Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 9;161(1):37–44. doi: 10.1016/0042-6822(87)90168-1

Glucose trimming and mannose trimming affect different phases of the maturation of Sindbis virus in infected BHK cells

William McDowell 1,1, Pedro A Romero 1, Roelf Datema 1, Ralph T Schwarz
PMCID: PMC7131543  PMID: 2960074

Abstract

The roles of glucose and mannose trimming in the maturation of Sindbis virus in BHK cells have been investigated using inhibitors of glycoprotein oligosaccharide processing. In the presence of the glucosidase inhibitor N-methyl-1-deoxynojirimycin the viral glycoproteins were equipped with oligosaccharides of the composition GIc3Man8,9(GIcNAc)2 and the yield of virus in the extracellular medium was reduced as a result of a block in the proteolytic cleavage of the precursor (pE2) of the E2 viral envelope glycoprotein. The mannosidase I inhibitor 1-deoxymannojirimycin (dMM) also inhibited the appearance of virus in the medium and the oligosaccharides on the viral glycoproteins had the composition Man9(GIcNAc)2. However, pE2 was cleaved to E2 under these conditions, and it was found that when the yield of virus from the cells and medium together was considered, there was no difference between untreated and dMM-treated cultures, suggesting the presence of intracellular virus particles in the dMM-treated cultures. When examined by electron microscopy, the dMM-treated cultures were found to contain intracellular virus particles. In addition, nucleocapsids were found lining intracellular membranes. These observations taken together with the plaque test data intimate that Sindbis virus preferentially buds from internal membranes in BHK cells treated with dMM. The results confirm the essential role of glucose trimming in the Sindbis virus-BHK cell system and suggest that the initial stages of mannose removal maybe important too.

References

  1. Bischoff J., Kornfeld R. Evidence for an α-mannosidase in endoplasmic reticulum of rat liver. J. Biol. Chem. 1983;258:7907–7910. [PubMed] [Google Scholar]
  2. Bischoff I., Kornfeld R. The effect of 1-deoxymannojirimycin on rat liver α-mannosidases. Biochem. Biophys. Res. Commun. 1984;125:324–331. doi: 10.1016/s0006-291x(84)80371-x. [DOI] [PubMed] [Google Scholar]
  3. Bosch F.X., Garten W., Klenk H.-D., Rott R. Proteolytic cleavage of influenza virus hemagglutinins: Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology. 1981;113:725–735. doi: 10.1016/0042-6822(81)90201-4. [DOI] [PubMed] [Google Scholar]
  4. Bosch J.V., Schwarz R.T. Processing of gPr92env, the precursor to the glycoproteins of Rous sarcoma virus: Use of inhibitors of oligosaccharide trimming and glycoprotein transport. Virology. 1984;132:95–109. doi: 10.1016/0042-6822(84)90094-1. [DOI] [PubMed] [Google Scholar]
  5. Bosch J.V., Tlusty A., McDowell W., Legler G., Schwarz R.T. The mannosidase inhibitors 1-deoxymannojirimycin and swainsonine have no effect on the biosynthesis and infectivity of Rous sarcoma virus. Virology. 1985;143:342–346. doi: 10.1016/0042-6822(85)90122-9. [DOI] [PubMed] [Google Scholar]
  6. Burns D.M., Touster 0. Purification and characterization of glucosidase II, an endoplasmic reticulum hydrolase involved in glycoprotein biosynthesis. J. Biol. Chem. 1982;257:9991–10000. [PubMed] [Google Scholar]
  7. Butters T.D., Hughes R.C. Isolation and characterization of mosquito cell membrane glycoproteins. Biochim. Biophys. Acte. 1981;640:655–671. doi: 10.1016/0005-2736(81)90096-1. [DOI] [PubMed] [Google Scholar]
  8. Butters T.D., Hughes R.C., Vischer P. Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin. Biochim. Biophys. Acta. 1981;640:672–686. doi: 10.1016/0005-2736(81)90097-3. [DOI] [PubMed] [Google Scholar]
  9. Datema R., Romero P.A., Legler G., Schwarz R.T. Vol. 79. 1982. Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol; pp. 6787–6791. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Datema R., Romero P.A., Rott R., Schwarz R.T. On the role of glycoprotein processing in the maturation of Sindbis and influenza virus. Arch. Virol. 1984;81:25–39. doi: 10.1007/BF01309294. [DOI] [PubMed] [Google Scholar]
  11. Datema R., Schwarz R.T. Effect of energy depletion on the glycosylation of a viral glycoprotein. J. Biol. Chem. 1981;256:11191–11198. [PubMed] [Google Scholar]
  12. Datema R., Schwarz R.T., Jankowski A.W. Fluoroglucose inhibition of protein glycosylation in vivo. Inhibition of mannose and glucose incorporation into lipid-linked oligosaccharides. Eur. J. Biochem. 1980;109:331–341. doi: 10.1111/j.1432-1033.1980.tb04799.x. [DOI] [PubMed] [Google Scholar]
  13. Elbein A.D., Legler G., Tlusty A., McDowell W., Schwarz R.T. The effect of deoxymannojirimycin on the processing of the influenza viral glycoproteins. Arch. Biochem. Biophys. 1984;235:579–588. doi: 10.1016/0003-9861(84)90232-7. [DOI] [PubMed] [Google Scholar]
  14. Fuhrmann U., Bause E., Legler G., Ploegh H. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature (London) 1984;307:755–758. doi: 10.1038/307755a0. [DOI] [PubMed] [Google Scholar]
  15. Garoff H., Kondor-Koch C., Riedel H. Structure and assembly of alphaviruses. Curr. Top. Microbiol. Immunol. 1982;99:2–50. doi: 10.1007/978-3-642-68528-6_1. [DOI] [PubMed] [Google Scholar]
  16. Gliedman J.B., Smith J.F., Brown D.T. Morphogenesis of Sindbis virus in cultured Aedes albopictus cells. J. Virol. 1975;16:913–926. doi: 10.1128/jvi.16.4.913-926.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grinna L.S., Robbins P.W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J. Biol. Chem. 1979;254:8814–8818. [PubMed] [Google Scholar]
  18. Harpaz H., Schachter H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-d-mannosidases dependant on the prior action of UDP-N-acetylglucosamine: α-d-Mannoside β2-N-acetyl-glucosaminyltransferase. J. Biol. Chem. 1980;255:4894–4902. [PubMed] [Google Scholar]
  19. Hsieh P., Robbins P.W. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J. Biol. Chem. 1984;259:2375–2382. [PubMed] [Google Scholar]
  20. Hsieh P., Rosner M.R., Robbins P.W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J. Biol. Chem. 1983;258:2548–2554. [PubMed] [Google Scholar]
  21. Hsieh P., Rosner M.R., Robbins P.W. Selective cleavage by endo-β-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virus envelope glycoproteins. J. Biol. Chem. 1983;258:2555–2561. [PubMed] [Google Scholar]
  22. Johnson D.C., Schlesinger M.J. Vesicular Stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  23. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  24. Pan Y.T., Hori H., Saul R., Sanford B.A., Molyneux R.J., Elbein A.D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983;22:3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
  25. Repp R., Tamura T., Boschek C.B., Wege H., Schwarz R.T., Niemann H. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of Coronavirus particles. J. Biol. Chem. 1985;260:15873–15879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Romero P.A., Datema R., Schwarz R.T. N-Methyl-1-Deoxynojirimycin, a novel inhibitor of glycoprotein processing, and its effect on fowl plague virus maturation. Virology. 1983;130:238–242. doi: 10.1016/0042-6822(83)90133-2. [DOI] [PubMed] [Google Scholar]
  27. Rott R., Becht H., Hammer G., Klenk H.-D., Scholtissek C. Changes in the surface of the host cell after infection with enveloped viruses. In: Mahy B.W.J., Barry R.D., editors. Vol. 2. Academic Press; London: 1975. pp. 843–857. (Negative Strand Viruses). [Google Scholar]
  28. Saunier B., Kilker R.D., Tkacz J.S., Quaroni A., Herscovics A. Inhibition of Winked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J. Biol. Chem. 1982;257:14155–14161. [PubMed] [Google Scholar]
  29. Schlesinger S., Gottlieb C., Feil P., Gelb N., Kornfeld S. Growth of enveloped RNA viruses in a line of Chinese hamster ovary cells with deficient N-acetylglucosaminyltransferase activity. J. Virol. 1976;17:239–246. doi: 10.1128/jvi.17.1.239-246.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schlesinger S., Koyama A.H., Malfer C., Gee S.L., Schlesinger M.J. The effects of inhibitors of glucosidase I on the formation of Sindbis virus. Virus Res. 1985;2:139–149. doi: 10.1016/0168-1702(85)90244-8. [DOI] [PubMed] [Google Scholar]
  31. Schlesinger S., Malfer C., Schlesinger M.J. The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are retained on the oligosaccharides of the glycoprotein. J. Biol. Chem. 1984;259:7597–7601. [PubMed] [Google Scholar]
  32. Scholtissek C., Rohde W., Harms E., Rott R., Orlich M., Boschek C.B. A possible partial heterozygote of an influenza A virus. Virology. 1978;89:506–516. doi: 10.1016/0042-6822(78)90192-7. [DOI] [PubMed] [Google Scholar]
  33. Schwarz R.T., Datema R. Inhibition of the dolichol pathway of protein glycosylation. In: Ginsburg V., editor. Vol. 83. Academic Press; New York: 1982. pp. 432–443. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  34. Schwarz R.T., Datema R. The lipid pathway of protein glycosylation and its inhibitors: The biological significance of protein-bound carbohydrates. Adv. Carbohydr. Chem. Biochem. 1982;40:287–379. doi: 10.1016/s0065-2318(08)60111-0. [DOI] [PubMed] [Google Scholar]
  35. Schwarz R.T., Datema R. Inhibitors of trimming: New tools in glycoprotein research. Trends Biochem. Sci. 1984;9:32–34. [Google Scholar]
  36. Schwarz R.T., Klenk H.-D. Inhibition of glycosylation of the influenza virus hemagglutinin. J. Virol. 1974;14:1023–1034. doi: 10.1128/jvi.14.5.1023-1034.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, Influenza, and avian sarcoma virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stitz L., Reinacher M., Becht H. Studies on the inhibitory effect of lectins on myxo-virus release. J. Gen. Virol. 1977;34:523–530. doi: 10.1099/0022-1317-34-3-523. [DOI] [PubMed] [Google Scholar]
  39. Tabas I., Kornfeld S. Purification and characterization of a rat liver Golgi α-mannosidase capable of processing asparagine-linked oligosaccharides. J. Biol. Chem. 1979;254:11655–11663. [PubMed] [Google Scholar]
  40. Tartakoff A.M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  41. Tulsiani D.R.P., Harris T.M., Touster 0. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J. Biol. Chem. 1982;257:7936–7939. [PubMed] [Google Scholar]
  42. Tulsiani D.R.P., Hubbard S.C., Robbins P.W., Touster 0. α-Mannosidases of rat liver Golgi membranes. J. Biol, Chem. 1982;257:3660–3668. [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES