Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;239(1):1–10. doi: 10.1006/viro.1997.8877

Altered Pathogenesis of a Mutant of the Murine Coronavirus MHV-A59 Is Associated with a Q159L Amino Acid Substitution in the Spike Protein

Isabelle Leparc-Goffart a,1, Susan T Hingley b, Ming Ming Chua a, Xinhe Jiang a, Ehud Lavi c, Susan R Weiss a,2
PMCID: PMC7131600  PMID: 9426441

Abstract

C12, an attenuated, fusion delayed, very weakly hepatotropic mutant of mouse hepatitis virus strain A59 (MHV-A59) has been further characterized. We have previously shown that C12 has two amino acid substitutions relative to wild type virus in the spike protein, Q159L (within a region of S1 shown to bind to viral receptor in anin vitroassay) and H716D (in the proteolytic cleavage recognition site). We have sequenced the rest of the 31-kb genome of C12 and compared it to wild type virus. Only three additional amino acids substitutions were found, all encoded within the replicase gene. Analysis of C12in vivoin C57Bl/6 mice has shown that despite the fact that this virus replicates in the brain to titers at least as high as wild type and causes acute encephalitis similar to wild type, this virus causes a minimal level of demyelination and only at very high levels of virus inoculation. Thus acute encephalitis is not sufficient for the induction of demyelination by MHV-A59. Analysis of mutants isolated at earlier times from the same persistently infected glial cell culture as C12, as well as mutants isolated from a second independent culture of persistently infected glial cells, suggests that both the weakly demyelinating and the weakly hepatotropic phenotypes of C12 are associated with the Q159L amino acid substitution.

Footnotes

S. G. Siddell, Ed.

References

REFERENCES

  • 1.Adami C., Pooley J., Glomb J., Stecker E., Fazal F., Fleming J.O., Baker S.C. Evolution of mouse hepatitis virus (MHV) during chronic infection: Quasispecies nature of the persisting MHV RNA. Virology. 1995;209:337–346. doi: 10.1006/viro.1995.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Armstrong J., Smeekens S., Rottier P. Sequence of the nucleocapsid gene of the murine coronavirus MHV-A59. Nucleic Acids Res. 1983;11:883–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature (London) 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bonilla P.J., Gorbalenya A.E., Weiss S.R. Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: Heterogeneity among MHV strains. Virology. 1994;198:736–740. doi: 10.1006/viro.1994.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bredenbeek P.J., Pachuk C.J., Noten A.F.H., Charite J., Luytjes W., Weiss S.R., Spaan W.J.M. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59: A highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 1990;18:1825–1832. doi: 10.1093/nar/18.7.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Budzilowicz C.J., Wilczynski S.P., Weiss S.R. Three intergenic regions of coronavirus mouse hepatitis virus strain A59 contain a common nucleotide sequence that is homologous to the 3′ end of the viral mRNA leader sequence. J. Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Budzilowicz C.J., Weiss S.R. In vitro. Virology. 1987;157:509–515. doi: 10.1016/0042-6822(87)90293-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Dalziel R.G., Lampert P.W., Talbot P.J., Buchmeier M.J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Fazakerley J.K., Parker S.E., Bloom F., Buchmeier M.J. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology. 1992;187:178–188. doi: 10.1016/0042-6822(92)90306-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Fischer F., Peng D., Hingley S.T., Weiss S.R., Masters P.S. The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that it not essential for viral replication. J. Virol. 1997;71:996–1003. doi: 10.1128/jvi.71.2.996-1003.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Fleming J.D., Trousdale M.D., Bradbury J., Stohlman S.A., Weiner L.P. Experimental demyelination induced by coronavirus JHM (MHV-4): Molecular identification of a viral determinant of paralytic disease. Microbial Pathogenesis. 1987;3:9–20. doi: 10.1016/0882-4010(87)90033-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Fleming J.O., Trousdale M.D., El-Zaatari F.A.K., Stohlman S.A., Weiner L.P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J. Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Fleming J.O., Wang F.I., Trousdale M.D., Hinton D.R., Stohlman S.A. Interaction of immune and central nervous systems: Contribution of Thy-1+ cells to demyelination induced by coronavirus JHM. Reg. Immunol. 1993;5:37–43. [PubMed] [Google Scholar]
  • 14.Gallagher T.M., Parker S.E., Buchmeier M.J. Neutralization resistant variants of a neurotropic coronavirus are generated by deletions within the amino terminal half of the spike glycoprotein. J. Virol. 1990;64:731–741. doi: 10.1128/jvi.64.2.731-741.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Gombold J.L., Hingley S.T., Weiss S.R. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J. Virol. 1993;67:4504–4512. doi: 10.1128/jvi.67.8.4504-4512.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Gombold J.L., Sutherland R.M., Lavi E., Paterson Y., Weiss S.R. Mouse hepatitis virus A59-induced demyelination can occur in the absence of CD8+ T cells. Microb. Pathog. 1995;18:211–221. doi: 10.1016/S0882-4010(95)90058-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Heusipp G., Harms U., Siddell S.G., Ziebuhr J. Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. J. Virol. 1997;7:5631–5634. doi: 10.1128/jvi.71.7.5631-5634.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Hingley S.T., Gombold J.L., Lavi E., Weiss S.R. MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology. 1994;200:1–10. doi: 10.1006/viro.1994.1156. [DOI] [PubMed] [Google Scholar]
  • 19.Hingley S.T., Gombold J.L., Lavi E., Weiss S.R. Hepatitis mutants of mouse hepatitis virus strain A59. Adv. Exp. Med. Biol. 1995;380:577–582. doi: 10.1007/978-1-4615-1899-0_92. [DOI] [PubMed] [Google Scholar]
  • 20.Holmes K.V., Compton S.R. The Coronaviridae. Plenum; New York: 1995. Coronavirus receptors. p. 55–71. [Google Scholar]
  • 21.Houtman J.J., Fleming J.O. Pathogenesis of mouse hepatitis virus-induced demyelination. J. Neurovirol. 1996;2:361–376. doi: 10.3109/13550289609146902. [DOI] [PubMed] [Google Scholar]
  • 22.Houtman J.J., Fleming J.O. Dissociation of demyelination and viral clearance in congenitally immunodeficient mice infected with murine coronavirus JHM. J. Neurovirol. 1996;2:101–110. doi: 10.3109/13550289609146543. [DOI] [PubMed] [Google Scholar]
  • 23.Kubo H., Yamada Y.K., Taguchi F. Localization of neutralizing epitopes and the receptor binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 1994;68:5404–5410. doi: 10.1128/jvi.68.9.5403-5410.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kyuwa S., Yamaguchi K., Toyoda Y., Fujiwara K. Induction of self reactive T cells after murine coronavirus infection. J. Virol. 1991;65:1789–1795. doi: 10.1128/jvi.65.4.1789-1795.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Lai M.M.C. Coronavirus: Organization, replication and expression of genome. Annu. Rev. Microbiol. 1990;44:303–333. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
  • 26.Lavi E., Gilden D.H., Highkin M.K., Weiss S.R. Persistence of MHV-A59 RNA in a slow virus demyelinating infection in mice as detected byin situ. J. Virol. 1984;51:563–566. doi: 10.1128/jvi.51.2.563-566.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lavi E., Gilden D.H., Wroblewska Z., Rorke L.B., Weiss S.R. Experimental demyelination produced by the A59 strain of mouse hepatitis virus. Neurology. 1984;34:597–603. doi: 10.1212/wnl.34.5.597. [DOI] [PubMed] [Google Scholar]
  • 28.Lavi E., Suzumura A., Hirayama M., Highkin M.K., Dambach D.M., Silberberg D.H., Weiss S.R. Coronavirus mouse hepatitis virus (MHV)-A59 causes a persistent, productive infection in primary glial cell cultures. Microb. Pathog. 1987;3:79–86. doi: 10.1016/0882-4010(87)90066-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lee H.J., Shieh C.K., Gorbalenya A.E., Koonin E.V., LaMonica N., Tuler J., Bagdzhadzhyan A., Lai M.M.C. The complete sequence of the murine coronavirus gene 1 encoding the putative protease and RNA polymerase. Virology. 1991;180:567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Luytjes W., Sturman L., Bredenbeck P.J., Charite J., van der Zeijst B.A.M., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Luytjes W., Bredenbeek P.J., Noten A.F., Horzinek M.C., Spaan W.J.M. Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Masters P.S., Koetzner C.A., Kerr C.A., Heo Y. Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus. J. Virol. 1994;68:328–337. doi: 10.1128/jvi.68.1.328-337.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Suzuki H., Taguchi F. Analysis of the receptor binding site of murine coronavirus spike protein. J. Virol. 1996;70:2632–2635. doi: 10.1128/jvi.70.4.2632-2636.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.van der Most R.G., Spaan W.J.M. Coronavirus replication, transcription and RNA recombination. In: Siddell S.G., editor. The Coronaviradae. Plenum; New York: 1995. pp. 11–32. [Google Scholar]
  • 35.Weiss S.R., Zoltick P.W., Leibowitz J.L. The ns4 gene of mouse hepatitis virus (MHV), strain A59 contains two ORFs and thus differs from ns4 of the JHM and S strains. Arch. Virol. 1993;129:301–309. doi: 10.1007/BF01316905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Zoltick P.W., Leibowitz J.L., Oleszak E., Weiss S.R. Mouse hepatitis virus ORF 2a is expressed in the cytosol of infected mouse fibroblasts. Virology. 1990;174:605–607. doi: 10.1016/0042-6822(90)90114-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES