Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;8(6):605–608. doi: 10.1016/0264-410X(90)90018-H

Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus

JG Kusters ∗,, EJ Jager , HGM Niesters ‡,§, BAM van der Zeijst ‡,
PMCID: PMC7131616  PMID: 1708184

Abstract

Under laboratory conditions coronaviruses were shown to have a high frequency of recombination. In The Netherlands, vaccination against infectious bronchitis virus (IBV) is performed with vaccines that contain several life-attenuated virus strains. These highly effective vaccines may create ideal conditions for recombination, and could therefore be dangerous in the long term. This paper addresses the question of the frequency of recombination of avian coronavirus IBV in the field. A method was sought to detect and quantify recombination from sequence data. Nucleotide sequences of eight IBV isolates in a region of the genome suspected to contain recombination, were aligned and compared. Phylogenetic trees were constructed for different sections of this region. Differences in topology between these trees were observed, suggesting that in three out of eight strains in vivo RNA recombinant had occurred.

Keywords: RNA recombinant, coronavirus, infectious bronchitis virus

References

  • 1.Wege H., Siddell S., ter Meulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  • 2.Cook J.K.A. The classification of new serotypes of infectious bronchitis virus isolated from poultry flocks in Britain between 1981 and 1983. Avian Pathol. 1984;13:733–741. doi: 10.1080/03079458408418570. [DOI] [PubMed] [Google Scholar]
  • 3.Kusters J.G., Niesters H.G.M., Bleumink-Pluym N.M.C., Davelaar F.G., Horzinek M.C., van der Zeijst B.A.M. Molecular epidemiology of infectious bronchitis virus in the Netherlands. J. Gen. Virol. 1987;68:343–352. doi: 10.1099/0022-1317-68-2-343. [DOI] [PubMed] [Google Scholar]
  • 4.Cavanagh D., Darbyshire J.H., Davis P., Peters R.W. Induction of humoral neutralising and haemagglutination-inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathol. 1984;13:573–583. doi: 10.1080/03079458408418556. [DOI] [PubMed] [Google Scholar]
  • 5.Cavanagh D., Davis P.J., Darbyshire J.H., Peters R.W. Coronavirus IBV; partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor of IBV strains Beaudette and M41. J. Gen. Virol. 1986;67:1435–1442. doi: 10.1016/0168-1702(86)90037-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Koch G., Hartog L., Kant A., van Roozelaar D., de Boer G.F. Antigenic differentiation of avian bronchitis virus variant strains employing monoclonal antibodies. Isr. J. Vet. Med. 1986;41:89–97. [Google Scholar]
  • 7.Mockett A.P.A., Cavanagh D., Brown T.D.K. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis virus strain Massachusetts M41. J. Gen. Virol. 1984;65:2281–2286. doi: 10.1099/0022-1317-65-12-2281. [DOI] [PubMed] [Google Scholar]
  • 8.Cavanagh D., Davis P.J., Pappin D.J.C., Binns M.M., Boursnell M.E.G., Brown T.D.K. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. Virus Res. 1986;4:133–143. doi: 10.1099/0022-1317-67-7-1435. [DOI] [PubMed] [Google Scholar]
  • 9.De Groot R.J., Luytjes W., Horzinek M.C., van der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike protein of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Stern D.F., Sefton B.M. Coronavirus proteins: biogenesis of avian bronchitis virus virion proteins. J. Virol. 1982;44:794–803. doi: 10.1128/jvi.44.3.794-803.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kusters J.G., Niesters H.G.M., Lenstra J.A., Horzinek M.C., van der Zeijst B.A.M. Phylogeny of antigenic variants of avian coronavirus IBV. Virology. 1989;169:217–221. doi: 10.1016/0042-6822(89)90058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Davelaar F.G., Kouwenhoven B., Burger A.G. Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler production in the Netherlands. Vet. Q. 1984;6:114–120. doi: 10.1080/01652176.1984.9693924. [DOI] [PubMed] [Google Scholar]
  • 13.Binns M.M., Boursnell M.E.G., Tomley F.M., Brown T.D.K. Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. J. Gen. Virol. 1986;67:2825–2831. doi: 10.1099/0022-1317-67-12-2825. [DOI] [PubMed] [Google Scholar]
  • 14.Sutou S., Sato S., Okabe T., Nakai M., Sakaki N. Cloning and sequencing of genes encoding structural proteins of avian infectious bronchitis virus. Virology. 1988;165:589–595. doi: 10.1016/0042-6822(88)90603-4. [DOI] [PubMed] [Google Scholar]
  • 15.Niesters H.G.M., Lenstra J.A., Spaan W.J.M., Zijderveld A.J., Bleumink-Pluym N.M.C., Hong F., van Scharrenburg G.J.M. The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Res. 1986;5:253–263. doi: 10.1016/0168-1702(86)90022-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Queen C., Korn L.L. A comprehensive sequence analysis program for the IBM personal computer. Nucl. Acids Res. 1984;12:581–599. doi: 10.1093/nar/12.1part2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. [DOI] [PubMed] [Google Scholar]
  • 18.Makino S., Keck J.G., Stohlman S.A., Lai M.M.C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Keck J.G., Matsushima G.K., Makino S., Fleming J.O., Vannier D.M., Stohlman S.A., Lai M.M.C. In vivo RNA-RNA recombination of coronavirus in mouse brain. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  • 21.Cavanagh D., Davis P.J. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J. Gen. Virol. 1988;69:621–629. doi: 10.1099/0022-1317-69-3-621. [DOI] [PubMed] [Google Scholar]

Articles from Vaccine are provided here courtesy of Elsevier

RESOURCES