Abstract
The Spike (S) protein from a virulent British field isolate of porcine transmissible gastroenteritis virus (TGEV) FS772/70 was constructed from cDNA and inserted into the vaccinia virus (VV) thymidine kinase gene locus under the control of the VV early/late gene P7.5K promoter. Recombinant S protein was synthesized as an endo-β-N-acetylglucosamini-dase H (Endo H)-sensitive glycoprotein with high mannose simple oligosaccharides (gp190) that underwent post-translational modification to an Endo H-resistant glycoprotein with complex oligosaccharides (gp210). Immunofluorescence analysis demonstrated that the majority of recombinant S protein was retained at the Golgi but some S protein was expressed on the plasma membrane. Monoclonal antibodies (mAbs) raised against native S protein reacted with this recombinant S protein; also, mice infected with the recombinant vaccinia virus (rVV) expressing the S protein induced TGEV neutralizing antibodies. A truncated S protein (SΔ) was also expressed in rVV-infected cells by introducing a deletion into the S protein cDNA that removed 292 amino acids from the C-terminus. The SΔ protein (gpl70) was shown to be antigenically similar to TGEV S protein by immunofluorescence and immunoprecipitation tests but was retained in the endoplasmic reticulum and not expressed on the cell surface.
References
- Bray M., Zhao B., Markoff L., Eckels K.H., Chanock R.M., Lai C.A. Mice immunised with recombinant vaccinia virus expressing Dengue 4 virus structural proteins with or without nonstructural protein NS1 are protected against fatal Dengue virus encephalitis. J. Virol. 1989;63:2853–2856. doi: 10.1128/jvi.63.6.2853-2856.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton P., Page K.W. Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus. Virus Res. 1990;18:71–80. doi: 10.1016/0168-1702(90)90090-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain 1HM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correa I., Gebaur F., Bullido M.J., Sune C., Baay M.F.D., Zwaagstra K.A., Posthumus W.P.A., Lenstra J.A., Enjuanes L. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J. Gen. Virol. 1990;71:271–279. doi: 10.1099/0022-1317-71-2-271. [DOI] [PubMed] [Google Scholar]
- De Groot R.J., Maduro J., Lenstra J.A., Horzinek M.C., ban Der Zeijst B.A.M., Spaan W.J.M. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68:2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
- De Groot R.J., ban Leen R.W., Dalderup M.J.M., Vennema H., Horzinek M.C., Spaan W.J.M. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology. 1989;171:493–502. doi: 10.1016/0042-6822(89)90619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. J. Gen. Virol. 1990;71:1313–1323. doi: 10.1099/0022-1317-71-6-1313. [DOI] [PubMed] [Google Scholar]
- Dunphy W.G., Rothman J.E. Compartmental organisation of the Golgi stack. Cell. 1985;42:13–21. doi: 10.1016/s0092-8674(85)80097-0. [DOI] [PubMed] [Google Scholar]
- Fleming J.O., Trousdale M.D., El-Zaatari F.A.K., Stohlman S.A., Weiner L.P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J. Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garwes D.J., Pacock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978–1979;3:179–190. [Google Scholar]
- Garwes D.J., Stewart F., Elleman C.J. Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In: Lai M.M.C., Stohlman S.A., editors. Coronaviruses. Vol. 218. Plenum; New York/London: 1987. pp. 509–515. (Adv. Exp. Med. Biol.). [DOI] [PubMed] [Google Scholar]
- Hofmann M., Wyler R. Propagation of the porcine epidemic diarrhoea in cell culture. J. Clin. Microbiol. 1988;26:2235–2239. doi: 10.1128/jcm.26.11.2235-2239.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu S., Bruszewski J., Boone T., Souza L. Cloning and expression of the surface glycoprotein gp195 of porcine transmissible gastroenteritis virus. In: Channock R.M., Lerner R.A., editors. Modern Approaches to Vaccines. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1984. pp. 219–223. [Google Scholar]
- Hu S., Bruszewski J., Smalling R. Infectious vaccinia virus recombinant that expresses the surface antigen of porcine transmissible gastroenteritis virus (TGEV) In: Quinnan G.V. Jr, editor. Vaccinia Viruses as Vectors for Vaccine Antigens. Elsevier; The Netherlands: 1985. pp. 201–208. [Google Scholar]
- Hubbard S.C., Ivatt R.J. Synthesis and processing of asparagine linked oligosaccharides. Annu. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
- Jacobs L., De Groot R., ban Der Zeijst B.A.M., Horzinek M.C., Spaan W. The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): Comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV) Virus Res. 1987;8:363–371. doi: 10.1016/0168-1702(87)90008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jimenez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laude H., Chapsal J.-M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
- Lodish H.F. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. J. Biol. Chem. 1988;263:2107–2110. [PubMed] [Google Scholar]
- Mackett M., Smith G.L., Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 1984;49:857–864. doi: 10.1128/jvi.49.3.857-864.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackett M., Smith G.L., Moss B. The construction and characterisation of vaccinia virus recombinants expressing foreign genes. In: Glover D.M., editor. Vol. 2. IRL Press; Oxford Washington D.C: 1985. pp. 191–211. (DNA Cloning, a Practical Approach). [Google Scholar]
- Maniatis T., Fritsch E.F., Sambrook J. first ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
- Niemann H., Boschek B., Ebans D., Rosing M., Tamura T., Klenk H.-D. Post-translational glycosylation of glycoprotein El: Inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puddington L., Machamer C.E., Rose J.K. Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the vesicular stomatitis virus glycoprotein in transport to the plasma membrane. J. Cell. Biol. 1986;102:2147–2157. doi: 10.1083/jcb.102.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pulford D.J., Britton P., Page K.W., Garwes D.J. Expression of TGEV structural genes in virus vectors. In: Cabanagh D., Brown T.D.K., editors. Coronaviruses and Their Diseases. Vol. 276. Plenum; New York/London: 1990. pp. 223–231. (Adv. Exp. Med. Biol.). [DOI] [PubMed] [Google Scholar]
- Pulford D.J., Britton P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and M proteins by recombinant vaccinia viruses. Virus Res. 1990;18:203–218. doi: 10.1016/0168-1702(91)90019-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasschaert D., Laude H. The predicted structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
- Spaan W., Cabanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sveda M.M., Markoff L., Lai C.J. Cell surface expression of the influenza virus haemagglutinin requires the hydrophobic carboxy-terminal sequences. Cell. 1982;30:649–659. doi: 10.1016/0092-8674(82)90261-6. [DOI] [PubMed] [Google Scholar]
- Tooze J., Tooze S.A., Warren G. Laminated cisternae of the rough endoplasmic reticulum induced by coronavirus MHVA59 infection. Eur. J. Cell Biol. 1985;26:108–115. [PubMed] [Google Scholar]
- Vennema H., Heijnens L., Zijderveld A., Horzinek M.C., Spaan W.J.M. Intracellular transport of recombinant coronavirus spike proteins: Implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]