Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jun 17;178(1):122–133. doi: 10.1016/0042-6822(90)90385-5

Processing and intracellular transport of rubella virus structural proteins in COS cells

Tom C Hobman ∗,1, Marita L Lundstrom †,1, Shirley Gillam ∗,2
PMCID: PMC7131528  PMID: 2117827

Abstract

Plasmids encoding rubella virus (RV) structural proteins C-E2-Et, E2-Et, E2, and E1 have been constructed in the eukaryotic expression vector pCMV5. The processing and intracellular transport of these proteins have been examined by transient expression of the cDNAs in COS cells. Compared to alphaviruses, processing of RV glycoprotein moieties occurred relatively slowly and the transport of glycoproteins E2 and El to the plasma membrane was inefficient. Indirect immunofluoresence revealed that the majority of RV antigen in transfected and infected COS cells was localized to the Golgi region, including the capsid protein. Accumulation of capsid protein in the juxtanuclear region was determined to be RV glycoprotein dependent. Unlike alphaviruses, RV El did not require E2 for targeting to the Golgi where it was retained. E2 was however necessary for cell surface expression of Et. This study revealed that the processing and transport of RV structural proteins is quite different from alphaviruses and that the accumulation of antigens in the Golgi region may be significant in light of previous reports which suggest that RV buds from the internal membranes in some cell types.

References

  1. Andersson S., Davis D.L., Dahlback H., Jornvall H., Russell D.W. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 1989;264:8222–8229. [PubMed] [Google Scholar]
  2. Bardeletti G., Tektoff J., Gautheron D. Rubella virus maturation and production in two host cell systems. Intervirology. 1979;11:97–103. doi: 10.1159/000149019. [DOI] [PubMed] [Google Scholar]
  3. Berger M., Schmidt M.F.G. Protein fatty acyltransferase is located in the rough endoplasmic reticulum. FEBS Lett. 1985;187:289–294. doi: 10.1016/0014-5793(85)81261-8. [DOI] [PubMed] [Google Scholar]
  4. Bole D.G., Hendershott L.M., Kearney J.F. Posttranslational association of immunoglobulin heavy chain-binding protein with nascent heavy chains in non-secreting and secreting hybridomas. J. Cell Biol. 1986;102:629–639. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. banatt S., Migliaccio G., Simons K. Palmitylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum. J. Biol. Chem. 1989;264:12,590–12,595. [PubMed] [Google Scholar]
  6. Clarke D.M., Loo T.W., Hui I., Chong P., Gillam S. Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic mRNA encoding the structural proteins E1, E2, and C. Nucleic Acids Res. 1987;15:3041–3057. doi: 10.1093/nar/15.7.3041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke D.M., Loo T.W., McDonald H., Gillam S. Expression of rubella virus cDNA coding forthe structural proteins. Gene. 1988;65:23–30. doi: 10.1016/0378-1119(88)90413-1. [DOI] [PubMed] [Google Scholar]
  8. Cooper L.Z., Buimovici-Kein E. Rubella. In: Fields B.N., Knipe D.M., Chanock R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1985. pp. 1005–1020. [Google Scholar]
  9. Cunningham A.L., Fraser J.R.E. Persistent rubella virus infection of human synovial cells cultured in vitro. J. Infect. Dis. 1985;151:638–645. doi: 10.1093/infdis/151.4.638. [DOI] [PubMed] [Google Scholar]
  10. Erwin C., Brown D.T. Intracellular distribution of Sindbis virus membrane proteins in BHK-21 cells infected with wildtype virus and maturation-defective mutants. J. Virol. 1980;36:775–786. doi: 10.1128/jvi.36.3.775-786.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frey T.K., Hemphill M.L. Generation of defective-interfering particles by rubella virus in vero cells. Virology. 1988;164:22–29. doi: 10.1016/0042-6822(88)90615-0. [DOI] [PubMed] [Google Scholar]
  12. Garoff H., Kondor-Koch C., Riedel H. Structure and assembly of alphaviruses. Curr. Topics Microbiol. Immunol. 1982;99:1–50. doi: 10.1007/978-3-642-68528-6_1. [DOI] [PubMed] [Google Scholar]
  13. Hobman T.C., Shukin R., Gillam S. Translocation of rubella virus glycoprotein El into the endoplasmic reticulum. J. Virol. 1988;62:4259–4264. doi: 10.1128/jvi.62.11.4259-4264.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hobman T.C., Gillam S. In vitro and in vivo expression of rubella virus E2 glycoprotein: The signal peptide is located in the C-terminal region of capsid protein. Virology. 1989;173:241–250. doi: 10.1016/0042-6822(89)90240-7. [DOI] [PubMed] [Google Scholar]
  15. Jarvis D.L., Summers M.D. Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol. Cell. Biol. 1988;9:214–223. doi: 10.1128/mcb.9.1.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kondor-Koch C., Riedel H., Soderberg K., Garoff H. Vol. 79. 1982. Expression of the structural proteins of Semliki Forest virus from cloned cDNA microinjected into the nucleus of baby hamster kidney cells; pp. 4525–4529. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  18. Kuismanen E., Hedman K., Saraste J., Pettersson R.F. Uukuniemi virus maturation: Accumulation of virus particles and viral antigens in the Golgi complex. Mol. Cell. Biol. 1982;2:1444–1458. doi: 10.1128/mcb.2.11.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lodish H. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. J. Biol. Chem. 1988;263:2107–2110. [PubMed] [Google Scholar]
  21. Norval M. Mechanism of persistence of rubella virus in LLCMK2 cells. J. Gen. Virol. 1979;43:289–298. doi: 10.1099/0022-1317-43-2-289. [DOI] [PubMed] [Google Scholar]
  22. Oker-Blom C. The gene order for rubella virus structural proteins is NH2-C-E2-E 1-COON. J. Virol. 1984;51:354–358. doi: 10.1128/jvi.51.2.354-358.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oker-Blom C., Kalkkinen N., Kaarianen L., Pettersson R.F. Rubella virus contains one capsid protein and three envelope glycoprotein, E1, E2a, and E2b. J. Virol. 1983;46:964–973. doi: 10.1128/jvi.46.3.964-973.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oker-Blom C., Pettersson R.F., Summers M.D. Baculovirus polyhedrin promoter-directed expression of rubella virus envelope glycoproteins E1 and E2, in Spodoptera frugiperda cells. Virology. 1989;172:82–91. doi: 10.1016/0042-6822(89)90109-8. [DOI] [PubMed] [Google Scholar]
  25. Oker-Blom C., Ulmanen I., Kaarianen L., Pettersson R.F. Rubella virus 40S RNA specifies a 24S subgenomic RNA that codes for a precursor to structural proteins. J. Virol. 1984;49:403–408. doi: 10.1128/jvi.49.2.403-408.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rizzolo L.J. A growth hormone-vesicular stomatitis virus G hybrid protein is rapidly degraded in lysosomes following transport to the cell surface. Eur. J. Cell Biol. 1989;49:92–98. [PubMed] [Google Scholar]
  27. Rottier P.J.M., Rose J.K. Coronavirus El glycoprotein expressed from cloned cDNA localizes in the Golgi region. J. Virol. 1987;61:2042–2045. doi: 10.1128/jvi.61.6.2042-2045.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rose J.K., Doms R.W. Regulation of protein export from the endoplasmic reticulum. Annu. Rev. Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  29. Stanwick T.L., Hallum J.V. Role of interferon in six cell lines persistently infected with rubella virus. Infect. Immun. 1974;10:810–815. doi: 10.1128/iai.10.4.810-815.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vaheri A., Hovl T. Structural proteins and subunits of rubella virus. J. Virol. 1972;9:10–16. doi: 10.1128/jvi.9.1.10-16.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Virtanen I., Ekblom P., Laurila P. Subcellular compart mentallzation of saccharide moieties in cultured normal and malignant cells. J. Cell Biol. 1980;85:429–434. doi: 10.1083/jcb.85.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van bansdorff C.-H., Vaheri A. Growth of rubella virus in BHK21 cells: Electron microscopy of morhphogenesis. J. Gen. Virol. 1969;5:47–51. doi: 10.1099/0022-1317-5-1-47. [DOI] [PubMed] [Google Scholar]
  33. Waxham M.N., Wolinsky J.S. Immunochemical identification of rubella virus hemagglutinin. Virology. 1983;126:194–203. doi: 10.1016/0042-6822(83)90471-3. [DOI] [PubMed] [Google Scholar]
  34. Waxham M.N., Wolinsky J.S. A model of the structural organization of rubella virions. Rev. Infect. Dis. 1985;7:S133–S139. doi: 10.1093/clinids/7.supplement_1.s133. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES