Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;186(1):122–132. doi: 10.1016/0042-6822(92)90066-X

MHV S peplomer protein expressed by a recombinant vaccinia virus vector exhibits IgG Fc-receptor activity

Emilia L Oleszak ∗,1, Stanley Perlman , Julian L Leibowitz ∗,
PMCID: PMC7131518  PMID: 1309271

Abstract

We have previously shown that cells infected with mouse hepatitis virus (MHV) bind rabbit, mouse, and rat IgG by the Fc portion of the IgG molecule. This Fc-binding activity appeared to be mediated by the MHV S protein. S protein could also be precipitated from MHV-infected cells by a monoclonal antibody directed against the murine Fc γ receptor (FcγR). To prove definitively that the S protein mediates Fc-binding activity, we have expressed the MHV S protein utilizing recombinant vaccinia viruses. The anti-FcγR monoclonal antibody, 2.4G2, precipitated recombinant S protein in cells of murine, human, and rabbit origin. Since the anti-Fc receptor monoclonal antibody does not react with human and rabbit Fc receptors these results demonstrate that the epitope recognized by this antibody is carried on the MHV S protein and is not murine in origin. Examination of various MHV isolates and escape mutants failed to identify the precise sequences in S responsible for the molecular mimicry of the murine FcγR. These data are consistent with the hypothesis that a previously identified region of similarity between the S protein and the FcγR mediates this activity. The Fc binding activity of S was expressed on the cell surface, since MHV-JHM-infected cells, but not uninfected cells, formed rosettes with anti-sheep red blood cell (SRBC) antibody-coated SRBC. The anti-FcγR monoclonal antibody neutralized MHV-JHM and inhibited syncytium formation induced by the MHV S protein.

References

  1. Adams D.O., Hall T., Steplewski S., Koprowski H. Vol. 81. 1984. Tumors undergoing rejection induced by monoclonal antibodies of the IgG2a isotype contained increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis; pp. 3506–3510. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler R., Glorioso J.C., Cossman J., Levine M. Possible role of Fc receptors on cells infected and transformed by herpesvirus: Escape from immune cytolysis. Infect. Immun. 1978;21:442–447. doi: 10.1128/iai.21.2.442-447.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bearle A.J. Rabbit cells susceptible to rubella virus. Lancet. 1963;2:640–641. [Google Scholar]
  4. Bell S., Cranage M., Borysiewicz L., Minson T. Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1. J. Virol. 1990;64:2181–2186. doi: 10.1128/jvi.64.5.2181-2186.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavanagh D. Coronavirus IBV: Structural characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  6. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniel C., Talbot P.J. Protection from lethal coronavirus infection by affinity-purified spike glycoprotein of murine hepatitis virus, strain A59. Virology. 1990;174:87–94. doi: 10.1016/0042-6822(90)90057-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eizuru Y., Minamishima Y. Induction of Fc (IgG) receptor(s) by simian cytomegaloviruses in human embryonic lung fibroblasts. Intervirology. 1988;29:339–345. doi: 10.1159/000150065. [DOI] [PubMed] [Google Scholar]
  9. Elroy-Stein C., Fuerst T., Moss B. Vol. 86. 1989. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequences improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system; pp. 6126–6130. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falkner F., Moss B. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J. Virol. 1988;62:1849–1854. doi: 10.1128/jvi.62.6.1849-1854.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fleming J.O., Stohlman S.A., Harmon R.C., Lai M.M.C., Frelinger J.A., Weiner L.P. Antigenic relationship of murine coronaviruses: Analysis using monoclonal antibodies for JHM (MHV-4) virus. Virology. 1983;131:296–307. doi: 10.1016/0042-6822(83)90498-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frana M.F., Behnke J.N., Sturman L.S., Holmes K.V. Proteolytic cleavage of the glycoprotein of murine coronavirus: Host dependent differences in proteolytic cleavage and cell fusion. J. Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gallagher T.M., Parker S.E., Buchmeier M.J. Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. J. Virol. 1990;64:731–741. doi: 10.1128/jvi.64.2.731-741.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanke T., Graham F.L., Lulitanond V., Johnson D.C. Herpes simplex virus IgGFc receptors induced using recombinant adenovirus vectors expressing glycoproteins E and I. Virology. 1990;177:437–444. doi: 10.1016/0042-6822(90)90507-n. [DOI] [PubMed] [Google Scholar]
  15. Hirano N., Fujiwara K., Hino S., Matumoto M. Replication and plaque formation of mouse hepatitis virus (MHV-2) in mouse cell line DBT cultures. Arch. Ges. Virusforsch. 1974;44:298–302. doi: 10.1007/BF01240618. [DOI] [PubMed] [Google Scholar]
  16. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of coronavirus glycoprotein: Demonstration of a novel type of glycoprotein. Virology. 1991;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holmes K.V., Welsh R.M., Haspel M.V. Natural cytotoxicity against mouse hepatitis virus-infected target cells. I. Correlation of cytotoxicity with virus binding to leukocytes. J. Immunol. 1986;136:1446–1453. [PubMed] [Google Scholar]
  18. Johnson D.C., Frame M.C., Ligas M.W., Cross A.M., Stew N.D. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J. Virol. 1988;62:1347–1354. doi: 10.1128/jvi.62.4.1347-1354.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U.K., Favre M. Maturation of the head of bacteriophage T4.1. DNA packaging events. J. Mol. Biol. 1973;80:575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  20. Leibowitz J.L., de Vries J.R., Rodriquez M. Increased hepatotropism of mutants of MHV, strain JHM, selected with monoclonal antibodies. In: Lai M.C., Stohlman S.A., editors. Coronaviruses. Plenum; New York: 1987. pp. 321–331. [DOI] [PubMed] [Google Scholar]
  21. LePrevost C., Levy-Leblond E., Virelizier J.L., Dupuy J.M. Immunopathology of mouse hepatitis virus type 3 infection. I. Role of humoral and cell mediated immunity in resistance mechanisms. J. Immunol. 1975;114:221–225. [PubMed] [Google Scholar]
  22. Leslie R.G.O. Complex aggregation: A critical event in macrophage handling of soluble immune complexes. Immunol. Today. 1985;6:183–187. doi: 10.1016/0167-5699(85)90113-6. [DOI] [PubMed] [Google Scholar]
  23. Longnecker R., Chatterjee R.S., Whitley R.J., Roizman B. Vol. 84. 1987. Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture; pp. 4303–4307. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van der Zeijst B.A.M., Horzinek M.C., Spaan M.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mellman I.S., Plutner H., Steinman R., Unkeless J.C., Cohn Z.A. Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis. J. Cell Biol. 1983;96:887–895. doi: 10.1083/jcb.96.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mellman I.S., Unkeless J.C. Purification of a functional mouse Fc receptor through the use of a monoclonal antibody. J. Exp. Med. 1980;152:1048–1069. doi: 10.1084/jem.152.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mizzen L., Cheley S., Rao M., Wolf R., Anderson R. Fusion resistance and decreased infectability as major host determinants of coronavirus persistence. Virology. 1983;128:407–417. doi: 10.1016/0042-6822(83)90266-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morris V.L., Tieszer C., MacKinnon J., Percy D. Characterization of coronavirus JHM variants isolated from Wistar Furth rats with a viral induced demyelinating disease. Virology. 1989;169:127–136. doi: 10.1016/0042-6822(89)90048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.D. Post-translational glycosylation of coronavirus glycoprotein E1: Inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oleszak E., Leibowitz J.L. Immunoglobulin Fc binding activity is associated with the mouse hepatitis virus peplomer protein. Virology. 1990;176:70–80. doi: 10.1016/0042-6822(90)90231-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Perlman S., Jacobsen G., Olson A.L., Afifi A. Identification of the spinal cord as a major site of persistence during chronic infection with a murine coronavirus. Virology. 1990;175:418–426. doi: 10.1016/0042-6822(90)90426-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ravetch J.V., Luster A.D., Weinshank R., Kochan J., Pavlovec A., Portnoy D.A., Hulmes J., Pan Yu-Ching E., Unkeless J.C. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science. 1986;234:718–725. doi: 10.1126/science.2946078. [DOI] [PubMed] [Google Scholar]
  34. Robb J.A., Bond C.W., Leibowitz J.L. Pathogenic murine coronaviruses. III. Biological and biochemical characterization of temperature-sensitive mutants of JHMV. Virology. 1979;94:385–399. doi: 10.1016/0042-6822(79)90469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rothels K.H., Axelrad A.A., Siminovitch L., McCulloch F.A., Parker R.C. Vol. 3. 1959. The origin of altered cell lines from mouse, monkey, and man as indicated by chromosome and transplantation studies; pp. 189–214. (Can. Cancer Conf.). [Google Scholar]
  36. Routledge E., Stauber R., Pfleiderer M., Siddell S.G. Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J. Virol. 1991;65:254–262. doi: 10.1128/jvi.65.1.254-262.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmidt I., Skinner M., Siddel S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  38. Schubert M., Harmison G., Richardson C., Meier E. Vol. 82. 1985. Expression of a cDNA encoding a functional 241 kd VSV RNA polymerase; pp. 7984–7988. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sorensen O., Dugre R., Percy D., Dales S. In vivo and in vitro models of demyelinating diseases: endogenous factors influencing demyelinating disease caused by murine hepatitis virus in rats and mice. Infect. Immun. 1982;37:1248–1260. doi: 10.1128/iai.37.3.1248-1260.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sorensen O., Coulter-Mackie M., Puchalski S., Dales S. In vivo and in vitro models of demyelinating diseases. IX. Progress of JHM virus infection in the central nervous system of the rat during overt and asymptomatic phase. Virology. 1984;137:347–357. doi: 10.1016/0042-6822(84)90227-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  42. Stohlman S.A., Matsushima G.K., Casteel N., Weiner L.P. In vivo effects of coronavirus-specific T cell clones: DTH-inducer cells prevent a lethal infection but do not inhibit virus replication. J. Immunol. 1986;136:3052–3056. [PubMed] [Google Scholar]
  43. Storz J., Rott R., Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronaviruses by trypsin treatment. Infect. Immun. 1981;31:1214–1222. doi: 10.1128/iai.31.3.1214-1222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sturman L.S., Takemoto K.K. Enhanced growth of a murine coronavirus in transformed mouse cells. Infect. Immun. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Taguchi F., Fleming J.O. Comparison of six different murine coronavirus JHM variants by monoclonal antibodies against the E2 glycoprotein. Virology. 1989;169:233–235. doi: 10.1016/0042-6822(89)90061-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Taguchi F., Siddell S.G., Wege H., Ter Meulen V. Characterization of a variant virus selected in rat brains after infection by a coronavirus mouse hepatitis virus JHM. J. Virol. 1985;54:429–435. doi: 10.1128/jvi.54.2.429-435.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Talbot P.J., Salmi A.A., Knobler R.L., Buchmeier M.J. Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): Correlation with biological activities. Virology. 1984;132:250–260. doi: 10.1016/0042-6822(84)90032-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Talbot P.J., Buchmeier M.J. Antigenic variations about murine corona-viruses: Evidence for polymorphism on the peplomer glycoprotein. Virus Res. 1985;2:317–328. doi: 10.1016/0168-1702(85)90028-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Unkeless J.C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 1979;150:580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Watkins J.F. Adsorption of sensitized sheep erythrocytes to HeLa cells infected with herpes simplex virus. Nature. 1964;202:1364–1365. doi: 10.1038/2021364a0. [DOI] [PubMed] [Google Scholar]
  52. Wege H., Winter J., Meyermann R. The peplomer protein E2 coronavirus JHM as a determinant of neurovirulence: Definition of critical epitopes by variant analysis. J. Gen. Virol. 1988;69:87–98. doi: 10.1099/0022-1317-69-1-87. [DOI] [PubMed] [Google Scholar]
  53. Weiner L.P. Pathogenesis of demyelination induced by a mouse hepatitis virus. Arch. Neurol. 1973;28:298–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  54. Weismiller D.G., Sturman L.S., Buchmeier M.J., Fleming J.O., Holmes K.V. Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions. J. Virol. 1990;64:3051–3055. doi: 10.1128/jvi.64.6.3051-3055.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Williams R.K., Jiang G.S., Snyder S.W., Frana M.F., Holmes K.V. Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional homologous protein in MHV-resistant SJ/J mice. J. Virol. 1990;64:3817–3823. doi: 10.1128/jvi.64.8.3817-3823.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wysocka M., Korngold R., Yewdell J., Bennink J. Target and effector cell fusion accounts for “B-lymphocyte mediated lysis” of mouse hepatitis virus infected cells. J. Gen. Virol. 1989;70:1465–1472. doi: 10.1099/0022-1317-70-6-1465. [DOI] [PubMed] [Google Scholar]
  57. Yamaguchi K., Kyuva S., Nakanaga K., Hayami M. Establishment of cytotoxic T-cell clones specific for cells infected with mouse hepatitis virus. J. Virol. 1988;62:2505–2507. doi: 10.1128/jvi.62.7.2505-2507.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yasuda J., Milgrom F. Hemadsorption by Herpes simplex infected cell cultures. Int. Arch. Allergy Appl. Immunol. 1968;33:151–170. doi: 10.1159/000229985. [DOI] [PubMed] [Google Scholar]
  59. Yoo D., Parker M.D., Babiuk L.A. The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology. 1990;180:395–399. doi: 10.1016/0042-6822(91)90045-D. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES