Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 30;173(2):736–742. doi: 10.1016/0042-6822(89)90589-8

Chromatographic analysis of the aminoacyl-trnas which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV

Dolph Hatfield ∗,1, Ya-Xiong Feng , Byeong J Lee , Alan Rein , Judith G Levin , Stephen Oroszlan
PMCID: PMC7131661  PMID: 2556852

Abstract

An examination of the frameshift signals or proposed signals within published sequences of retroviruses and other genetic elements from higher animals shows that each site utilizes a tRNA which normally contains Wybutoxine (Wye) base or Queuine (Q) base in the anticodon loop. We find experimentally that most of the Phe-tRNA present in HIV-1 infected cells lacks the highly modified Wye base in its anticodon loop and most of the Asn-tRNA in HTLV-1 and BLV infected cells lacks the highly modified Q base in its anticodon loop. Interestingly, Phe-tRNA translates a UUU codon within the ribosomal frameshift signal in HIV and Asn-tRNA translates a AAC codon within the proposed frameshift signals in HTLV-1 and BLV. Thus, the lack of a highly modified base in the anticodon loop of tRNAs in retroviral infected cells is correlated with the participation of these undermodified tRNAs in the corresponding frameshift event. This suggests that the “shifty” tRNAs proposed by Jacks et al. (Cell 55, 447–458, 1988) to carry out frameshifting may be hypomodified isoacceptors.

References

  • 1.Jacks T., Varmus H.E. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  • 2.Hizi A., Henderson L.E., Copeland T.D., Sowder R.C., Hixon C.V., Oroszlan S. 1st ed. Vol. 84. 1987. pp. 7041–7045. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Jacks T., Townsley K., Varmus H.E., Majors J. 1st ed. Vol. 84. 1987. pp. 4298–4302. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Jacks T., Power M.D., Masiarz F.R., Luclw P.A., Barr P.J., Varmus H.E. Nature (London) 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  • 5.Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wilson W., Braddock M., Adams S.E., Rathjen P.D., Kingsman S.M., Kingsman A.J. Cell. 1988;55:1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
  • 7.Nam S.H., Kidokoro M., Shida H., Hatanaka M. J. Virol. 1988;62:3718–3728. doi: 10.1128/jvi.62.10.3718-3728.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kuchino Y., Borek E., Grunberger D., Mushinski J., Nishimura S. Nucleic Acids Res. 1982;10:6421–6432. doi: 10.1093/nar/10.20.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Farkas W.R. Nucleotides and Nucleotides. 1983;2:1–20. [Google Scholar]
  • 10.Nishimura S. Cold Spr. Harb. Symp. Quant. Biol.. In: Schimmel P., Söll D., Abelson J., editors. Transfer RNA: Structure, Properties and Recognition; Cold Spring Harbor, NY; 1979. pp. 59–79. Part A. [Google Scholar]
  • 11.Hatfield D., Matthews C.R., Rice M. Biochim. Biophys. Acta. 1979;564:414–423. doi: 10.1016/0005-2787(79)90032-7. [DOI] [PubMed] [Google Scholar]
  • 12.Hatfield D., Varricchio F., Rice M., Forget B.G. J. Biol. Chem. 1982;257:3183–3188. [PubMed] [Google Scholar]
  • 13.Seiki M., Hattori S., Hirayama Y., Yoshida M. 1st ed. Vol. 80. 1983. pp. 3618–3622. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Inoue J.-I., Watanabe T., Sato M., Oda A., Toyoshima K., Yoshida M., Seiki M. Virology. 1986;150:187–195. doi: 10.1016/0042-6822(86)90278-3. [DOI] [PubMed] [Google Scholar]
  • 15.Hiramatsu K., Nishida J., Naito A., Yoshikura H. J. Gen. Virol. 1987;68:213–218. doi: 10.1099/0022-1317-68-1-213. [DOI] [PubMed] [Google Scholar]
  • 16.Rice N.R., Stephens R., Burny A., Gilden R. Virology. 1985;142:357–377. doi: 10.1016/0042-6822(85)90344-7. [DOI] [PubMed] [Google Scholar]
  • 17.Sagata N., Yasunaga T., Tsuzuku-kawamura J., Ohishi K., Ogawa Y., Ikawa Y. 1st ed. Vol. 82. 1985. pp. 677–681. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Chu-der O.M.Y., Ortwerth B.J. Exp. Cell Res. 1980;128:159–170. doi: 10.1016/0014-4827(80)90399-7. [DOI] [PubMed] [Google Scholar]
  • 19.Ratner L., Haseltine W., Patarca R., Livak K.J., Starcich B., Josephs S.F., Doran E.R., Rafalski J.A., Whitehorn E.A., Baumeister K., Inanoff L., Petteway S.R., Pearson M.L., Lautenberger J.A., Papas T.S., Ghrayeb J., Chang N.T., Gallo R.C., Wong-staal F. Nature(London) 1985;313:277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  • 20.Sanchez-Pescador R., Power M.D., Barr P.J., Steimer K.S., Stempien M.M., Brown-shimer S.L., Gee W.W., Renard A., Randolph A., Levy J.A., Dina D., Luciw P.A. Science. 1985;227:484–492. doi: 10.1126/science.2578227. [DOI] [PubMed] [Google Scholar]
  • 21.Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. Cell. 1985;40:9–17. doi: 10.1016/0092-8674(85)90303-4. [DOI] [PubMed] [Google Scholar]
  • 22.Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S. 1st ed. Vol. 82. 1985. pp. 1618–1622. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Feng Y.-X., Hatfield D., Rein A., Levin J.G. J. Virol. 1989;63:2405–2410. doi: 10.1128/jvi.63.5.2405-2410.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Valle R.P.C., Morch M.-D., Haenni A.-L. EMBO J. 1987;6:3049–3055. doi: 10.1002/j.1460-2075.1987.tb02611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bienz M., Kubli E. Nature (London) 1981;294:188–190. doi: 10.1038/294188a0. [DOI] [PubMed] [Google Scholar]
  • 26.Beier H., Barciszewski M., Krupp G., Mitnacht R., Gross H.J. EMBO J. 1984;3:351–356. doi: 10.1002/j.1460-2075.1984.tb01810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Meier F., Suter B., Grosjean H., Keith G., Kubli E. EMBO J. 1985;4:823–827. doi: 10.1002/j.1460-2075.1985.tb03704.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Smith D.W.E., Hatfield D. J. Mol. Biol. 1986;189:663–671. doi: 10.1016/0022-2836(86)90496-1. [DOI] [PubMed] [Google Scholar]
  • 29.Wilson R.K., Roe B.A. Proc. Natl. Acad. Sci. USA. 1989;86:409–413. doi: 10.1073/pnas.86.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Hatfield D. Trends Biochem. Sci. 1985;10:201–214. [Google Scholar]
  • 31.Kelmers A.D., Heatherly D.E. Anal. Biochem. 1971;44:486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
  • 32.Graves D.C., Ferrer J.F. Cancer Res. 1976;36:4152–4159. [PubMed] [Google Scholar]
  • 33.Sprinzl M., Hartmann T., Weber J., Blank J., Zeidler R. Nucleic Acids Res. 1989;17:r1–r172. doi: 10.1093/nar/17.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Shimotohno K., Takahashi Y., Shimizu N., Gojobori T., Golde D.W., Chen I.S., Miwa M., Sugimura T. 1st ed. Vol. 82. 1985. pp. 3101–3105. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Moore R., Dixon M., Smith R., Peters G., Dickson C. J. Virol. 1987;61:480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Stephens R.M., Casey J.W., Rice N.R. Science. 1986;231:589–594. doi: 10.1126/science.3003905. [DOI] [PubMed] [Google Scholar]
  • 37.Kawakami T., Sherman L., Dahlberg J., Gazit A., Yaniv A., Tronick S.R., Aaronson S.A. Virology. 1987;158:300–312. doi: 10.1016/0042-6822(87)90202-9. [DOI] [PubMed] [Google Scholar]
  • 38.Sonigo P., Barker C., Hunter E., Wain-Hobson S. Cell. 1986;45:375–385. doi: 10.1016/0092-8674(86)90323-5. [DOI] [PubMed] [Google Scholar]
  • 39.Power M.D., Marx P.A., Bryant M.L., Gardner M.B., Barr P.J., Luciw P.A. Science. 1986;231:1567–1572. doi: 10.1126/science.3006247. [DOI] [PubMed] [Google Scholar]
  • 40.Thayer R.M., Power M.D., Bryant M.L., Gardner M.B., Barr P.J., Luciw P.A. Virology. 1987;157:317–329. doi: 10.1016/0042-6822(87)90274-1. [DOI] [PubMed] [Google Scholar]
  • 41.Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais O., Haase A., Wain-Hobson S. Cell. 1985;42:369–382. doi: 10.1016/s0092-8674(85)80132-x. [DOI] [PubMed] [Google Scholar]
  • 42.Saigo K., Kugiyama W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. Nature (London) 1984;312:659–661. doi: 10.1038/312659a0. [DOI] [PubMed] [Google Scholar]
  • 43.Mietz J.A., Grossman Z., Lueders K.K., Kuff E.L. J. Virol. 1987;61:3020–3029. doi: 10.1128/jvi.61.10.3020-3029.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Schwartz D.E., Tizard R., Gilbert W. Cell. 1983;32:853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  • 45.Brierly I., Boursnell M.E., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Guyader M., Emerman M., Sonigo P., Clavel F., Montagnier L., Alizon M. Nature (London) 1987;326:662–669. doi: 10.1038/326662a0. [DOI] [PubMed] [Google Scholar]
  • 47.Franchini G., Gurgo C., Guo H.G., Gallo R.C., Collalti E., Fragnoli K.A., Hall L.F., Wong-staal F., Reitz M.S. Nature (London) 1987;328:539–543. doi: 10.1038/328539a0. [DOI] [PubMed] [Google Scholar]
  • 48.Chakrabarti L., Guyader M., Alizon M., Daniel M.D., Desrosiers R.C., Tiollais P., Sonigo P. Nature (London) 1987;328:543–547. doi: 10.1038/328543a0. [DOI] [PubMed] [Google Scholar]
  • 49.Marlor R.L., Parkhurst S.M., Corces V.G. Mol. Cell. Biol. 1986;6:1129–1134. doi: 10.1128/mcb.6.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Björk G.R., Wikströ P.M., Byströ A.S. Science. 1989;244:986–989. doi: 10.1126/science.2471265. [DOI] [PubMed] [Google Scholar]
  • 51.Brierley I., Digard P., Inglis S.C. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES