NK activity on bone marrow transplants, tumor development and metastasis in vivo. Nature (London) 1982;300:31. doi: 10.1038/300031a0. [DOI] [PubMed] [Google Scholar]
- 914.Bodignon C., Daley J.P., Nakamura I. Hematopoietic histoincompatibility reactions by NK cells in vitro: Model for genetic resistance to marrow grafts. Science. 1985;230:1398. doi: 10.1126/science.3906897. [DOI] [PubMed] [Google Scholar]
- 915.Holmberg L.A., Miller B.A., Ault K. The effect of natural killer cells on the development of syngeneic hematopoietic progenitors. J. Immunol. 1984;133:2933. [PubMed] [Google Scholar]
- 916.Daley J.P., Nakamura I. Natural resistance of lethally irradiated F1 hybrid mice to parental marrow grafts is a function of H-2/Hh restricted effectors. J. Exp. Med. 1984;159:1132. doi: 10.1084/jem.159.4.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 917.Warner J.F., Dennert G. Bone marrow graft rejection as a function of antibody-directed natural killer cells. J. Exp. Med. 1985;161:563. doi: 10.1084/jem.161.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 918.Randrup-Thomsen A., Pisa P., Bro-Jorgensen K., Kiessling R. Mechanisms of lymphocytic choriomeningitis virus-induced hemopoietic dysfunction. J. Virol. 1986;59:428. doi: 10.1128/jvi.59.2.428-433.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 919.Bro-Jorgensen K. The interplay between lymphocytic choriomeningitis virus, immune function, and hemopoiesis in mice. Adv. Virus Res. 1978;22:327. doi: 10.1016/s0065-3527(08)60777-0. [DOI] [PubMed] [Google Scholar]
- 920.Bro-Jorgensen K., Knudtzon S. Changes in hemopoiesis during the course of the acute LCM virus infection in mice. Blood. 1977;49:47. [PubMed] [Google Scholar]
- 921.Welsh R.M. Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction. J. Exp. Med. 1978;148:163. doi: 10.1084/jem.148.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 922.Biron C.A., Welsh R.M. Blastogenesis of natural killer cells during viral infection. in vivo. J. Immunol. 1982;129:2788. [PubMed] [Google Scholar]
- 923.Hansson M., Petersson M., Koo G.C., Wigzell H., Kiessling R. In vivo function of natural killer cells as regulators of myeloid precursor cells in the spleen. Eur. J. Immunol. 1988;18:485. doi: 10.1002/eji.1830180326. [DOI] [PubMed] [Google Scholar]
- 924.Bagby G.C. T lymphocytes involved in inhibition of granulopoiesis in two neutropenic patients are of the cytotoxic/suppressor (T3+ T8+) subset. J. Clin. Invest. 1981;68:1597. doi: 10.1172/JCI110415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 925.Zoumbos N.C., Gascon P., Djeu J., Trost S.R., Young N.S. Circulating activated suppressor T lymphocytes in aplastic anemia. N. Engl. J. Med. 1985;312:275. doi: 10.1056/NEJM198501313120501. [DOI] [PubMed] [Google Scholar]
- 926.Tagawa S., Tokumine Y., Ueda E., Waki K., Kanayama Y., Taniguchi N., Nakanishi T., Inoue R., Kitani T. Leull+ T cell chronic lymphocytic leukemia with partially activated natural killer function and its further activation by recombinant IL-2 in vitro. Blood. 1986;68:846. [PubMed] [Google Scholar]
- 927.Grillot-Courvalin C., Vinci G., Tsapis A., Dokhelar M.C., Vainchenker W., Brouet J.C. The syndrome of T8 hyperlymphocytosis: Variation in phenotype and cytotoxic activities of granular cells and evaluation of their role in associated neutropenia. Blood. 1987;69:1204. [PubMed] [Google Scholar]
- 928.Freimark B., Lanier L., Phillips J., Quertermous T., Fox R. Comparison of T cell receptor gene rearrangements in patients with large granular T cell leukemia and Felty's syndrome. J. Immunol. 1987;138:1724. [PubMed] [Google Scholar]
- 929.Loughran T.P.J., Clark E.A., Price T.H., Hammond W.P. Adultonset cyclic neutropenia is associated with increased large granular lymphocytes. Blood. 1986;68:1082. [PubMed] [Google Scholar]
- 930.Linch D.C., Newland A.C., Turnbull A.L., Knott L.J., MacWhannel A., Beverley P. Unusual T cell proliferations and neutropenia in rheumatoid arthritis.: Comparison with classical Felty's syndrome. Scand. J. Haematol. 1984;33:342. doi: 10.1111/j.1600-0609.1984.tb00705.x. [DOI] [PubMed] [Google Scholar]
- 931.Hansson M., Kiessling R., Andersson B., Karre K., Roder J. Natural killer (NK) sensitive T-cell subpopulation in the thymus: Inverse correlation to NK activity of the host. Nature (London) 1979;278:174. doi: 10.1038/278174a0. [DOI] [PubMed] [Google Scholar]
- 932.Riccardi C., Santoni A., Barlozzari T., Herberman R.B. In vivo reactivity of mouse natural killer (NK) cells against normal bone marrow cells. Cell. Immunol. 1981;60:136. doi: 10.1016/0008-8749(81)90254-9. [DOI] [PubMed] [Google Scholar]
- 933.Gidlund M., Nose M., Axberg I., Wigzell H., Totterman T., Nilsson K. In: “NK Cells and Other Natural Effector Cells”: Analysis of differentiation events causing changes in NK cell tumor-target sensitivity . Herberman R.B., editor. Academic Press; New York: 1982. p. 733. [Google Scholar]
- 934.Morris T.C.M., Vincent P.C., Sutherland R., Hersey P. Inhibition of normal granulopoiesis in vitro by non-B non-T lymphocytes. Br. J. Haematol. 1980;45:541. doi: 10.1111/j.1365-2141.1980.tb07176.x. [DOI] [PubMed] [Google Scholar]
- 935.Barr R.D., Stevens C.A. The role of autologous helper and suppressor T cells in the regulation of human granulopoiesis. Am. J. Hematol. 1982;12:323. doi: 10.1002/ajh.2830120403. [DOI] [PubMed] [Google Scholar]
- 936.Hansson M., Beran M., Andersson B., Kiessling R. Inhibition of in vitro granulopoiesis by autologous and allogeneic human NK cells. J. Immunol. 1982;129:126. [PubMed] [Google Scholar]
- 937.Spitzer G., Verma D.S. Cells with Fc receptors form normal donors suppress granulocyte-macrophage colony formation. Blood. 1982;60:758. [PubMed] [Google Scholar]
- 938.Degliantoni G., Perussia B., Mangoni L., Trinchieri G. Inhibition of bone marrow colony formation by human natural killer cells and by natural killer cell-derived colony-inhibiting activity. J. Exp. Med. 1985;161:1152. doi: 10.1084/jem.161.5.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 939.Mangan K.F., Chikkappa G., Bieler L.F., Scharfman W.B., Parkinson D.R. Regulation of human blood erythroid burst-forming unit (BFU-E) proliferation by T-lymphocyte subpopulations defined by Fc receptors and monoclonal antibodies. Blood. 1982;59:990. [PubMed] [Google Scholar]
- 940.Nagler A., Greenberg P.L., Lanier L.L., Phillips J.H. The effects of recombinant interleukin 2-activated natural killer cells on autologous peripheral blood hematopoietic progenitors. J. Exp. Med. 1988;168:47. doi: 10.1084/jem.168.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 941.Beran M., Hansson M., Kiessling R. Human natural killer cells can inhibit clonogenic growth of fresh leukemic cells. Blood. 1983;61:596. [PubMed] [Google Scholar]
- 942.Herrmann F., Schmidt R.E., Ritz J., Griffin J.D. In vitro regulation of human hematopoiesis by natural killer cells: Analysis at a clonal level. Blood. 1987;69:246. [PubMed] [Google Scholar]
- 943.Dickinson A.M., Jacobs E.A., Williamson I.K., Reid M.M., Proctor S.J. Suppression of human granulocyte-macrophage colony formation in vitro by natural killer cells. Clin. Immunol. Immunopathol. 1988;49:83. doi: 10.1016/0090-1229(88)90097-9. [DOI] [PubMed] [Google Scholar]
- 944.Goss G.D., Wittwer M.A., Bezwoda W.R., Herman J., Rabson A., Seymour L., Derman D.P., Mendelow B. Effect of natural killer cells on syngeneic bone marrow: In vitro and in vivo studies demonstrating graft failure due to NK cells in an identical twin treated by bone marrow transplantation. Blood. 1985;66:1043. [PubMed] [Google Scholar]
- 945.Pistoia V., Ghio R., Nocera A., Leprini A., Perata A., Ferrarini M. Large granular lymphocytes have a promoting activity on human peripheral blood erythroid burst-forming units. Blood. 1985;65:464. [PubMed] [Google Scholar]
- 946.Gewirtz A.M., Xu W.Y., Mangan K.F. Role of natural killer cells, in comparison with T lymphocytes and monocytes, in the regulation of normal human megakaryocytopoiesis. in vitro. J. Immunol. 1987;139:2915. [PubMed] [Google Scholar]
- 947.Zoumbos N., Raefsky E., Young N. Lymphokines and hematopoiesis. Prog. Hematol. 1986;14:201. [PubMed] [Google Scholar]
- 948.Zoumbos N.C., Gascon P., Djeu J.Y., Young N.S. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly. in vivo. Proc. Natl. Acad. Sci. U.S.A. 1985;82:188. doi: 10.1073/pnas.82.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 949.Murphy M., Loudon R., Kobayashi M., Trinchieri G. Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte-monocyte colony formation. J. Exp. Med. 1986;164:263. doi: 10.1084/jem.164.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 950.Broxmeyer H.E., Williams D.E., Lu L., Cooper S., Anderson S.L., Beyer G.S., Hoffman R., Rubin B.Y. The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: Synergism of tumor necrosis factor and interferon. γ. J. Immunol. 1986;136:4487. [PubMed] [Google Scholar]
- 951.Murphy M., Perussia B., Trinchieri G. Effects of recombinant tumor necrosis factor, lymphotoxin and immune interferon on proliferation and differentiation of enriched hematopoietic precursor cells. Exp. Hematol. 1988;16:131. [PubMed] [Google Scholar]
- 952.Kannourakis G., Begley C.G., Johnson G.R., Werkmeister J.A., Burns G.F. Evidence for interactions between monocytes and natural killer cells in the regulation of in vitro hemopoiesis. J. Immunol. 1988;140:2489. [PubMed] [Google Scholar]
- 953.Lopez C., Fitzgerald P., Kirkpatrick D. In: “NK Cells and Other Natural Effector Cells”: In vivo role of NK (HSV-1) in the induction of graft versus host disease in bone marrow transplant recipients. Herberman R.B., editor. Academic Press; New York: 1982. p. 1561. [Google Scholar]
- 954.Lopez C., Kirkpatrick D., Livnat S., Storb R. Natural killer cells in bone marrow transplantation. Lancet. 1980;2:1025. doi: 10.1016/s0140-6736(80)92177-7. (abstr.) [DOI] [PubMed] [Google Scholar]
- 955.Lopez C., Sorell M., Kirkpatrick D., O'Reilly R.J., Ching C. Association between pre-treatment natural kill and graft-versus-host disease after stem-cell transplantation. Lancet. 1979;2:1103. doi: 10.1016/s0140-6736(79)92506-6. Bone Marrow Transplantation Unit. [DOI] [PubMed] [Google Scholar]
- 956.Livnat S., Seigneuret M., Storb R., Prentice R.L. Analysis of cytotoxic effector cell function in patients with leukemia or aplastic anemia before and after marrow transplantation. J. Immunol. 1980;124:481. [PubMed] [Google Scholar]
- 957.Gratama J.W., Lipovich-Oosterveer M.A., Ronteltap C., Sinnige L.G., Jansen J., Van Der Griend R.J., Bolhuis R.L. Natural immunity and graft-vs-host disease. Transplantation. 1985;40:256. doi: 10.1097/00007890-198509000-00007. [DOI] [PubMed] [Google Scholar]
- 958.Weisdorf S.A., Platt J.L., Snover D.C. In situ analysis of T and killer lymphocyte subpopulations in rectal biopsies from bone marrow transplant patients. Gastroenterology. 1983;84:1348. [Google Scholar]
- 959.Murphy G.F., Merot Y., Tong A.K.F., Smith B. Identification of distinctive lymphocyte subpopulation in cutaneous graft-versus-host disease (GVHD) Lab. Invest. 1985;52:46A. [Google Scholar]
- 960.Guillen F.J., Ferrara J., Hancock W.W., Messadi D., Fonferko E., Burakoff S.J., Murphy G.F. Acute cutaneous graft-versus-host disease to minor histocompatibility antigens in a murine model. Evidence that large granular lymphocytes are effector cells in the immune response. Lab. Invest. 1986;55:35. [PubMed] [Google Scholar]
- 961.Piguiet P.-F., Grau G.E., Allet B., Vassalli P. Tumor necrosis factor/cachectin is an effector of skin and gut lesions of the acute phase of graft-versus-host disease. J. Exp. Med. 1987;166:1280. doi: 10.1084/jem.166.5.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 962.Korngold R., Sprent J. Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from mice. J. Exp. Med. 1978;148:1678. doi: 10.1084/jem.148.6.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 963.Reisner Y., Kapoor N., Kirkpatrick D., Pollack M.S., Cunninghma-Rundles S., Dupont B., Hodes M.Z., Good R.A., O'Reilly R.J. Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood. 1983;61:341. [PubMed] [Google Scholar]
- 964.Ghayur T., Seemayer T.A., Kongshavn P.A., Gartner J.G., Lapp W.S. Graft-versus-host reactions in the beige mouse. An investigation of the role of host and donor natural killer cells in the pathogenesis of graft-versus-host disease. Transplantation. 1987;44:261. doi: 10.1097/00007890-198708000-00017. [DOI] [PubMed] [Google Scholar]
- 965.Ghayur T., Seemayer T.A., Lapp W.S. Prevention of murine graft-versus-host disease by inducing and eliminating ASGM1+ cells of donor origin. Transplantation. 1988;45:586. doi: 10.1097/00007890-198803000-00017. [DOI] [PubMed] [Google Scholar]
- 966.Blazar B.R., Soderling C.C., Koo G.C., Vallera D.A. Absence of a facilitory role for NK 1.1-positive donor cells in engraftment across a major histocompatibility barrier in mice. Transplantation. 1988;45:876. doi: 10.1097/00007890-198805000-00007. [DOI] [PubMed] [Google Scholar]
- 967.Varkila K. Depletion of asialo-GM1+ cells from the F1 recipient mice prior to irradiation and transfusion of parental spleen cells prevents mortality to acute graft-versus-host disease and induction of anti-host specific cytotoxic T cells. Clin. Exp. Immunol. 1987;69:652. [PMC free article] [PubMed] [Google Scholar]
- 968.Mowat A.M., Felstein M.V. Experimental studies of immunologically mediated enteropathy. II. Role of natural killer cells in the intestinal phase of murine graft-versus-host reaction. Immunology. 1987;61:179. [PMC free article] [PubMed] [Google Scholar]
- 969.Mowat A.M., Felstein M.V., Borland A., Parrott D.M. Experimental studies of immunologically mediated enteropathy. Development of cell mediated immunity and intestinal pathology during a graft-versus-host reaction in irradiated mice. Gut. 1988;29:949. doi: 10.1136/gut.29.7.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 970.Biron C.A., Habu S., Okumura K., Welsh R.M. Lysis of uninfected and virus-infected cells in vivo: A rejection mechanism in addition to that mediated by natural killer cells. J. Virol. 1984;50:698. doi: 10.1128/jvi.50.3.698-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 971.Stitz L., Althage A., Hengartner H., Zinkernagel R. Natural killer cells vs. cytotoxic T cells in the peripheral blood of virus-infected mice. J. Immunol. 1985;134:598. [PubMed] [Google Scholar]
- 972.Biron C.A., Turgiss L.R., Welsh R.M. Increase in NK cell number and turnover rate during acute viral infection. J. Immunol. 1983;131:1539. [PubMed] [Google Scholar]
- 973.Natuk R.J., Welsh R.M. Accumulation and chemotaxis of large granular lymphocytes at sites of virus replication. J. Immunol. 1987;138:877. [PubMed] [Google Scholar]
- 974.Welsh R.M., Kiessling R.W. Natural killer cell response to lymphocytic choriomeningitis virus in beige mice. Scand. J. Immunol. 1980;11:363. doi: 10.1111/j.1365-3083.1980.tb00001.x. [DOI] [PubMed] [Google Scholar]
- 975.Welsh R.M., Biron C.A., Bukowski J.F., McIntyre K., Yang H. Role of natural killer cells in virus infections of mice. Surv. Synth. Pathol. Res. 1984;3:409. doi: 10.1159/000156943. [DOI] [PubMed] [Google Scholar]
- 976.Bukowski J.F., Woda B.A., Habu S., Okumura K., Welsh R.M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis. in vivo. J. Immunol. 1983;131:1531. [PubMed] [Google Scholar]
- 977.Allan J.E., Doherty P.C. Natural killer cells contribute to inflammation but do not appear to be essential for the induction of clinical lymphocytic choriomeningitis. Scand. J. Immunol. 1986;24:153. doi: 10.1111/j.1365-3083.1986.tb02081.x. [DOI] [PubMed] [Google Scholar]
- 978.Wabuke-Bunoti M.A., Bennink J.R., Plotkin S.A. Influenza virusinduced encephalopathy in mice: Interferon production and natural killer cell activity during acute infection. J. Virol. 1986;60:1062. doi: 10.1128/jvi.60.3.1062-1067.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 979.Bukowski J.F., Warner J.F., Dennert G., Welsh R.M. Adoptive transfer studies demonstrate the antiviral effect of NK cells. in vivo. J. Exp. Med. 1985;161:40. doi: 10.1084/jem.161.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 980.Bukowski J.F., Woda B.A., Welsh R.M. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J. Virol. 1984;52:119. doi: 10.1128/jvi.52.1.119-128.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 981.Stein-Streilein J., Guffee J. In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J. Immunol. 1986;136:1435. [PubMed] [Google Scholar]
- 982.Welsh R.M. Regulation of virus infections by natural killer cells. A review. Nat. Immun. Cell Growth Regul. 1986;5:169. [PubMed] [Google Scholar]
- 983.Habu S., Akamatsu K., Tamaoki N., Okumura K. In vivo significance of NK cells on resistance against virus (HSV-1) infections in mice. J. Immunol. 1984;133:2743. [PubMed] [Google Scholar]
- 984.Bukowski J.F., Welsh R.M. The role of natural killer cells and interferon in resistance to acute infection of mice with herpes simplex virus type 1. J. Immunol. 1986;137:3481. [PubMed] [Google Scholar]
- 985.Rager-Zisman B., Quan P.C., Rosner M., Moller J.R., Bloom B.R. Role of NK cells in protection of mice against herpes simplex virus-1 infection. J. Immunol. 1987;138:884. [PubMed] [Google Scholar]
- 986.Ausiello C., Valeri M., Piazza A., Antonelli G., Adorno D., Casciani C.U. Augmentation of natural killer activity during cytomegalovirus infection in one renal transplant recipient and one uremic patient. Transplant Proc. 1983;15:1793. [Google Scholar]
- 987.Ennis F.A., Beare A.S., Riley D., Schild G.C., Meager A., Qi Y.-H., Schwarz G., Rook A.H. Interferon induction and increased natural killer cell activity in influenza infections in man. Lancet. 1981;1:891. doi: 10.1016/s0140-6736(81)91390-8. [DOI] [PubMed] [Google Scholar]
- 988.Meguro H., Kervina M., Wright P.F. Antibody-dependent cell-mediated cytotoxicity against cells infected with respiratory syncitial virus: Characterization of in vitro and in vivo properties. J. Immunol. 1979;122:2521. [PubMed] [Google Scholar]
- 989.Perrin L., Tishon A., Oldstone M. Immunological injury in measles virus infection. III. Presence and characterization of human cytotoxic lymphocytes. J. Immunol. 1977;118:282. [PubMed] [Google Scholar]
- 990.Quinnan G.V.J., Kirmani N., Esber E., Saral R., Manischewitz J.R., Rogers J.L., Rook A.H., Santos G.W., Burns W.H. HLA-restricted cytotoxic T lymphocyte and nonthymic cytotoxic lymphocyte responses to cytomegalovirus infection of bone marrow transplant recipients. J. Immunol. 1981;126:2036. [PubMed] [Google Scholar]
- 991.Lewis D.E., Gilbert B.E., Knight V. Influenza virus infection induces functional alterations in peripheral blood lymphocytes. J. Immunol. 1986;137:3777. [PubMed] [Google Scholar]
- 992.Cauda R., Prasthofer E.F., Grossi C.E., Whitley R.J., Pass R.F. Congenital cytomegalovirus: Immunological alterations. J. Med. Virol. 1987;23:41. doi: 10.1002/jmv.1890230106. [DOI] [PubMed] [Google Scholar]
- 993.Quinnan G.V.J., Kirmani N., Rook A.H., Manischewitz J.F., Jackson L., Moreschi G., Santos G.W., Saral R., Burns W.H. Cytotoxic T cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N. Engl. J. Med. 1982;307:7. doi: 10.1056/NEJM198207013070102. [DOI] [PubMed] [Google Scholar]
- 994.Lopez C., Kirkpatrick D., Fitzgerald P. In: “NK Cells and Other Natural Effector Cells”: The role of NK (HSV-1) effector cells in the resistance to herpes virus infections in man . Herberman R.B., editor. Academic Press; New York: 1982. p. 1445. [Google Scholar]
- 995.Moller-Larsen A., Heron I., Haahr S. Cell-mediated cytotoxicity to herpes-infected cells in humans: Dependence on antibodies. Infect. Immun. 1977;16:43. doi: 10.1128/iai.16.1.43-47.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 996.Rager-Zisman B., Grose C., Bloom B.R. Mechanism of selective nonspecific cell-mediated cytotoxicity of virus-infected cells. Nature (London) 1976;260:369. doi: 10.1038/260369a0. [DOI] [PubMed] [Google Scholar]
- 997.Harfast B., Andersson T., Perlmann P. Human lymphocyte cytotoxicity against mumps virus-infected target cells. Requirement for non-T cells. J. Immunol. 1975;114:1820. [PubMed] [Google Scholar]
- 998.Santoli D., Trinchieri G., Lief F.S. Cell-mediated cytotoxicity against virus-infected cells in humans. I. Characterization of the effector lymphocyte. J. Immunol. 1978;121:526. [PubMed] [Google Scholar]
- 999.Kurane I., Hebblewaite D., Ennis F.A. Characterization with monoclonal antibodies of human lymphcoytes active in natural killing and antibody-dependent cell-mediated cytotoxicity of dengue virus-infected cells. Immunology. 1986;58:429. [PMC free article] [PubMed] [Google Scholar]
- 1000.Bishop G.A., Marlin S.D., Schwartz S.A., Glorioso J.C. Human natural killer cell recognition of herpes simplex virus type 1. Glycoproteins: Specificity analysis with the use of monoclonal antibodies and antigenic variants. J. Immunol. 1984;133:2206. [PubMed] [Google Scholar]
- 1001.Casali P., Sissons J.G.P., Buchmeier M.J., Oldstone M.B.A. Generation of human cytotoxic lymphocytes by virus. Viral glycoproteins induce nonspecific cell-mediated cytotoxicity without release of interferon. in vitro. J. Exp. Med. 1981;154:840. doi: 10.1084/jem.154.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1002.Harfast B., Orvell C., Alsheikhly A., Andersson T., Perlmann P., Norrby E. The role of viral glycoproteins in mumps-virus dependent lymphocyte-mediated cytotoxicity. in vitro. Scand. J. Immunol. 1980;11:391. doi: 10.1111/j.1365-3083.1980.tb00005.x. [DOI] [PubMed] [Google Scholar]
- 1003.Alsheikhly A.-R., Orvell C., Andersson T., Perlmann P. The role of serologically defined epitopes on mumps virus HN-glycoproteins in the induction of virus dependent cell-mediated cytotoxicity (VDCC) in vitro. Analysis with monoclonal antibodies. Scand. J. Immunol. 1985;22:529. doi: 10.1111/j.1365-3083.1985.tb01912.x. [DOI] [PubMed] [Google Scholar]
- 1004.Harfast B., Andersson T., Perlmann P. Immunoglobulin-independent natural cytotoxicity of Fc receptor-bearing human blood lymphocytes to mumps virus-infected Farget cells. J. Immunol. 1980;121:755. [PubMed] [Google Scholar]
- 1005.Alsheikhly A.-R., Andersson T., Perlmann P. Virus-dependent cellular cytotoxicity in vitro: Mechanisms of induction and effector cell characterization. Scand. J. Immunol. 1985;21:329. doi: 10.1111/j.1365-3083.1985.tb01438.x. [DOI] [PubMed] [Google Scholar]
- 1006.Alsheikhly A.-R., Andersson T., Perlmann P. Virus-mediated induction in human lymphocytes of antibody-independent cytotoxicity (VDCC) and enhancement of antibody-dependent cytotoxicity (ADCC) against natural killer-resistant tumor target cells. Cell. Immunol. 1984;88:511. doi: 10.1016/0008-8749(84)90182-5. [DOI] [PubMed] [Google Scholar]
- 1007.Tang J., DeLong D.C., Butler L.D., Marder P., Ades E.W. Murine thymocytes mediate a natural killer-like activity against herpes virus-infected target cells but not YAC-1 target cells. Scand. J. Immunol. 1986;24:115. doi: 10.1111/j.1365-3083.1986.tb02075.x. [DOI] [PubMed] [Google Scholar]
- 1008.Hendricks R.L., Sugar J. Lysis of herpes simplex virus-infected targets. II. Nature of the effector cells. Cell. Immunol. 1984;83:262. doi: 10.1016/0008-8749(84)90305-8. [DOI] [PubMed] [Google Scholar]
- 1009.Yasukawa M., Zarling J.M. Autologous herpes simplex virus-infected cells are lysed by human natural killer cells. J. Immunol. 1983;131:2011. [PubMed] [Google Scholar]
- 1010.Tilden A.B., Cauda R., Grossi C.E., Balch C.M., Lakeman A.D., Whitley R.J. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: Characterization of the effector cells. J. Immunol. 1986;136:4243. [PubMed] [Google Scholar]
- 1011.Colmenares C., Lopez C. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors. J. Immunol. 1986;136:3473. [PubMed] [Google Scholar]
- 1012.Paya C.V., Kenmotsu N., Schoon R.A., Leibson P.J. Tumor necrosis factor and lymphotoxin secretion by human natural killer cells leads to antiviral cytotoxicity. J. Immunol. 1988;141:1989. [PubMed] [Google Scholar]
- 1013.Casali P., Oldstone M.B.A. Mechanisms of killing of measles virus infected cells by human lymphocytes: Interferon associated and unassociated cell-mediated cytotoxicity. Cell. Immunol. 1982;70:330. doi: 10.1016/0008-8749(82)90334-3. [DOI] [PubMed] [Google Scholar]
- 1014.Arora D.J., Justewicz D.M. Influenza viral glycoproteins induced cell-mediated cytotoxicity by an interferon-independent mechanism. Cell. Immunol. 1986;97:102. doi: 10.1016/0008-8749(86)90379-5. [DOI] [PubMed] [Google Scholar]
- 1015.Rees R.C., Dalton B.J., Young J.F., Hanna N., Poste G. Augmentation of human natural killer cell activity by influenza virus antigens produced in. Escherichia coli. J. Biol. Response Modif. 1987;6:69. [PubMed] [Google Scholar]
- 1016.Fitzgerald P.A., von Wussow P., Lopez C. Role of interferon in natural kill of HSV-1 infected fibroblasts. J. Immunol. 1982;129:819. [PubMed] [Google Scholar]
- 1017.Fitzgerald P.A., Mendelsohn M., Lopez C. Human natural killer cells limit replication of herpes simplex virus type I. in vitro. J. Immunol. 1985;134:2666. [PubMed] [Google Scholar]
- 1018.Bishop G.A., Glorioso J.C., Schwartz S.A. Role of interferon in human natural killer activity against target cells infected with HSV-1. J. Immunol. 1983;131:1849. [PubMed] [Google Scholar]
- 1019.Fitzgerald P.A., Schindler T.E., Siegal F.P., Lopez C. In: “Natural Killer Activity and Its Regulation”: Independence of interferon production and natural killer function and association with opportunistic infection in acquired immune deficiency syndrome . Hoshino T., Koren H.S., Uchida A., editors. Excerpta Medica; Amsterdam: 1984. p. 414. [Google Scholar]
- 1020.Blalock J.E., Stanton G.J. Efficient transfer of interferon-induced virus resistance between human cells. J. Gen. Virol. 1978;41:325. doi: 10.1099/0022-1317-41-2-325. [DOI] [PubMed] [Google Scholar]
- 1021.Weigent D.A., Blalock J.E., Stanton G.J. Interferon-induced transfer of natural cytotoxic activity between human leukocytes. J. Biol. Response Modif. 1985;4:60. [PubMed] [Google Scholar]
- 1022.Abb J., Abb H., Deinhardt F. Relationship between natural killer (NK) cells and interferon (IFN) alpha-producing cells in human peripheral blood. Studies with a monoclonal antibody with specificity for human natural killer cells. Immunobiology. 1984;167:359. doi: 10.1016/S0171-2985(84)80007-8. [DOI] [PubMed] [Google Scholar]
- 1023.Oh S.H., Bandyopadhyay S., Miller D.S., Starr S.E. Cooperation between CD16 (Leu-11b)+ NK cells and HLA-DR+ cells in natural killing of herpesvirus-infected fibroblasts. J. Immunol. 1987;139:2799. [PubMed] [Google Scholar]
- 1024.Bartizal K.F., Salkowski C., Pleasants J.R., Balish E. The effect of microbial flora, diet, and age on the tumoricidal activity of natural killer cells. J. Leuk. Biol. 1984;36:739. doi: 10.1002/jlb.36.6.739. [DOI] [PubMed] [Google Scholar]
- 1025.Kearns R.J., Leu R.W. Modulation of natural killer activity in mice following infection with. Listeria monocytogenes. Cell Immunol. 1984;84:361. doi: 10.1016/0008-8749(84)90108-4. [DOI] [PubMed] [Google Scholar]
- 1026.Williams D.M., Schachter J., Grubbs B. Role of natural killer cells in infection with the mouse pneumonitis agent (murine Chlamydia trachomatis). Infect. Immun. 1987;55:223. doi: 10.1128/iai.55.1.223-226.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1027.Wood P., Cheers C. Activation of non-specific cytotoxic cells in Listeria-susceptible and -resistant mouse strains. Immunology. 1985;54:113. [PMC free article] [PubMed] [Google Scholar]
- 1028.Morahan P.S., Dempsey W.L., Volkman A., Connor J. Antimicrobial activity of various immunomodulators: Independence from normal levels of circulating monocytes and natural killer cells. Infect. Immun. 1986;51:87. doi: 10.1128/iai.51.1.87-93.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1029.Nencioni L., Villa L., Boraschi D., Berti B., Tagliabue A. Natural and antibody-dependent cell-mediated activity against Salmonella typhimurium by peripheral and intestinal lymphoid cells in mice. J. Immunol. 1983;130:903. [PubMed] [Google Scholar]
- 1030.Morgan D.R., Dupont H.L., Gonik B., Kohl S. Cytotoxicity of human peripheral blood and colostral leukocytes against Shigella species. Infect. Immun. 1984;46:25. doi: 10.1128/iai.46.1.25-33.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1031.Klimpel G.R., Niesel D.W., Klimpel K.D. Natural cytotoxic effector cell activity against Shigella flexneri-infected HeLa cells. J. Immunol. 1986;136:1081. [PubMed] [Google Scholar]
- 1032.Blanchard D.K., Stewart W.E., II, Klein T.W., Friedman H., Djeu J.Y. Cytolytic activity of human peripheral blood leukocytes against Legionella pneumophila-infected monocytes: Characterization of the effector cell and augmentation by interleukin 2. J. Immunol. 1987;139:551. [PubMed] [Google Scholar]
- 1033.Blanchard, D.K., Bia Michelini-Norris, M., Friedman, H., and Djeu, J.Y., (1989). “Lysis of mycobacteria-infected monocytes by IL-2-activated killer cells: Role of LFA-1.” Cell. Immunol, (in press). [DOI] [PubMed]
- 1034.Garcia-Penarrubia P., Koster F.T., Kelley R.O., McDowell T.D., Bankhurst A.D. Antibacterial activity of human natural killer cells. J. Exp. Med. 1989;169:99. doi: 10.1084/jem.169.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1035.Tarkkanen J., Saxén H., Nurminen M., Mäkelä P.H., Säkselä E. Bacterial induction of human activated lymphocyte killing and its inhibition by lipopolysaccharide (LPS). J. Immunol. 1986;136:2662. [PubMed] [Google Scholar]
- 1036.Tarkkanen J., Säkselä E., Lanier L.L. Bacterial activation of human natural killer cells. Characteristics of the activation process and identification of the effector cells. J. Immunol. 1986;137:2428. [PubMed] [Google Scholar]
- 1037.Klimpel G.R., Niesel D.W., Asuncion M., Klimpel K.D. Natural killer cell activation and interferon produced by peripheral blood lymphocytes after exposure to bacteria. Infect. Immun. 1988;56:1436. doi: 10.1128/iai.56.6.1436-1441.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1038.Blanchard D.K., Friedman H., Stewart W.E., II, Klein T.W., Djeu J.Y. Role of gamma interferon in induction of natural killer activity by Legionella pneumophila in vitro and in an experimental murine infection model. Infect. Immun. 1988;56:1187. doi: 10.1128/iai.56.5.1187-1193.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1039.Lindemann R.A. Bacterial activation of human natural killer cells: Role of cell surface lipopolysaccharide. Infect. Immun. 1988;56:1301. doi: 10.1128/iai.56.5.1301-1308.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1040.Kang Y.H., Carl M., Maheshwari R.K., Watson L.P., Yaffe L., Grimley P.M. Incorporation of bacterial lipopolysaccharide by human Leu-11a+ natural killer cells. Ultrastructural and functional correlations. Lab. Invest. 1988;58:196. [PubMed] [Google Scholar]
- 1041.Lapham C., John P.A., Tomar R.H. The mechanism of enhancement of natural killer cell activity by soluble streptococcal products. Clin. Immunol. Immunopathol. 1986;40:335. doi: 10.1016/0090-1229(86)90038-3. [DOI] [PubMed] [Google Scholar]
- 1042.Uchida A., Klein E. Activation of human blood lymphocytes and monocytes by the streptococcal preparation OK432: Enhanced generation of soluble cytotoxic factors. Immunol. Lett. 1985;10:177. doi: 10.1016/0165-2478(85)90074-4. [DOI] [PubMed] [Google Scholar]
- 1043.Pollack S.B. OK-432 stimulates primary production and activity of murine natural killer cells. Nat. Immun. Cell Growth Regul. 1987;6:224. [PubMed] [Google Scholar]
- 1044.Nabavi N., Murphy J.W. In vitro binding of natural killer cells to Cryptococcus neoformans targets. Infect. Immun. 1985;50:50. doi: 10.1128/iai.50.1.50-57.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1045.Jimenez B.E., Murphy J.W. In vitro effects of natural killer cells against Paracoccidioides brasiliensis yeast phase. Infect. Immun. 1984;46:552. doi: 10.1128/iai.46.2.552-558.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1046.Petkus A.F., Baum L.L. Natural killer cell inhibition of young spherules and endospores of. Coccidioides immitis. J. Immunol. 1987;139:3107. [PubMed] [Google Scholar]
- 1047.Hidore M.R., Murphy J.W. Natural cellular resistance of beige mice against. Cryptococcus neoformans. J. Immunol. 1986;137:3624. [PubMed] [Google Scholar]
- 1048.Hidore M.R., Murphy J.W. Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells. Infect. Immun. 1986;51:547. doi: 10.1128/iai.51.2.547-555.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1049.Lipscomb M.F., Alvarellos T., Toews G.B., Tompkins R., Evans Z., Koo G., Kumar V. Role of natural killer cells to resistance to Cryptococcus neoformans infections in mice. Am. J. Pathol. 1987;128:354. [PMC free article] [PubMed] [Google Scholar]
- 1050.Marconi P., Scaringi L., Tissi L., Boccanera M., Bistoni F., Bonmassar E., Cassone A. Induction of natural killer cell activity by inactivated Candida albicans in mice. Infect. Immun. 1985;50:297. doi: 10.1128/iai.50.1.297-303.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1051.Djeu J.Y., Blanchard D.K., Richards A.L., Friedman H. Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J. Immunol. 1988;141:4047. [PubMed] [Google Scholar]
- 1052.Zunino S.J., Hudig D. Interactions between human natural killer (NK) lymphocytes and yeast cells: Human NK cells do not kill Candida albicans, although C. albicans blocks NK lysis of K562 cells. Infect. Immun. 1988;56:564. doi: 10.1128/iai.56.3.564-569.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1053.Djeu J.Y., Blanchard D.K. Regulation of human polymorphonuclear neutrophil (PMN) activity against Candida albicans by large granular lymphocytes via release of a PMN-activating factor. J. Immunol. 1987;139:2761. [PubMed] [Google Scholar]
- 1054.Kamiyama T. Toxoplasma-induced activities of peritoneal and spleen natural killer cells from beige mice against thymocytes and YAC-1 lymphoma targets. Infect. Immun. 1984;43:973. doi: 10.1128/iai.43.3.973-980.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1055.Ojo-Amaize E.A., Vilcek J., Cochrane A.H., Nussenzweig R.S. Plasmodium berghei sporozoites are mitogenic for murine T cells, induce interferon, and activate natural killer cells. J. Immunol. 1984;133:1005. [PubMed] [Google Scholar]
- 1056.Solomon J.B., Forbes M.G., Solomon G.R. A possible role for natural killer cells in providing protection against Plasmodium berghei in early stages of infection. Immunol. Lett. 1985;9:349. doi: 10.1016/0165-2478(85)90061-6. [DOI] [PubMed] [Google Scholar]
- 1057.Hauseer W.E., Jr, Tsai V. Acute toxoplasma infection of mice induces spleen NK cells that are cytotoxic for. T. gondii in vitro. J. Immunol. 1986;136:313. [PubMed] [Google Scholar]
- 1058.Kirkpatrick C.E., Farrell J.P. Splenic natural killer-cell activity in mice infected with. Leishmania donovani. Cell Immunol. 1984;85:201. doi: 10.1016/0008-8749(84)90290-9. [DOI] [PubMed] [Google Scholar]
- 1059.Kirkpatrick C.E., Farrell J.P., Warner J.F., Dennert G. Participation of natural killer cells in the recovery of mice from visceral leishmaniasis. Cell. Immunol. 1985;92:163. doi: 10.1016/0008-8749(85)90074-7. [DOI] [PubMed] [Google Scholar]
- 1060.Albright J.W., Munger W.E., Henkart P.A., Albright J.F. The toxicity of rat large granular lymphocyte tumor cells and their cytoplasmic granules for rodent and African trypanosomes. J. Immunol. 1988;140:2774. [PubMed] [Google Scholar]
- 1061.Moretta L., Webb S.R., Grossi C.E., Lydyard P.M., Cooper M.D. Functional analysis of two human T-cell subpopulations: Help and suppression of B-cell responses by T-cells bearing receptors for IgM or IgG. J. Exp. Med. 1977;146:184. doi: 10.1084/jem.146.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1062.Lobo P.I. Characterization of a non-T, non-B human lymphocyte (L cell) with use of monoclonal antibodies. Its regulatory role in B lymphocyte function. J. Clin. Invest. 1981;68:431. doi: 10.1172/JCI110272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1063.Arai S., Yamamoto H., Itoh K., Kumagai K. Suppressive effect of human natural killer cells on pokeweed mitogen-induced B cell differentiation. J. Immunol. 1983;131:651. [PubMed] [Google Scholar]
- 1064.Nabel G., Allard W.J., Cantor H. A cloned cell line mediating natural killer cell function inhibits immunoglobulin secretion. J. Exp. Med. 1982;156:658. doi: 10.1084/jem.156.2.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1065.Storkus W.J., Dawson J.R. B cell sensitivity to natural killing: Correlation with target cell stage of differentiation and state of activation. J. Immunol. 1986;136:1542. [PubMed] [Google Scholar]
- 1066.Robles C.P., Pereira P., Wortley P., Pollack S.B. In: “Mechanisms of Cytotoxicity by NK Cells”: Regulation of the B cell response by NK cells . Herberman R.B., Callewaert D.M., editors. Academic Press; Orlando, Florida: 1985. p. 499. [Google Scholar]
- 1067.Froelich C.J., Guiffaut S. Natural killer cells do not lyse resting or mitogen-stimulated B cells. Nat. Immun. Cell Growth Regul. 1987;6:12. [PubMed] [Google Scholar]
- 1068.Tilden A.B., Abo T., Balch C.M. Suppressor cell function of human granular lymphocytes identified by the HNK-1 (Leu 7) monoclonal antibody. J. Immunol. 1983;130:1171. [PubMed] [Google Scholar]
- 1069.Brieva J.A., Targan S., Stevens R.H. NK and T cell subsets regulate antibody production by human in vivo antigen-induced lymphoblastoid B cells. J. Immunol. 1984;132:611. [PubMed] [Google Scholar]
- 1070.Kuwano K., Arai S., Munakata T., Tomita Y., Yoshitake Y., Kumagai K. Suppressive effect of human natural killer cells on Epstein-Barr virus-induced immunoglobulin synthesis. J. Immunol. 1986;137:1462. [PubMed] [Google Scholar]
- 1071.Takeuchi T., DiMaggio M., Levine H., Schlossman S.F., Morimoto C. CD11 molecule defines two types of suppressor cells within the T8+ population. Cell. Immunol. 1988;111:398. doi: 10.1016/0008-8749(88)90103-7. [DOI] [PubMed] [Google Scholar]
- 1072.Kimata H., Shanahan F., Brogan M., Targan S., Saxon A. Modulation of ongoing human immunoglobulin synthesis by natural killer cells. Cell. Immunol. 1987;107:74. doi: 10.1016/0008-8749(87)90267-x. [DOI] [PubMed] [Google Scholar]
- 1073.Targan S., Brieva J., Newman W., Stevens R. Is the NK lytic process involved in the mechanism of NK suppression of antibody-producing cells? J. Immunol. 1985;134:666. [PubMed] [Google Scholar]
- 1074.Brieva J.A., Stevens R.H. Involvement of the transferrin receptor in the production and NK-induced suppression of human antibody synthesis. J. Immunol. 1984;133:1288. [PubMed] [Google Scholar]
- 1075.Mortari F., Singhal S.K. Production of human bone marrow-derived suppressor factor. Effect on antibody synthesis and lectin-activated cell proliferation. J. Immunol. 1988;141:3037. [PubMed] [Google Scholar]
- 1076.Azuma E., Kaplan J. Role of lymphokine-activated killer cells as mediators of veto and natural suppression. J. Immunol. 1988;141:2601. [PubMed] [Google Scholar]
- 1077.Poppema S., Visser L., De Leij L. Reactivity of presumed anti-natural killer cell antibody Leu 7 with intrafollicular T lymphocytes. Clin. Exp. Immunol. 1983;54:834. [PMC free article] [PubMed] [Google Scholar]
- 1078.Robles C.P., Pollack S.B. Regulation of the secondary in vitro antibody response by endogenous natural killer cells: Kinetics, isotype preference, and non-identity with T suppressor cells. J. Immunol. 1986;137:2418. [PubMed] [Google Scholar]
- 1079.Khater M., Macai J., Genyea C., Kaplan J. Natural killer cell regulation of age-related and type-specific variations in antibody responses to pneumococcal polysaccharides. J. Exp. Med. 1986;164:1505. doi: 10.1084/jem.164.5.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1080.Abruzzo L.U., Rowley D.A. Homeostasis of the antibody response: Immunoregulation by NK cells. Science. 1983;222:581. doi: 10.1126/science.6685343. [DOI] [PubMed] [Google Scholar]
- 1081.Abruzzo L.V., Mullen C.A., Rowley D.A. Immunoregulation by natural killer cells. Cell. Immunol. 1986;98:266. doi: 10.1016/0008-8749(86)90287-x. [DOI] [PubMed] [Google Scholar]
- 1082.Shah P.D., Keij J., Gilbertson S.M., Rowley D.A. Thy-1+ and Thy-1- natural killer cells. Only Thy-1- natural killer cells suppress dendritic cells. J. Exp. Med. 1986;163:1012. doi: 10.1084/jem.163.4.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1083.Brunswick M., Lake P. Obligatory role of gamma interferon in T cell-replacing factor-dependent, antigen-specific murine B cell responses. J. Exp. Med. 1985;161:953. doi: 10.1084/jem.161.5.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1084.Mond J.J., Brunswick M. A role for IFN-gamma and NK cells in immune response to T cell-regulated antigens types 1 and 2. Immunol. Rev. 1987;99:105. doi: 10.1111/j.1600-065x.1987.tb01174.x. [DOI] [PubMed] [Google Scholar]
- 1085.Kimata H., Sherr E.H., Saxon A. Human natural killer (NK) cells produce a late-acting B-cell differentiation activity. J. Clin. Immunol. 1988;8:381. doi: 10.1007/BF00917154. [DOI] [PubMed] [Google Scholar]
- 1086.Brenner M.K., Vyakarnam A., Reittie J.E., Wimperis J.Z., Grob J.P., Hoffbrand A.V., Prentice H.G. Human large granular lymphocytes induce immunoglobulin synthesis after bone marrow transplantation. Eur. J. Immunol. 1987;17:43. doi: 10.1002/eji.1830170108. [DOI] [PubMed] [Google Scholar]
- 1087.Brenner M.K., Reittie J.E., Grob J.P., Wimperis J.Z., Stephens S., Patterson J., Hoffbrand A.V., Prentice H.G. The contribution of large granular lymphocytes to B cell activation and differentiation after T-cell-depleted allogeneic bone marrow transplantation. Transplantation. 1986;42:257. doi: 10.1097/00007890-198609000-00006. [DOI] [PubMed] [Google Scholar]
- 1088.Kimata H., Saxon A. Subset of natural killer cells is induced by immune complexes to display Fc receptors for IgE and IgA and demonstrates isotype regulatory function. J. Clin. Invest. 1988;82:160. doi: 10.1172/JCI113565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1089.Swendeman S., Thorley-Dawson D.A. The activation antigen BLAST-2, when shed, is an autocrine BCGF for normal and transformed B cells. EMBO J. 1987;6:1637. doi: 10.1002/j.1460-2075.1987.tb02412.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1090.Vyakarnam A., Brenner M.K., Reittie J.E., Houlker C.H., Lachmann P.J. Human clones with natural killer function can activate B cells and secrete B cell differentiation factors. Eur. J. Immunol. 1985;15:606. doi: 10.1002/eji.1830150614. [DOI] [PubMed] [Google Scholar]
- 1091.Varkila K., Silvennoinen O., Hurme M. Asialo GM1+ NK cells have opposite role in the activation of alloreactive cytotoxic T lymphocyte (CTL) responsen vitro and. in vivo. Acta Pathol. Microbiol. Immunol. Scand. 1987;95:141. doi: 10.1111/j.1699-0463.1987.tb00022.x. [DOI] [PubMed] [Google Scholar]
- 1092.Suzuki R., Suzuki S., Ebina N., Kumagai K. Suppression of alloimmune cytotoxic T lymphocyte (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin 2. J. Immunol. 1985;134:2139. [PubMed] [Google Scholar]
- 1093.Schaaf-Lafontaine N., Boniver J., Huygen K., Degiovanni G. Suppression of CTL responsesn vitro by large granular T cells. Immunol. Lett. 1984;8:201. doi: 10.1016/0165-2478(84)90078-6. [DOI] [PubMed] [Google Scholar]
- 1094.Gilbertson S.M., Shah P.D., Rowley D.A. NK cells suppress the generation of Lyt-2+ cytolytic T cells by suppressing or eliminating dendritic cells. J. Immunol. 1986;136:3567. [PubMed] [Google Scholar]
- 1095.Pope R.M., McChesney L., Stebbing N., Goldstein L., Talal N. Regulation of T cell proliferation by cloned interferon-alpha mediated by Leu-llb-positive cells. J. Immunol. 1985;135:4048. [PubMed] [Google Scholar]
- 1096.Shah P.D., Gilbertson S.M., Rowley D.A. Dendritic cells that have interacted with antigen are targets for natural killer cells. J. Exp. Med. 1985;162:625. doi: 10.1084/jem.162.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1097.Shah P.D. Dendritic cells but not macrophages are targets for immune regulation by natural killer cells. Cell. Immunol. 1987;104:440. doi: 10.1016/0008-8749(87)90046-3. [DOI] [PubMed] [Google Scholar]
- 1098.Scala G., Allavena P., Ortaldo J.R., Herberman R.B., Oppenheim J.J. Subsets of human large granular lymphocytes (LGL) exhibit accessory cell functions. J. Immunol. 1985;134:3049. [PubMed] [Google Scholar]
- 1099.Burlington D.B., Djeu J.Y., Wells M.A., Kiley S.C., Quinnan G.V., Jr Large granular lymphocytes provide an accessory function in the in vitro development of influenza A virus-specific cytotoxic T cells. J. Immunol. 1984;132:3154. [PubMed] [Google Scholar]
- 1100.Silvennoinen O. Purified human NK cells do not function as accessory cells in T-cell proliferative responses. Immunology. 1988;64:495. [PMC free article] [PubMed] [Google Scholar]
- 1101.Weissler J.C., Yarbrough W.C., Jr, Toews G.B., Nicod L.P. Human natural killer cells enhance a mixed leukocyte reaction. J. Leuk. Biol. 1988;43:291. doi: 10.1002/jlb.43.4.291. [DOI] [PubMed] [Google Scholar]
- 1102.Kiessling R., Petranyi G., Klein G., Wigzell H. Non-T-cell resistance against a mouse Maloney sarcoma. Int. J. Cancer. 1976;17:275. doi: 10.1002/ijc.2910170217. [DOI] [PubMed] [Google Scholar]
- 1103.Hanna N., Burton R.C. Definitive evidence that natural killer (NK) cells inhibit experimental tumor metastasis in vivo. J. Immunol. 1981;127:1754. [PubMed] [Google Scholar]
- 1104.Gorelik E., Fogel M., Feldman M., Segal S. Differences in resistance of metastatic tumor cells and cells from local tumor growth to cytotoxicity of natural killer cells. JNCI, J. Natl. Cancer Inst. 1979;63:1397. [PubMed] [Google Scholar]
- 1105.Riccardi C., Santoni A., Barlozzari T., Puccetti P., Herberman R.B. In vivo natural reactivity of mice against tumor cells. Int. J. Cancer. 1980;25:475. doi: 10.1002/ijc.2910250409. [DOI] [PubMed] [Google Scholar]
- 1106.Haller O., Hansson M., Kiessling R., Wigzell H. Role of non-conventional natural killer cells in resistance against syngeneic tumor cells in vivo. Nature (London) 1977;270:609. doi: 10.1038/270609a0. [DOI] [PubMed] [Google Scholar]
- 1107.Karre K., Klein G.O., Kiessling R., Klein G., Roder J.C. In vitro NK-activity and in vivo resistance to leukemia: Studies of beige, beige/nude and wild type hosts in C57BL background. Int. J. Cancer. 1980;26:789. doi: 10.1002/ijc.2910260613. [DOI] [PubMed] [Google Scholar]
- 1108.Talmadge J.E., Meyers K.M., Prieur D.J., Starkey J.R. Role of NK cells in tumor growth and metastasis in beige mice. Nature (London) 1980;284:622. doi: 10.1038/284622a0. [DOI] [PubMed] [Google Scholar]
- 1109.Bukowski J.F., Biron C.A., Welsh R.M. Elevated natural killer cell-mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. J. Immunol. 1983;131:991. [PubMed] [Google Scholar]
- 1110.Minato N., Bloom B.R., Jones C., Holland J., Reid L.M. Mechanism of rejection of virus persistently infected tumor cells by athymic nude mice. J. Exp. Med. 1979;149:1117. doi: 10.1084/jem.149.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1111.Ojo E. Positive correlation between the levels of natural killer cells and the in vivo resistance to syngeneic tumor transplant as influenced by various routes of administration of corynebacterium parvum bacteria. Cell. Immunol. 1979;45:182. doi: 10.1016/0008-8749(79)90374-5. [DOI] [PubMed] [Google Scholar]
- 1112.Habu S., Fukui H., Shimamura K., Kasai M., Nagai Y., Okomura K. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J. Immunol. 1981;127:34. [PubMed] [Google Scholar]
- 1113.Pollack S.B., Hallenbeck L.A. In vivo reduction of NK activity with anti-NK1 serum: Direct evaluation of NK cells in tumor clearance. Int. J. Cancer. 1982;29:203. doi: 10.1002/ijc.2910290215. [DOI] [PubMed] [Google Scholar]
- 1114.Pollack S.B. In: “NK Cells and Other Natural Effector Cells”: Direct evidence for anti-tumor activity by NK cells in vivo: Growth of B16 melanoma in anti-NK1.1 treated mice . Herberman R.B., editor. Academic Press; New York: 1982. p. 1347. [Google Scholar]
- 1115.Seaman W.E., Sleisenger M., Eriksson E., Koo G.C. Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J. Immunol. 1987;138:4539. [PubMed] [Google Scholar]
- 1116.Reid L.M., Minato N., Gresser I., Holland J., Kadish A., Bloom B.R. Influence of anti-mouse interferon serum on the growth and metastasis of tumor cells persistently infected with virus and of human prostatic tumors in athymic nude mice. Proc. Natl. Acad. Sci. U.S.A. 1981;78:1171. doi: 10.1073/pnas.78.2.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1117.Barlozzari T., Leonhardt J., Wiltrout R.H., Herberman R.B. Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J. Immunol. 1985;134:2783. [PubMed] [Google Scholar]
- 1118.Strong D.M., Pandolfi F., Slease R.B., Budd J.E., Woody J.N. Antigenic characterization of a T-CLL with heteroantisera and monoclonal antibodies: Evidence for the T cell lineage of an Ia-positive, Fc-IgG positive, suppressor-cell subpopulation. J. Immunol. 1981;126:2205. [PubMed] [Google Scholar]
- 1119.Loutit J.F., Townsend K.M.S., Knowles J.F. Tumor surveillance in beige mice. Nature (London) 1980;285:66. [Google Scholar]
- 1120.Fidler I.J., Gersten D.M., Hart I.R. The biology of cancer invasion and metastasis. Adv. Cancer Res. 1978;28:149. doi: 10.1016/s0065-230x(08)60648-x. [DOI] [PubMed] [Google Scholar]
- 1121.Wiltrout R.H., Herberman R.B., Zhang S.R., Chirigos M.A. Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver. J. Immunol. 1985;134:4267. [PubMed] [Google Scholar]
- 1122.Schwarz R.E., Vujanovic N.L., Hiserodt J.C. Lymphokine-activated killer cells in rats: Enhanced anti-metastatic activity of LAK cells purified and expanded by their adherence to plastic. Cancer Res. 1989;49:1441. [PubMed] [Google Scholar]
- 1123.Pross H.F., Baines M.G. In: Lotzova E., Herberman R.B., editors. Vol.1. CRC Press; Boca Raton, Florida: 1986. p. 57. (“Immunobiology of Natural Killer Cells”: Alterations in natural killer cell activity in tumor-bearing hosts ). [Google Scholar]
- 1124.Cunningham-Rundles S., Filippa D.A., Braun D.W., Antonelli P., Ashikari H. Natural cytotoxicity of peripheral blood lymphocytes and regional lymph node cells in breast cancer in women. JNCI, J. Natl. Cancer Inst. 1981;67:585. [PubMed] [Google Scholar]
- 1125.Kadish A.S., Doyle A.T., Steinhauer E.H., Ghossein N.A. Natural cytotoxicity and interferon production in human cancer: Deficient natural killer activity and normal interferon production in patients with advanced disease. J. Immunol. 1981;127:1817. [PubMed] [Google Scholar]
- 1126.Pandolfi F., Semenzato G., De Rossi G., Strong D.M., Quinti I., Pezzutto A., Mandelli F., Aiuti F. Heterogeneity of T-CLL defined by monoclonal antibodies in nine patients. Clin. Immunol. Immunopathol. 1982;24:330. doi: 10.1016/0090-1229(82)90004-6. [DOI] [PubMed] [Google Scholar]
- 1127.Pross H.F., Baines M.G. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. I. The effect of malignant disease. Int. J. Cancer. 1976;18:593. doi: 10.1002/ijc.2910180508. [DOI] [PubMed] [Google Scholar]
- 1128.Takasugi M., Ramseyer A., Takasugi J. Decline of natural nonselective cell-mediated cytotoxicity in patients with tumor progression. Cancer Res. 1977;37:413. [PubMed] [Google Scholar]
- 1129.Golub S.H., Niitsuma M., Kawate N., Cochran A.J., Holmes E.C. In: “NK Cells and Other Natural Effector Cells”: NK activity of tumor infiltrating and lymph node lymphocytes in human pulmonary tumors . Herberman R.B., editor. Academic Press; New York: 1982. p. 1113. [Google Scholar]
- 1130.Mantovani A., Allavena P., Sessa C., Bolis G., Mangioni C. Natural killer activity of lymphoid cells isolated from human ascitic ovarian tumors. Int. J. Cancer. 1980;25:573. doi: 10.1002/ijc.2910250505. [DOI] [PubMed] [Google Scholar]
- 1131.Vose B.M., Vanky F., Argov S., Klein E. Natural cytotoxicity in man: Activity of lymph node and tumor-infiltrating lymphocytes. Eur. J. Immunol. 1977;7:753. doi: 10.1002/eji.1830071102. [DOI] [PubMed] [Google Scholar]
- 1132.Introna M., Allavena P., Biondi A., Colombo N., Villa A., Mantovani A. Defective natural killer activity within human ovarian tumors: Low numbers of morphologically defined effectors present in situ. J. Natl. Cancer Inst. 1983;70:21. [PubMed] [Google Scholar]
- 1133.Uchida A., Micksche M. Natural killer cells in carcinomatous pleural effusions. Cancer Immunol. Immunother. 1981;11:131. [Google Scholar]
- 1134.Moy P., Holmes E., Golub S. Depression of natural killer cytotoxic activity in lymphocytes infiltrating human pulmonary tumors. Cancer Res. 1985;45:57. [PubMed] [Google Scholar]
- 1135.Uchida A., Micksche M. Lysis of fresh human tumor cells by autologous large granular lymphocytes from peripheral blood and pleural effusions. Int. J. Cancer. 1983;32:37. doi: 10.1002/ijc.2910320107. [DOI] [PubMed] [Google Scholar]
- 1136.Blanchard D.K., Kavanagh J.J., Sinkovics J.G., Cavanagh D., Hewitt S.M., Djeu J.Y. Infiltration of interleukin-2-inducible killer cells in ascitic fluid and pleural effusions of advanced cancer patients. Cancer Res. 1988;48:6321. [PubMed] [Google Scholar]
- 1137.Kerndrup G., Meyer K., Ellegaard J., Hokland P. Natural killer (NK)-cell activity and antibody-dependent cellular cytotoxicity (ADCC) in primary preleukemic syndrome. Leuk. Res. 1984;8:239. doi: 10.1016/0145-2126(84)90147-4. [DOI] [PubMed] [Google Scholar]
- 1138.Takagi S., Kitagawa S., Takeda A., Minato N., Takaku F., Miura Y. Natural killer-interferon system in patients with preleukaemic states. Br. J. Haematol. 1984;58:71. doi: 10.1111/j.1365-2141.1984.tb06060.x. [DOI] [PubMed] [Google Scholar]
- 1139.Srskaar D., Frre O., Albrechtsen D., Stavem P. Decreased natural killer cell activity versus normal natural killer cell markers in mononuclear cells from patients with smouldering leukemia. Scand. J. Haematol. 1986;37:154. doi: 10.1111/j.1600-0609.1986.tb01790.x. [DOI] [PubMed] [Google Scholar]
- 1140.Okabe M., Minagawa T., Nakane A., Sakurada K., Miyazaki T. Impaired alpha-interferon production and natural killer activity in blood mononuclear cells in myelodysplastic syndrome. Scand. J. Haematol. 1986;37:111. doi: 10.1111/j.1600-0609.1986.tb01783.x. [DOI] [PubMed] [Google Scholar]
- 1141.Galvani D.W., Nethersell A.B., Cawley J.C. Alpha-interferon in myelodysplasia; clinical observations and effects on NK cells. Leuk. Res. 1988;12:257. doi: 10.1016/0145-2126(88)90144-0. [DOI] [PubMed] [Google Scholar]
- 1142.Mangan K.F., Chikkappa G., Farley P.C. T gamma (Tγ) cells suppress growth of erythroid colony-forming units in vitro in the pure red aplasia of B-cell chronic lymphocytic leukemia. J. Clin. Invest. 1982;70:1148. doi: 10.1172/JCI110713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1143.Fujimiya Y., Chang W.C., Bakke A., Horwitz D., Pattengale P.K. Natural killer (NK) cell immunodeficiency in patients with chronic myelogenous leukemia. II. Successful cloning and amplification of natural killer cells. Cancer Immunol. Immunother. 1987;24:213. doi: 10.1007/BF00205632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1144.Mangan K.F., D'Allesandro L. Hypoplastic anemia in B cell chronic lymphocytic leukemia: Evolution of T cell-mediated suppression of erythropoiesis in early stage and late stage disease. Blood. 1985;66:533. [PubMed] [Google Scholar]
- 1145.Trinchieri G., Murphy M., Perussia B. Regulation of hematopoiesis by T lymphocytes and natural killer cells. CRC Crit. Rev. Oncol. /Hematol. 1987;7:219. doi: 10.1016/s1040-8428(87)80009-4. [DOI] [PubMed] [Google Scholar]
- 1146.Pross H.F., Herberman R.B. In: “Proceedings of the Fifth NK Workshop”: Clinical application of natural killer cells . Ades E.W., Lopez C., editors. Rger; Basel: 1989. [Google Scholar]
- 1147.Hersey P., Honeyman E.M., McCarthy W.H. Low natural-killer-cell activity in familial melanoma patients and their relatives. Br. J. Cancer. 1979;40:113. doi: 10.1038/bjc.1979.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1148.Hersey P., Edwards A., McCarthy W., Milton G. In: “NK Cells and Other Natural Effector Cells”: Tumor related changes and prognostic signifiance of natural killer cell activity in melanoma patients . Herberman R.B., editor. Academic Press; New York: 1982. p. 1167. [Google Scholar]
- 1149.Strayer D.R., Carter W.A., Mayberry S.D., Pequignot E., Brodsky I. Low natural cytotoxicity of peripheral blood mononuclear cells in individuals with high familial incidence of cancer. Cancer Res. 1984;44:370. [PubMed] [Google Scholar]
- 1150.Pross H.F., Sterns E., MacGillis D.R.R. Natural killer activity in women at “high risk” for breast cancer, with and without benign breast syndrome. Int. J. Cancer. 1984;34:303. doi: 10.1002/ijc.2910340303. [DOI] [PubMed] [Google Scholar]
- 1151.Pross H.F. In: Lotzova E., Herberman R.B., editors. Vol. 2. CRC Press; Boca Raton, Florida: 1986. p. 11. (“Immunobiology of Natural Killer Cells”: The involvement of natural killer cells in human malignant disease ). [Google Scholar]
- 1152.Schantz S.P., Brown B.W., Lira E., Taylor D.L., Beddingfield N. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol. Immunother. 1987;25:141. doi: 10.1007/BF00199955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1153.Pross H.F. In: “Natural Immunity, Cancer and Biological Response Modification”: Natural killer cell activity in human malignant disease . Lotzova E., Herberman R.B., editors. Karger; Basel: 1986. p. 196. [Google Scholar]
- 1154.Sibbitt W.L., Jr, Bankhurst A.D. Natural killer cells in connective tissue disorders. Clin. Rheum. Dis. 1985;11:507. [PubMed] [Google Scholar]
- 1155.Sibbitt W.L., Jr, Gibbs D.L., Kenny C., Bankhurst A.D., Searles R.P., Ley K.D. Realtionship between circulating interferon and anti-interferon antibodies and impaired natural killer cell activity in systemic lupus erythematosus. Arthritis Rheum. 1985;28:624. doi: 10.1002/art.1780280605. [DOI] [PubMed] [Google Scholar]
- 1156.Pan L.Z., Dauphinee M.J., Ansar-Ahmed S., Talal N. Altered natural killer and natural cytotoxic cellular activities in lpr mice. Scand. J. Immunol. 1986;23:415. doi: 10.1111/j.1365-3083.1986.tb03073.x. [DOI] [PubMed] [Google Scholar]
- 1157.Magilavy D.B., Steinberg A.D., Latta S.L. High hepatic natural killer cell activity in murine lupus. J. Exp. Med. 1987;166:271. doi: 10.1084/jem.166.1.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1158.Karashima A., Taniguchi K., Himeno K., Kawano Y., Toshitani A., Nomoto K. Does depression of NK activity cause lymphadenopathy in lpr mice? Cell. Immunol. 1988;115:484. doi: 10.1016/0008-8749(88)90201-8. [DOI] [PubMed] [Google Scholar]
- 1159.Seaman W.E., Blackman M.A., Greenspan J.S., Talal N. Effect of 89Sr on immunity and autoimmunity in NZB/NZW F1 mice. J. Immunol. 1980;124:812. [PubMed] [Google Scholar]
- 1160.MacKay P., Jacobson J., Rabinovitch A. Spontaenous diabetes mellitus in the Bio-Breeding/Worcester rat. Evidence in vitro for natural killer cell lysis of islet cells. J. Clin. Invest. 1986;77:916. doi: 10.1172/JCI112390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1161.Woda B.A., Biron C.A. Natural killer cell number and function in the spontaneously diabetic BB/W rat. J. Immunol. 1986;137:1860. [PubMed] [Google Scholar]
- 1162.Like A.A., Biron C.A., Weringer E.J., Byman K., Sroczynski E., Guberski D.L. Prevention of diabetes in BioBreeding/Worcester rats with monoclonal antibodies that recognize T lymphocytes or natural killer cells. J. Exp. Med. 1986;164:1145. doi: 10.1084/jem.164.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1163.Negishi K., Gupta S., Chandy K.G., Waldeck N., Kershnar A., Buckingham B., Charles M.A. Interferon responsiveness of natural killer cells in type I human diabetes. Diabetes Res. 1988;7:49. [PubMed] [Google Scholar]
- 1164.Neishi K., Waldeck N., Chandy G., Buckingham B., Kershnar A., Fisher L., Gupta S., Charles A.M. Natural killer cell and islet killer cell activities in human type 1 diabetes. Exp. Clin. Endocrinol. 1987;89:345. doi: 10.1055/s-0029-1210661. [DOI] [PubMed] [Google Scholar]
- 1165.Hussain M.J., Alviggi L., Millward B.A., Leslie R.D., Pyke D.A., Vergani D. Evidence that the reduced number of natural killer cells in type 1 (insulin-dependent) diabetes may be genetically determined. Diabetologia. 1987;30:907. doi: 10.1007/BF00295872. [DOI] [PubMed] [Google Scholar]
- 1166.Neighbour P.A. Studies of interferon production and natural killing by lymphocytes from multiple sclerosis patients. Ann. N.Y. Acad. Sci. 1984;436:181. doi: 10.1111/j.1749-6632.1984.tb14789.x. [DOI] [PubMed] [Google Scholar]
- 1167.Santoli D., Hall W., Kastrukoff L., Lissak R.P., Perussia B., Trinchieri G., Koprowski H. Cytotoxic activity and interferon production by lymphocytes from patients with multiple sclerosis. J. Immunol. 1981;126:1274. [PubMed] [Google Scholar]
- 1168.Legendre C.M., Guttmann R.D., Yip G.H. Natural killer cell subsets in long-term renal allograft recipients. A phenotypic and functional study. Transplantation. 1986;42:347. doi: 10.1097/00007890-198610000-00003. [DOI] [PubMed] [Google Scholar]
- 1169.Lefkowitz M., Jorkasky D., Kornbluth J. Increase in natural killer activity in cyclosporine-treated renal allograft recipients during rejection. Hum. Immunol. 1987;19:139. doi: 10.1016/0198-8859(87)90101-7. [DOI] [PubMed] [Google Scholar]
- 1170.Hoffman R.A., Ascher N.L., Jordan M.L., Migliori R.J., Simmons R.L. Characterization of natural killer activity in sponge matrix allografts. J. Immunol. 1988;140:1702. [PubMed] [Google Scholar]
- 1171.Nemlande A., Soots A., Häyry P. In situ effector pathways of allograft destruction. 1. Generation of the “Cellular” effector response in the graft and the graft recipient. Cell. Immunol. 1984;89:409. doi: 10.1016/0008-8749(84)90342-3. [DOI] [PubMed] [Google Scholar]
- 1172.Lefkowitz M., Kornbluth J., Tomaszewski J.E., Jorkasky D.K. Natural killer-cell activity in cyclosporine-treated renal allograft recipients. J. Clin. Immunol. 1988;8:121. doi: 10.1007/BF00917900. [DOI] [PubMed] [Google Scholar]
- 1173.Fontana L., Sirianni M.C., De Sanctis G., Carbonari M., Ensoli B., Aiuti F. Deficiency of natural killer activity, but not of natural killer binding, in patients with lymphoadenopathy syndrome positive for antibodies to HTLV-III. Immunobiology. 1986;171:425. doi: 10.1016/S0171-2985(86)80074-2. [DOI] [PubMed] [Google Scholar]
- 1174.Bonavida B., Katz J., Gottlieb M. Mechanism of defective NK cell activity in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. I. Defective trigger on NK cells for NKCF production by target cells, and partial restoration by IL 2. J. Immunol. 1986;137:1157. [PubMed] [Google Scholar]
- 1175.Katzman M., Lederman M.M. Defective postbinding lysis underlies the impaired natural killer activity in factor VIII-treated, human T lymphotropic virus type III seropositive hemophiliacs. J. Clin. Invest. 1986;77:1057. doi: 10.1172/JCI112404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1176.Sirianni M.C., Soddus S., Malorni W., Arancia G., Aiuti F. Mechanism of defective natural killer cell activity in patients with AIDS is associated with defective distribution of tubulin. J. Immunol. 1988;140:2565. [PubMed] [Google Scholar]
- 1177.Vuillier F., Bianco N.E., Montagnier L., Dighiero G. Selective depletion of low-density CD8+, CD16+ lymphocytes during HIV infection. AIDS Res. Hum. Retroviruses. 1988;4:121. doi: 10.1089/aid.1988.4.121. [DOI] [PubMed] [Google Scholar]
- 1178.Robinson W.E., Jr, Mitchell W.M., Chambers W.H., Schuffman S.S., Montefiori D.C., Oeltmann T.N. Natural killer cell infection and inactivation in vitro by the human immunodeficiency virus. Hum. Pathol. 1988;19:535. doi: 10.1016/s0046-8177(88)80200-4. [DOI] [PubMed] [Google Scholar]
- 1179.Lau A.S., Read S.E., Williams B.R.G. Downregulation of interferon α but not γ receptor expression in vivo in the acquired immunodeficiency syndrome. J. Clin. Invest. 1988;82:1415. doi: 10.1172/JCI113746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 1180.Lopez C., Fitzgerald P.A., Siegal F.P., Landesman S., Gold J., Krown S.E. Deficiency of interferon-alpha generating capacity is associated with susceptibility to opportunistic infections in patients with AIDS. Ann. N.Y. Acad. Sci. 1984;437:39. doi: 10.1111/j.1749-6632.1984.tb37120.x. [DOI] [PubMed] [Google Scholar]
- 1181.Cauda R., Tumbarelo M., Ortona L., Kanda P., Kennedy R.C., Chanh T.C. Inhibition of normal human natural killer cell activity by human immunodeficiency virus synthetic transmembrane peptides. Cell. Immunol. 1988;115:57. doi: 10.1016/0008-8749(88)90161-x. [DOI] [PubMed] [Google Scholar]
- 1182.Harris D.T., Cianciolo G.J., Snyderman R., Argov S., Koren H.S. Inhibition of human natural killer cell activity by a synthetic peptide homologous to a conserved region in the retroviral protein, pl5E. J. Immunol. 1987;138:889. [PubMed] [Google Scholar]