Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Mar 4;53:245–264. doi: 10.1016/S0065-3527(08)60351-6

Reverse Genetics of The Largest RNA Viruses

Paul S Masters 1
PMCID: PMC7131607  PMID: 10582102

Abstract

The capped and polyadenylated genomes of coronaviruses, spanning some 27 to 31 kb, are the largest of all RNA virus genomes, including those of the segmented RNA viruses. This chapter presents the reverse genetics of the largest RNA viruses. Just as all other positive-sense RNA viruses (retroviruses excluded), coronavirus genomic RNA is infectious when transfected into the cells of a permissive host. Therefore, in principle, the most direct way to perform reverse genetics on a coronavirus ought to involve the construction of a full-length genomic complementary DNA (cDNA) clone from which infectious RNA could be transcribed in vitro. The method––targeted recombination––is less direct and more laborious, and so far it has been applied exclusively to site-directed mutagenesis of mouse hepatitis virus (MHV). Thus, at least for structural gene mutations that are not expected to be severely deleterious, targeted recombination may remain the less complicated alternative for the creation of MHV mutants. The chapter discusses targeted RNA recombination, such as development of system, genetic analysis of coronavirus structural proteins, genetic analysis of coronavirus RNA synthesis, and limitations of targeted recombination.

References

  1. Banner L.R., Lai M.M.C. Random nature of coronavirus RNA recombination in the absence of selective pressure. Virology. 1991;185:441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banner L.R., Keck J.G., Lai M.M.C. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology. 1990;175:548–555. doi: 10.1016/0042-6822(90)90439-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baric R.S., Fu K., Schaad M.C., Stohlman S.A. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology. 1990;177:646–656. doi: 10.1016/0042-6822(90)90530-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bos E.C.W., Luytjes W., van der Meulen H., Koerten H.K., Spaan W.J.M. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology. 1996;218:52–60. doi: 10.1006/viro.1996.0165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyer J.-C., Haenni A.-L. Infectious transcripts and cDNA clones of RNA viruses. Virology. 1994;198:415–426. doi: 10.1006/viro.1994.1053. [DOI] [PubMed] [Google Scholar]
  6. Brian D.A., Spaan W.J.M. Recombination and coronavirus defective interfering RNAs. Semin. Virol. 1997;8:101–111. doi: 10.1006/smvy.1997.0109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown T.D.K., Brierley I. The coronavirus nonstructural proteins. In: Siddell S.G., editor. Plenum; New York: 1995. pp. 191–217. (‘The Coronaviridae’). [Google Scholar]
  8. Chang R.-Y., Hofmann M.A., Sethna P.B., Brian D.A. A cis-acting function for the coronavirus leader in defective interfering RNA replication. J. Virol. 1994;68:8223–8231. doi: 10.1128/jvi.68.12.8223-8231.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Compton S.R., Barthold S.W., Smith A.L. The cellular and molecular pathogenesis of coronaviruses. Lab. Anim. Sci. 1993;43:15–28. [PubMed] [Google Scholar]
  10. de Haan C.A.M., Kuo L., Masters P.S., Vennema H., Rottier P.J.M. Coronavirus particle assembly: Primary structure requirements of the membrane (M) protein. J. Virol. 1998;72:6838–6850. doi: 10.1128/jvi.72.8.6838-6850.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. de Vries A.A.F., Horzinek M.C., Rottier P.J.M., de Groot R.J. The genome organization of the Nidovirales: Similarities and differences between arteritoro-, and coronaviruses. Semin. Virol. 1997;8:33–47. doi: 10.1006/smvy.1997.0104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fischer F., Peng D., Hingley S.T., Weiss S.R., Masters P.S. The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 1997;71:996–1003. doi: 10.1128/jvi.71.2.996-1003.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fischer F., Stegen C.F., Koetzner C.A., Masters P.S. Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of coronavirus transcription. J. Virol. 1997;71:5148–5160. doi: 10.1128/jvi.71.7.5148-5160.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fischer F., Stegen C.F., Masters P.S., Samsonoff W.A. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J. Virol. 1998;72:7885–7894. doi: 10.1128/jvi.72.10.7885-7894.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Forns X., Bukh J., Purcell R.H., Emerson S.U. How Escherichia coli can bias the results of molecular cloning: Preferential selection of defective genomes of hepatitis C virus during the cloning procedure. Proc. Natl. Acad. Sci. U.S.A. 1997;94:13909–13914. doi: 10.1073/pnas.94.25.13909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hofmann M.A., Brian D.A. The 5′ end of coronavirus minus-strand RNAs contain a short poly(U) tract. J. Virol. 1991;65:6331–6333. doi: 10.1128/jvi.65.11.6331-6333.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holmes K.V., Dveksler G.S. Specificity of coronavirus/receptor interactions. In: Wimmer E., editor. Cold Spring Harbor Press; Plainview, NY: 1994. pp. 403–443. (‘Cellular Receptors for Animal Viruses’). [Google Scholar]
  18. Hsue B., Masters P.S. A bulged stem-loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J. Virol. 1997;71:7567–7578. doi: 10.1128/jvi.71.10.7567-7578.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hsue B., Masters P.S. Insertion of a new transcriptional unit into the genome of mouse hepatitis virus. J. Virol. 1999;73:6128–6135. doi: 10.1128/jvi.73.7.6128-6135.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell (Cambridge, Mass.) 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koetzner C.A., Parker M.M., Ricard C.S., Sturman L.S., Masters P.S. Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. J. Virol. 1992;66:1841–1848. doi: 10.1128/jvi.66.4.1841-1848.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kottier S.A., Cavanagh D., Britton P. Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology. 1995;213:569–580. doi: 10.1006/viro.1995.0029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Labeit S., Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995;270:293–296. doi: 10.1126/science.270.5234.293. [DOI] [PubMed] [Google Scholar]
  24. Lai M.M.C. Recombination in large RNA viruses: Coronaviruses. Semin. Virol. 1996;7:381–388. doi: 10.1006/smvy.1996.0046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lai M.M.C., Liao C.-L., Lin Y.-J., Zhang X. Coronavirus: How a large RNA viral genome is replicated and transcribed. Infect. Agents Dis. 1994;3:98–105. [PubMed] [Google Scholar]
  26. Lavi E., Haluskey J.A., Masters P.S. The pathogenesis of MHV nucleocapsid protein gene chimeric viruses. Adv. Exp. Med. Biol. 1998;440:537–541. doi: 10.1007/978-1-4615-5331-1_69. [DOI] [PubMed] [Google Scholar]
  27. Leparc-Goffart I., Hingley S.T., Chua M.M., Phillips J., Lavi E., Weiss S.R. Targeted recombination within the spike gene of murine coronavirus mouse hepatitis virus-A59: Q159 is a determinant of hepatotropism. J. Virol. 1998;72:9628–9636. doi: 10.1128/jvi.72.12.9628-9636.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liao C.-L., Zhang X., Lai M.M.C. Coronavirus defective-interfering RNA as an expression vector: The generation of a pseudo-recombinant mouse hepatitis virus expressing hemagglutinin-esterase. Virology. 1995;208:319–327. doi: 10.1006/viro.1995.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luytjes W., Bredenbeek P.J., Noten A.F.H., Horzinek M.C., Spaan W.J.M. Sequence of mouse hepatitis virus A59 mRNA2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Masters P.S., Koetzner C.A., Kerr C.A., Heo Y. Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus. J. Virol. 1994;68:328–337. doi: 10.1128/jvi.68.1.328-337.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Masters P.S., Peng D., Fischer F. Mutagenesis of the genome of mouse hepatitis virus by targeted RNA recombination. Adv. Exp. Med. Biol. 1995;380:543–549. doi: 10.1007/978-1-4615-1899-0_87. [DOI] [PubMed] [Google Scholar]
  32. Mehlin H., Daneholt B. The Balbiani ring particle: A model for the assembly and export of RNPs from the nucleus?. Trends Cell Biol. 1993;3:443–447. doi: 10.1016/0962-8924(93)90034-x. [DOI] [PubMed] [Google Scholar]
  33. Mendez A., Smerdou C., Izeta A., Gebauer F., Enjuanes L. Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: Packaging and heterogeneity. Virology. 1996;217:495–507. doi: 10.1006/viro.1996.0144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Meulenberg J.J.M., Bos-de Ruijter J.N.A., van de Graaf R., Wensvoort G., Moormann R.J.M. Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. J. Virol. 1998;72:380–387. doi: 10.1128/jvi.72.1.380-387.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Peng D., Koetzner C.A., Masters P.S. Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination. J. Virol. 1995;69:3449–3457. doi: 10.1128/jvi.69.6.3449-3457.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peng D., Koetzner C.A., McMahon T., Zhu Y., Masters P.S. Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins. J. Virol. 1995;69:5475–5484. doi: 10.1128/jvi.69.9.5475-5484.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Penzes Z., Tibbles K., Shaw K., Britton P., Brown T.D., Cavanagh D. Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus. Virology. 1994;203:286–293. doi: 10.1006/viro.1994.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ricard C.S., Koetzner C.A., Sturman L.S., Masters P.S. A conditionallethal murine coronavirus mutant that fails to incorporate the spike glycoprotein into assembled virions. Virus Res. 1995;39:261–276. doi: 10.1016/0168-1702(95)00100-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rice C.M., Grakoui A., Galler R., Chambers T.J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989;1:285–296. [PubMed] [Google Scholar]
  40. Risco C., Anton I.M., Enjuanes L., Carrascosa J.L. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J. Virol. 1996;70:4773–4777. doi: 10.1128/jvi.70.7.4773-4777.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Senanayake S.D., Brian D.A. Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Res. 1997;48:101–105. doi: 10.1016/S0168-1702(96)01423-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sethna P.B., Hofmann M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 1991;65:320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Siddell S.G. The Coronaviridae: An introduction. In: Siddell S.G., editor. Plenum; New York: 1995. pp. 1–10. (‘The Coronaviridae’). [Google Scholar]
  44. Thiel V., Rashtchian A., Herold J., Schuster D.M., Guan N., Siddell S.G. Effective amplification of 20-kb DNA by reverse transcription PCR. Anal. Biochem. 1997;252:62–70. doi: 10.1006/abio.1997.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van der Most R.G., Spaan W.J.M. Coronavirus replication, transcription, and RNA recombination. In: Siddell S.G., editor. Plenum; New York: 1995. pp. 11–31. (‘The Coronaviridae’). [Google Scholar]
  46. van der Most R.G., Heijnen L., Spaan W.J.M., de Groot R.J. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Res. 1992;20:3375–3381. doi: 10.1093/nar/20.13.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. van den Dinten L.C., Boon J.A., Wassenaar A.L.M., Spaan W.J.M., Snijder E.J. An infectious arterivirus cDNA clone: Identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc. Natl. Acad. Sci. U.S.A. 1997;94:991–996. doi: 10.1073/pnas.94.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vennema H., Godeke G.-J., Rossen J.W.A., Voorhout W.F., Horzinek M.C., Opstelten D.-J.E., Rottier P.J.M. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996;15:2020–2028. doi: 10.1002/j.1460-2075.1996.tb00553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wertman K.F., Drubin D.G., Botstein D. Systematic mutational analysis of the yeast ACT1 gene. Genetics. 1992;132:337–350. doi: 10.1093/genetics/132.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang L., Homberger F., Spaan W., Luytjes W. Recombinant genomic RNA of coronavirus MHV-A59 after coreplication with a DI RNA containing the MHV-RI spike gene. Virology. 1997;230:93–102. doi: 10.1006/viro.1997.8460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhang X., Liao C.-L., Lai M.M.C. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. J. Virol. 1994;68:4738–4746. doi: 10.1128/jvi.68.8.4738-4746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES