Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jul 22;183(1):313–319. doi: 10.1016/0042-6822(91)90144-Z

cis acting RNA sequences control the gag-pol translation readthrough in murine leukemia virus

Alik Honigman a,1, Dana Wolf , Shoshanit Yaish a, Haya Falk a, Amos Panet a
PMCID: PMC7131665  PMID: 2053284

Abstract

The pol gene of the Moloney murine leukemia virus (M-MuLV) is expressed as a Gag-Pol fusion protein through an in-frame suppression of the UAG termination codon located between the two genes. The role of nucleotide context in suppression was investigated, in a rabbit reticulocyte lysate translation system, using site-directed mutagenesis. The results indicate that the translational readthrough is mediated by at least 50 bases long RNA sequence located 3′ to the gag UAG termination codon. Within this sequence a short purine-rich sequence adjacent to the amber codon, highly conserved among different retroviruses, appears essential for M-MuLV suppression. Two alternative putative stem and loop like RNA structures can be drawn at the gag-pol junction, one abutting the gag UAG codon, and the second downstream to it. None of these structures appears to be important to the suppression process.

References

  1. Bossi L. Context effects: Translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J. Mol. Biol. 1983;164:73–87. doi: 10.1016/0022-2836(83)90088-8. [DOI] [PubMed] [Google Scholar]
  2. Brierley I., Digard P., Inglis S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Engelberg-Kulka H. UGA suppression by normal tRNA Trp in Escheria coli: Codon context effects. Nucleic Acids Res. 1981;9:983–991. doi: 10.1093/nar/9.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Felsenstein K.M., Goff S.P. Expression of the gagpol Fusion protein of Moloney murine leukemia virus without gag protein does not induce virion formation or proteolytic processing. J. Virol. 1988;62:2179–2182. doi: 10.1128/jvi.62.6.2179-2182.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feng Y.-X., Levin J.G., Hatfield D.L., Schaefer T.S., Gorelick R.J., Rein A. Suppression of UAA and UGA termination codons in mutant murine leukemia viruses. J. Virol. 1989;63:2870–2873. doi: 10.1128/jvi.63.6.2870-2873.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feng Y.-X., Hatfield D.L., Rein A., Levin J.G. Analysis of tRNA involved in suppression of the MuLV amber codon at the gag-pol junction. J. Virol. 1989;63:2405–2410. doi: 10.1128/jvi.63.5.2405-2410.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gloger I., Panet A. Glutamine starvation of murine leukemia virus-infected cell inhibits the readthrough of the gagpol genes and proteolytic processing of the gag polyprotein. J. Gen. Virol. 1986;67:2207–2214. doi: 10.1099/0022-1317-67-10-2207. [DOI] [PubMed] [Google Scholar]
  8. Herr W. Nucleotide sequence of AKV murine leukemia virus. J. Virol. 1984;49:471–478. doi: 10.1128/jvi.49.2.471-478.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  10. Jacks T., Madham H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  12. Jamjoom G.A., Naso R.B., Arlinghaus R.B. Further characterization of intracellular precursor polyproteins of RauScher leukemia virus. Virology. 1977;78:11–34. doi: 10.1016/0042-6822(77)90075-7. [DOI] [PubMed] [Google Scholar]
  13. Jones D.S., Nemoto F., Kuchino Y., Masuda M., Yoshikura H., Nishimura S. The effect of specific mutations at and around the gag-pol gene junction of Moloney murine leukaemia virus. Nucleic Acids Res. 1989;17:5933–5945. doi: 10.1093/nar/17.15.5933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuchino Y., Beier H., Akita N., Nishimura S. Vol. 84. 1987. Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia virus; pp. 2668–2672. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Laprevotte I., Hampe A., Sherr C.H., Galibert F. Nucleotide sequence of the gag gene and gag-pol junction of feline leukemia virus. J. Virol. 1984;50:884–894. doi: 10.1128/jvi.50.3.884-894.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mador N., Panet A., Honigman A. Translation of gag, pro, and pol gene products of human T-cell leukemia virus type 2. J. Virol. 1989;63:2400–2404. doi: 10.1128/jvi.63.5.2400-2404.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Melton D.A., Krieg P.A., Rebagliati M.R., Maniatis T., Zinn K., Green M.R. Efficient in vitro synthesis, of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984;12:7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller J.H., Albertini A.M. Effects of surrounding sequences on suppression of nonsense codons. J. Mol. Biol. 1983;164:59–71. doi: 10.1016/0022-2836(83)90087-6. [DOI] [PubMed] [Google Scholar]
  20. Morinaga Y., Franceschini T., Inouye S., Inouye M. Improvement of oligonucleotide-directed site-specific mutagenesis using double-stranded plasmid DNA. In: Narang S., editor. Vol. 2. Academic Press; San Diego: 1984. pp. 636–639. (Synthesis and Application of DNA and RNA. Biotechnology). [Google Scholar]
  21. Murphy E.C., Jr, Kopchick J.J., Watson K.F., Arlinghaus R.B. Cell-free synthesis of a precursor polyprotein containing both gag and pol gene products by Rauscher murine leukemia virus 35s RNA. Cell. 1978;13:359–369. doi: 10.1016/0092-8674(78)90204-0. [DOI] [PubMed] [Google Scholar]
  22. Murphy E.C., Jr, Wills N., Arlinghaus R.B. Suppression of murine retrovirus polypeptide termination: Effect of amber suppression tRNA on the cell-free translation of rauscher murine leukemia virus, Moloney murine leukemia virus, and Moloney murine sarcoma virus 124 RNA. J. Virol. 1980;34:464–473. doi: 10.1128/jvi.34.2.464-473.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Panganiban A.T. Retroviral gag gene amber codon suppression is caused by an intrinsic cis-acting component of the viral mRNA. J. Virol. 1988;62:3574–3580. doi: 10.1128/jvi.62.10.3574-3580.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Philipson L., Andersson P., Olshevsky V., Weinberg R., Baltimore D., Gesteland R. Translation of MuLV and MSV RNAs in nuclease-treated reticulocyte extracts: Enhancement of the gag-pol polypeptide with yeast suppressor tRNA. Cell. 1978;13:189–199. doi: 10.1016/0092-8674(78)90149-6. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–6467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schwartzberg P., Colicelli J., Goff S.P. Deletion mutants of Moloney murine leukemia virus which lack glycosylated gag protein are replication competent. Cell. 1984;37:1043–1052. doi: 10.1128/jvi.46.2.538-546.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shinnick T.M., Lerner R.A., Sutcliffe J.G. Nucleotide sequence of Moloney murine leukemia virus. Nature. 1981;293:543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  28. Ten Dam E.B., Pleij C.W.A., Bosch L. RNA pseudoknots: Translational frameshifting and readthrough on viral RNAs. Virus Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Varmus H.E. Retroviruses. Science. 1988;240:1427–1435. doi: 10.1126/science.3287617. [DOI] [PubMed] [Google Scholar]
  30. Weiss R., Teich N., Varmus H., Coffin J. RNA Tumor Viruses. 2nd ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1984. Molecular biology of tumor viruses RNA tumor viruses. [Google Scholar]
  31. Weiss R.B., Dunn D.M., Dahlberg A.E., Atkins J.F., Gesteland R.F. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 1988;7:1503–1507. doi: 10.1002/j.1460-2075.1988.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson W., Braddock M., Adams S.E., Rathjen P.D., Kingsman S.M., Kingsman A.J. HIV expression strategy: Ribosomal frameshifting is directed by a short sequence in both mammalian and yeast system. Cell. 1988;55:1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
  33. Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S. Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease. J. Virol. 1985;55:870–873. doi: 10.1128/jvi.55.3.870-873.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S. Vol. 82. 1985. 1988. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon; pp. 1618–1622. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES