Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Mar 1;31:229–292. doi: 10.1016/S0065-3527(08)60265-1

Regulation of Protein Synthesis in Virus-Infected Animal Cells

Marilyn Kozak 1
PMCID: PMC7131717  PMID: 3019107

Publisher Summary

This chapter summarizes the structural features that govern the translation of viral mRNAs: where the synthesis of a protein starts and ends, how many proteins can be produced from one mRNA, and how efficiently. It focuses on the interplay between viral and cellular mRNAs and the translational machinery. That interplay, together with the intrinsic structure of viral mRNAs, determines the patterns of translation in infected cells. It also points out some possibilities for translational regulation that can only be glimpsed at present, but are likely to come into focus in the future. The mechanism of selecting the initiation site for protein synthesis appears to follow a single formula. The translational machinery displays a certain flexibility that is exploited more frequently by viral than by cellular mRNAs. Although some of the parameters that determine efficiency have been identified, how efficiently a given mRNA will be translated cannot be predicted by summing the known parameters.

References

  1. Abraham G., Rhodes D., Banerjee A.K. The 5′-terminal structure of the methylated mRNA synthesized in vitro by VSV. Cell. 1975;5:51–58. doi: 10.1016/0092-8674(75)90091-4. [DOI] [PubMed] [Google Scholar]
  2. Abreu S.L., Lucas-Lenard J. Cellular protein synthesis shutoff by mengovirus: Translation of nonviral and viral mRNAs in extracts from uninfected and infected ascites tumor cells. J. Virol. 1976;18:182–194. doi: 10.1128/jvi.18.1.182-194.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahmad-Zadeh C., Allet B., Greenblatt J., Weil R. Two forms of SV40 T- antigen in abortive and lytic infection. Proc. Natl. Acad. Sci. U.S.A. 1976;73:1097–1101. doi: 10.1073/pnas.73.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ahmed R., Fields B.N. Role of the S4 gene in the establishment of persistent reovirus infection in L cells. Cell. 1982;28:605–612. doi: 10.1016/0092-8674(82)90215-x. [DOI] [PubMed] [Google Scholar]
  5. Alonso M.A., Carrasco L. Reversion by hypotonic medium of the shutoff of protein synthesis induced by EMC virus. J. Virol. 1981;37:535–540. doi: 10.1128/jvi.37.2.535-540.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alonso M.A., Carrasco L. Translation of capped viral mRNAs in poliovirus-infected HeLa cells. EMBO J. 1982;1:913–917. doi: 10.1002/j.1460-2075.1982.tb01271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alonso M.A., Carrasco L. Protein synthesis in HeLa cells double-infected with EMC virus and poliovirus. J. Gen. Virol. 1982;61:15–24. doi: 10.1099/0022-1317-61-1-15. [DOI] [PubMed] [Google Scholar]
  8. Alonso M.A., Carrasco L. Translation of capped virus mRNA in EMC virus-infected cells. J. Gen. Virol. 1982;60:315–325. doi: 10.1099/0022-1317-60-2-315. [DOI] [PubMed] [Google Scholar]
  9. Anderson C.W., Buzash-Pollert E. Can ACG serve as an initiation codon for protein synthesis in eukaryotic cells? Mol. Cell. Biol. 1985;5:3621–3624. doi: 10.1128/mcb.5.12.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Antczak J., Chmelo R., Pickup D., Joklik W.K. Sequences at both termini of the 10 genes of reovirus serotype 3 (Dearing). Virology. 1982;121:307–319. doi: 10.1016/0042-6822(82)90170-2. [DOI] [PubMed] [Google Scholar]
  11. Atkins G.J. The effect of infection with Sindbis virus and its temperature sensitive mutants on cellular protein and DNA synthesis. Virology. 1976;71:593–597. doi: 10.1016/0042-6822(76)90384-6. [DOI] [PubMed] [Google Scholar]
  12. Auperin D., Romanowski V., Galinski M., Bishop D.H.L. Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J. Virol. 1984;52:897–904. doi: 10.1128/jvi.52.3.897-904.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Babich A., Feldman L., Nevins J., Darnell J.E., Weinberger C. Effect of adenovirus on metabolism of specific host mRNAs: Transport control and specific translational discrimination. Mol. Cell. Biol. 1983;3:1212–1221. doi: 10.1128/mcb.3.7.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Babiss L.E., Ginsberg H.S. Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J. Virol. 1984;50:202–212. doi: 10.1128/jvi.50.1.202-212.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Babiss L.E., Ginsberg H.S., Darnell J.E. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol. Cell. Biol. 1985;5:2552–2558. doi: 10.1128/mcb.5.10.2552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bablanian R., Banerjee A.K. Polyriboadenylic acid preferentially inhibits in vitro translation of cellular compared to vaccinia virus mRNAs. Proc. Natl. Acad. Sci. U.S.A. 1986;83:1290–1294. doi: 10.1073/pnas.83.5.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bablanian R., Coppola G., Scribani S., Esteban M. Inhibition of protein synthesis by vaccinia virus. Virology. 1981;112:13–24. doi: 10.1016/0042-6822(81)90607-3. [DOI] [PubMed] [Google Scholar]
  18. Ball L.A., White C.N. Coupled transcription and translation in mammalian and avian cell-free systems. Virology. 1978;84:479–495. doi: 10.1016/0042-6822(78)90264-7. [DOI] [PubMed] [Google Scholar]
  19. Baltimore D. The replication of picornaviruses. In: Levy H.B., editor. Dekker; New York: 1969. pp. 101–176. (The Biochemistry of Viruses). [Google Scholar]
  20. Bandyopadhyay P.K., Temin H.M. Expression from an internal AUG codon of herpes simplex thymidine kinase gene inserted in a retrovirus vector. Mol. Cell. Biol. 1984;4:743–748. doi: 10.1128/mcb.4.4.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Barkan A., Mertz J.E. The number of ribosomes on SV40 late 16S mRNA is determined in part by the nucleotide sequence of its leader. Mol. Cell. Biol. 1984;4:813–816. doi: 10.1128/mcb.4.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Barker R.F., Jarvis N.P., Thompson D., Loesch-Fries L., Hall T.C. Complete nucleotide sequence of alfalfa mosaic virus RNA 3. Nucleic Acids Res. 1983;11:2881–2891. doi: 10.1093/nar/11.9.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Baroudy B., Ticehurst J., Miele T., Maizel J., Purcell R., Feinstone S.M. Sequence analysis of hepatitis A virus cDNA coding for capsid proteins and RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 1985;82:2143–2147. doi: 10.1073/pnas.82.7.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Becerra S.P., Rose J.A., Hardy M., Baroudy B., Anderson C.W. Direct mapping of adeno-associated virus capsid proteins B and C: A possible ACG initiation codon. Proc. Natl. Acad. Sci. U.S.A. 1985;82:7919–7923. doi: 10.1073/pnas.82.23.7919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Beck E., Forss S., Strebel K., Cattaneo R., Feil G. Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res. 1983;11:7873–7885. doi: 10.1093/nar/11.22.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Beier H., Barciszewska M., Krupp G., Mitnacht R., Gross H.J. UAG readthrough during TMV RNA translation: Isolation and sequence of two tRNAsTyr with suppressor activity from tobacco plants. EMBO J. 1984;3:351–356. doi: 10.1002/j.1460-2075.1984.tb01810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Beier H., Barciszewska M., Sickinger H-D. The molecular basis for differential translation of TMV RNA in tobacco and wheat germ. EMBO J. 1984;3:1091–1096. doi: 10.1002/j.1460-2075.1984.tb01934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bellini W., Englund G., Rozenblatt S., Arnheiter H., Richardson C.D. Measles virus P gene codes for two proteins. J. Virol. 1985;53:908–919. doi: 10.1128/jvi.53.3.908-919.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Beltz G.A., Flint S.J. Inhibition of HeLa cell protein synthesis during adenovirus infection. J. Mol. Biol. 1979;131:353–373. doi: 10.1016/0022-2836(79)90081-0. [DOI] [PubMed] [Google Scholar]
  30. Bendig M., Thomas T., Folk W.R. Regulatory mutants of polyoma virus defective in DNA replication and the synthesis of early proteins. Cell. 1980;20:401–409. doi: 10.1016/0092-8674(80)90626-1. [DOI] [PubMed] [Google Scholar]
  31. Ben-Hamida F., Person A., Beaud G. Solubilization of a protein synthesis inhibitor from vaccinia virions. J. Virol. 1983;45:452–455. doi: 10.1128/jvi.45.1.452-455.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Bennetzen J.L., Hall B.D. Codon selection in yeast. J. Biol. Chem. 1982;257:3026–3031. [PubMed] [Google Scholar]
  33. Berkhout B., Kastelein R., van Duin J. Translational interference at overlapping reading frames in prokaryotic mRNA. Gene. 1985;37:171–179. doi: 10.1016/0378-1119(85)90270-7. [DOI] [PubMed] [Google Scholar]
  34. Berkner K., Sharp P.A. Effect of the tripartite leader on synthesis of a non-viral protein in an adenovirus 5 recombinant. Nucleic Acids Res. 1985;13:841–857. doi: 10.1093/nar/13.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Bernstein H.D., Sonenberg N., Baltimore D. Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Mol. Cell. Biol. 1985;5:2913–2923. doi: 10.1128/mcb.5.11.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Bhat R., Thimmappaya B. Two small RNAs encoded by Epstein-Barr virus can functionally substitute for the virus-associated RNAs in the lytic growth of adenovirus 5. Proc. Natl. Acad. Sci. U.S.A. 1983;80:4789–4793. doi: 10.1073/pnas.80.15.4789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Bhat R.A., Thimmappaya B. Construction and analysis of additional adenovirus substitution mutants confirm the complementation of VAI RNA function by two small RNAs encoded by Epstein-Barr virus. J. Virol. 1985;56:750–756. doi: 10.1128/jvi.56.3.750-756.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Bhat R., Domer P., Thimmappaya B. Structural requirements of adenovirus VAI RNA for its translation enhancement function. Mol. Cell. Biol. 1985;5:187–196. doi: 10.1128/mcb.5.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Bienz K., Egger D., Rasser Y., Loeffler H. Differential inhibition of host cell RNA synthesis in several picornavirus-infected cell lines. Intervirology. 1978;10:209–220. doi: 10.1159/000148984. [DOI] [PubMed] [Google Scholar]
  40. Bonneau A.-M., Darveau A., Sonenberg N. Effect of viral infection on host protein synthesis and mRNA association with the cytoplasmic cytoskeletal structure. J. Cell Biol. 1985;100:1209–1218. doi: 10.1083/jcb.100.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Boone R., Parr R., Moss B. Intermolecular duplexes formed from poly-adenylated vaccinia virus RNA. J. Virol. 1979;30:365–374. doi: 10.1128/jvi.30.1.365-374.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Bos J., Polder L., Bernards R., Schrier P., van den Elsen P., van der Eb A.J., van Ormondt H. The 2.2 kb E1B mRNA of human Ad12 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cell. 1981;27:121–131. doi: 10.1016/0092-8674(81)90366-4. [DOI] [PubMed] [Google Scholar]
  43. Bossart W., Bienz K. Regulation of protein synthesis in HEp-2 cells and their cytoplasmic extracts after poliovirus infection. Virology. 1981;111:555–567. doi: 10.1016/0042-6822(81)90357-3. [DOI] [PubMed] [Google Scholar]
  44. Bouloy M., Plotch S., Krug R. Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc. Natl. Aca. Sci. U.S.A. 1978;75:4886–4890. doi: 10.1073/pnas.75.10.4886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Bouloy M., Plotch S., Krug R. Both the 7-methyl and the 2′-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proc. Natl. Acad. Sci. U.S.A. 1980;77:3952–3956. doi: 10.1073/pnas.77.7.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Bouloy M., Vialat P., Girard M., Pardigon N. A transcript from the S segment of the Germiston bunyavirus is uncapped and codes for the nucleoprotein and a nonstructural protein. J. Virol. 1984;49:717–723. doi: 10.1128/jvi.49.3.717-723.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Boursnell M., Binns M., Brown T. Sequencing of coronavirus IBV genomic RNA: Three open reading frames in the 5′ “unique” region of mRNA D. J. Gen. Virol. 1985;66:2253–2258. doi: 10.1099/0022-1317-66-10-2253. [DOI] [PubMed] [Google Scholar]
  48. Brown B.A., Ehrenfeld E. Translation of poliovirus RNA in vitro: Changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology. 1979;97:396–405. doi: 10.1016/0042-6822(79)90350-7. [DOI] [PubMed] [Google Scholar]
  49. Brown B.A., Ehrenfeld E. Initiation factor preparations from poliovirus-infected cells restrict translation in reticulocyte lysates. Virology. 1980;103:327–339. doi: 10.1016/0042-6822(80)90191-9. [DOI] [PubMed] [Google Scholar]
  50. Brown G.D., Moyer R.W. The white pock mutants of rabbit poxvirus: In vitro translation of early host range mutant mRNA. Virology. 1983;126:381–390. doi: 10.1016/0042-6822(83)90488-9. [DOI] [PubMed] [Google Scholar]
  51. Brzeski H., Kennedy S.I.T. Synthesis of alphavirus-specified RNA. J. Virol. 1978;25:630–640. doi: 10.1128/jvi.25.2.630-640.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Buchman A.R., Fromm M., Berg P. Complex regulation of SV40 early-region transcription from different overlapping promoters. Mol. Cell. Biol. 1984;4:1900–1914. doi: 10.1128/mcb.4.9.1900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Budzilowicz C., Wilczynski S., Weiss S.R. Three intergenic regions of coronavirus mouse hepatitis virus genome RNA contain a sequence that is homologous to the 3′-end of the viral mRNA leader sequence. J. Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Callahan P., Mizutani S., Colonno R.J. Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. Proc. Natl. Acad. Sci. U.S.A. 1985;82:732–736. doi: 10.1073/pnas.82.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Carrasco L., Lacal J.C. Permeabilization of cells during animal virus infection. Pharmacol. Ther. 1983;23:109–145. doi: 10.1016/0163-7258(83)90028-1. [DOI] [PubMed] [Google Scholar]
  56. Carrasco L., Smith A.E. Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature (London) 1976;264:807–809. doi: 10.1038/264807a0. [DOI] [PubMed] [Google Scholar]
  57. Cashdollar L.W., Chmelo R., Wiener J., Joklik W.K. Sequences of the S1 genes of the three serotypes of reovirus. Proc. Natl. Acad. Sci. U.S.A. 1985;82:24–28. doi: 10.1073/pnas.82.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Castiglia C.L., Flint S.J. Effects of adenovirus infection on rRNA synthesis and maturation in HeLa cells. Mol. Cell. Biol. 1983;3:662–671. doi: 10.1128/mcb.3.4.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Castle E., Nowak T., Leidner U., Wengler G., Wengler G. Sequence analysis of the viral core protein and membrane proteins of the flavivirus West Nile virus. Virology. 1985;145:227–236. doi: 10.1016/0042-6822(85)90156-4. [DOI] [PubMed] [Google Scholar]
  60. Castle E., Leidner U., Nowak T., Wengler G., Wengler G. Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins. Virology. 1986;149:10–26. doi: 10.1016/0042-6822(86)90082-6. [DOI] [PubMed] [Google Scholar]
  61. Celma M.L., Ehrenfeld E. Effect of poliovirus double-stranded RNA on viral and host-cell protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 1974;71:2440–2444. doi: 10.1073/pnas.71.6.2440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Celma M.L., Ehrenfeld E. Translation of poliovirus RNA in vitro: Detection of two different initiation sites. J. Mol. Biol. 1975;98:761–780. doi: 10.1016/s0022-2836(75)80009-x. [DOI] [PubMed] [Google Scholar]
  63. Centrella M., Lucas-Lenard J. Regulation of protein synthesis in VSV- infected cells by decreased initiation factor 2 activity. J. Virol. 1982;41:781–791. doi: 10.1128/jvi.41.3.781-791.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Cepko C.L., Sharp P.A. Assembly of adenovirus major capsid protein is mediated by a nonvirion protein. Cell. 1982;31:407–415. doi: 10.1016/0092-8674(82)90134-9. [DOI] [PubMed] [Google Scholar]
  65. Cherney C.S., Wilhelm J.M. Differential translation in normal and adenovirus type 5-infected cells and cell-free systems. J. Virol. 1979;30:533–542. doi: 10.1128/jvi.30.2.533-542.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Clarke B., Sangar D.V., Burroughs J., Newton S., Carroll A.R., Rowlands D.J. Two initiation sites for foot and mouth disease virus polyprotein in vivo. J. Gen. Virol. 1985;66:2615–2626. doi: 10.1099/0022-1317-66-12-2615. [DOI] [PubMed] [Google Scholar]
  67. Collins P.L., Fuller F.J., Marcus P.I., Hightower L.E., Ball L.A. Synthesis and processing of Sindbis virus nonstructural proteins in vitro. Virology. 1982;118:363–379. doi: 10.1016/0042-6822(82)90356-7. [DOI] [PubMed] [Google Scholar]
  68. Contreras R., Rogiers R., van De Voorde A., Fiers W. Overlapping of the VP2-VP3 gene and the VP1 gene in the SV40 genome. Cell. 1977;12:529–538. doi: 10.1016/0092-8674(77)90129-5. [DOI] [PubMed] [Google Scholar]
  69. Cooper J.A., Moss B. Transcription of vaccinia virus mRNA coupled to translation in vitro. Virology. 1978;88:149–165. doi: 10.1016/0042-6822(78)90118-6. [DOI] [PubMed] [Google Scholar]
  70. Cooper J.A., Moss B. In vitro translation of immediate early, early, and late classes of RNA from vaccinia virus-infected cells. Virology. 1979;96:368–380. doi: 10.1016/0042-6822(79)90095-3. [DOI] [PubMed] [Google Scholar]
  71. Coppola G., Bablanian R. Discriminatory inhibition of protein synthesis in cell-free systems by vaccinia virus transcripts. Proc. Natl. Acad. Sci. U.S.A. 1983;80:75–79. doi: 10.1073/pnas.80.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Craigen W.J., Cook R., Tate W., Caskey C.T. Bacterial peptide chain release factors: Conserved primary structure and possible frameshift regulation of release factor 2. Proc. Natl. Acad. Sci. U.S.A. 1985;82:3616–3620. doi: 10.1073/pnas.82.11.3616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Cross R.K. Identification of a unique guanine-7-methyltransferase in Semliki Forest virus infected cell extracts. Virology. 1983;130:452–463. doi: 10.1016/0042-6822(83)90099-5. [DOI] [PubMed] [Google Scholar]
  74. Daher K., Samuel C.E. Mechanism of interferon action: Differential effect of interferon on the synthesis of SV40 and reovirus polypeptides in monkey kidney cells. Virology. 1982;117:379–390. doi: 10.1016/0042-6822(82)90477-9. [DOI] [PubMed] [Google Scholar]
  75. Darlix J.-L., Zuker M., Spahr P.-F. Structure-function relationship of Rous sarcoma virus leader RNA. Nucleic Acids Res. 1982;10:5183–5196. doi: 10.1093/nar/10.17.5183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Das A., Yanofsky C. A ribosome binding site sequence is necessary for efficient expression of the distal gene of a translationally-coupled gene pair. Nucleic Acids Res. 1984;12:4757–4768. doi: 10.1093/nar/12.11.4757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Dasgupta R., Shih D.S., Saris C., Kaesberg P. Nucleotide sequence of a viral RNA fragment that binds to eukaryotic ribosomes. Nature (London) 1975;256:624–628. doi: 10.1038/256624a0. [DOI] [PubMed] [Google Scholar]
  78. Dasgupta R., Ahlquist P., Kaesberg P. Sequence of the 3′-untranslated region of brome mosaic virus coat protein messenger RNA. Virology. 1980;104:339–346. doi: 10.1016/0042-6822(80)90338-4. [DOI] [PubMed] [Google Scholar]
  79. Davies J.W., Hull R. Genome expression of plant positive-strand RNA viruses. J. Gen. Virol. 1982;61:1–14. [Google Scholar]
  80. De Benedetti A., Baglioni C. Inhibition of mRNA binding to ribosomes by localized activation of dsRNA-dependent protein kinase. Nature (London) 1984;311:79–81. doi: 10.1038/311079a0. [DOI] [PubMed] [Google Scholar]
  81. De thlefsen L., Kolakofsky D. In vitro synthesis of the nonstructural C protein of Sendai virus. J. Virol. 1983;46:321–324. doi: 10.1128/jvi.46.1.321-324.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. De tjen B.M., Walden W.E., Thach R.E. Translational specificity in reovirus-infected mouse fibroblasts. J. Biol. Chem. 1982;257:9855–9860. [PubMed] [Google Scholar]
  83. Dijkema R., De kker B., van Ormondt H. Gene organization of the transforming region of adenovirus type 7 DNA. Gene. 1982;18:143–156. doi: 10.1016/0378-1119(82)90112-3. [DOI] [PubMed] [Google Scholar]
  84. Dixon L.K., Hohn T. Initiation of translation of the cauliflower mosaic virus genome from a polycistronic mRNA: Evidence from deletion mutagenesis. EMBO J. 1984;3:2731–2736. doi: 10.1002/j.1460-2075.1984.tb02203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Dixon L., Jiricny J., Hohn T. Oligonucleotide directed mutagenesis of cauliflower mosaic virus DNA using a repair-resistant nucleoside analogue identifies an agnogene initiation codon. Gene. 1986 doi: 10.1016/0378-1119(86)90102-2. in press. [DOI] [PubMed] [Google Scholar]
  86. Dorner A.J., Semler B., Jackson R., Hanecak R., Duprey E., Wimmer E. In vitro translation of poliovirus RNA: Utilization of internal initiation sites in reticulocyte lysate. J. Virol. 1984;50:507–514. doi: 10.1128/jvi.50.2.507-514.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Downey J.F., Evelegh C., Branton P., Bayley S.T. Peptide maps and N- terminal sequences of polypeptides from early region 1A of human adenovirus 5. J. Virol. 1984;50:30–37. doi: 10.1128/jvi.50.1.30-37.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Dratewka-Kos E., Kiss I., Lucas-Lenard J., Mehta H., Woodley C., Wahba A.J. Catalytic utilization of elF-2 and mRNA binding proteins are limiting in lysates from VSV infected L cells. Biochemistry. 1984;23:6184–6190. doi: 10.1021/bi00320a045. [DOI] [PubMed] [Google Scholar]
  89. Drillien R., Spehner D., Kirn A. Host range restriction of vaccinia virus in CHO cells: Relationship to shutoff of protein synthesis. J. Virol. 1978;28:843–850. doi: 10.1128/jvi.28.3.843-850.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Duncan R., Hershey J.W.B. Regulation of initiation factors during translational repression caused by serum depletion. J. Biol. Chem. 1985;260:5486–5492. [PubMed] [Google Scholar]
  91. Duncan R., Hershey J.W.B. Cellular levels and covalent modification of the subunits of the cap binding protein complex, elF-4F. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1985;44:1224. [Google Scholar]
  92. Duncan R., Etchison D., Hershey J.W.B. Protein synthesis factors 4A and 4B are not altered by poliovirus infection of HeLa Cells. J. Biol. Chem. 1983;258:7236–7239. [PubMed] [Google Scholar]
  93. Dunn J.J., Studier F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 1983;166:477–535. doi: 10.1016/s0022-2836(83)80282-4. [DOI] [PubMed] [Google Scholar]
  94. Edery I., Lee K., Sonenberg N. Functional characterization of eukaryotic mRNA cap binding protein complex: Effects on translation of capped and naturally uncapped RNAs. Biochemistry. 1984;23:2456–2462. doi: 10.1021/bi00306a021. [DOI] [PubMed] [Google Scholar]
  95. Edwards S.A., Fan H. Sequence relationship of glycosylated and unglycosylated gag polyproteins of Moloney murine leukemia virus. J. Virol. 1980;35:41–51. doi: 10.1128/jvi.35.1.41-51.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Ehresmann D.W., Schaffer F.L. Calicivirus intracellular RNA. Virology. 1979;95:251–255. doi: 10.1016/0042-6822(79)90426-4. [DOI] [PubMed] [Google Scholar]
  97. Enders G.H., Ganem D., Varmus H. Mapping the major transcripts of ground squirrel hepatitis virus: The presumptive template for reverse transcriptase is terminally redundant. Cell. 1985;42:297–308. doi: 10.1016/s0092-8674(85)80125-2. [DOI] [PubMed] [Google Scholar]
  98. Ernst H., Shatkin A.J. Reovirus hemagglutinin mRNA codes for two polypeptides in overlapping reading frames. Proc. Natl. Acad. Sci. U.S.A. 1985;82:48–52. doi: 10.1073/pnas.82.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Eshita Y., Bishop D.H.L. The complete sequence of the M RNA of snow-shoe hare bunyavirus reveals the presence of internal hydrophobic domains in the viral glycoprotein. Virology. 1984;137:227–240. doi: 10.1016/0042-6822(84)90215-0. [DOI] [PubMed] [Google Scholar]
  100. Eshita Y., Ericson B., Romanowski V., Bishop D.H.L. Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. J. Virol. 1985;55:681–689. doi: 10.1128/jvi.55.3.681-689.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Etchison D., Fout S. Human rhinovirus 14 infection of HeLa cells results in the proteolytic cleavage of the p220 cap binding subunit. J. Virol. 1985;54:634–638. doi: 10.1128/jvi.54.2.634-638.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Etchison D., Milburn S., Edery I., Sonenberg N., Hershey J.W.B. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with proteolysis of a 220,000 dalton polypeptide associated with eIF3 and a cap binding protein complex. J. Biol. Chem. 1982;257:14806–14810. [PubMed] [Google Scholar]
  103. Etchison D., Hansen J., Ehrenfeld E., Edery I., Sonenberg N., Milburn S., Hershey J.W.B. Demonstration in vitro that eIF3 is active but that a cap-binding protein complex is inactive in poliovirus-infected HeLa cells. J. Virol. 1984;51:832–837. doi: 10.1128/jvi.51.3.832-837.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Fenwick M.L., McMenamin M.M. Early virion-associated suppression of cellular protein synthesis by herpes simplex virus is accompanied by inactivation of mRNA. J. Gen. Virol. 1984;65:1225–1228. doi: 10.1099/0022-1317-65-7-1225. [DOI] [PubMed] [Google Scholar]
  105. Fenwick M.L., Walker M.J. Suppression of the synthesis of cellular macromolecules by herpes simplex virus. J. Gen. Virol. 1978;41:37–51. doi: 10.1099/0022-1317-41-1-37. [DOI] [PubMed] [Google Scholar]
  106. Fernandez-Munoz R., Darnell J.E. Structural difference between the 5′ termini of viral and cellular mRNA in poliovirus-infected cells: Possible basis for the inhibition of host protein synthesis. J. Virol. 1976;18:719–726. doi: 10.1128/jvi.18.2.719-726.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Flint S.J., Plumb M.A., Yang U.-C., Stein G.S., Stein J.L. Effect of adenovirus infection on expression of human histone genes. Mol. Cell. Biol. 1984;4:1363–1371. doi: 10.1128/mcb.4.7.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Forss S., Strebel K., Beck E., Schaller H. Nucleotide sequence and genome organization of foot and mouth disease virus. Nucleic Acids Res. 1984;12:6587–6601. doi: 10.1093/nar/12.16.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Fraenkel-Conrat H., Wagner R.R. Vol. 19. Plenum; New York: 1984. (Comprehensive Virology). [Google Scholar]
  110. Francoeur A.M., Stanners C.P. Evidence against the role of K+ in the shutoff of protein synthesis by VSV. J. Gen. Virol. 1978;39:551–554. doi: 10.1099/0022-1317-39-3-551. [DOI] [PubMed] [Google Scholar]
  111. Friesen P.D., Miller L.K. Temporal regulation of baculovirus RNA: Overlapping early and late transcripts. J. Virol. 1985;54:392–400. doi: 10.1128/jvi.54.2.392-400.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Friesen P.D., Rueckert R.R. Early and late functions in a bipartite RNA virus: Evidence for translational control by competition between viral mRNAs. J. Virol. 1984;49:116–124. doi: 10.1128/jvi.49.1.116-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Fuller F., Bhown A., Bishop D.H.L. Bunyavirus nucleoprotein, N, and a nonstructural protein, NSS, are coded by overlapping reading frames in the S RNA. J. Gen. Virol. 1983;64:1705–1714. doi: 10.1099/0022-1317-64-8-1705. [DOI] [PubMed] [Google Scholar]
  114. Furuichi Y., Morgan M., Muthukrishnan S., Shatkin A.J. Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m7G(5′)ppp(5′)GmpCp-. Proc. Natl. Acad. Sci. U.S.A. 1975;72:362–366. doi: 10.1073/pnas.72.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Furuichi Y., Muthukrishnan S., Tomasz J., Shatkin A.J. Mechanism of formation of reovirus mRNA 5′-terminal blocked and methylated sequence, m7GpppGmpC. J. Biol. Chem. 1976;251:5043–5053. [PubMed] [Google Scholar]
  116. Furuichi Y., La Fiandra A., Shatkin A.J. 5′-Terminal structure and mRNA stability. Nature (London) 1977;266:235–239. doi: 10.1038/266235a0. [DOI] [PubMed] [Google Scholar]
  117. Furukawa T., Jean J.-H., Plotkin S.A. Enhanced poliovirus replication in cytomegalovirus-infected human fibroblasts. Virology. 1978;85:622–625. doi: 10.1016/0042-6822(78)90468-3. [DOI] [PubMed] [Google Scholar]
  118. Garry R.F., Waite M.R.F. Na+ and K+ concentrations and the regulation of the interferon system in chick cells. Virology. 1979;96:121–128. doi: 10.1016/0042-6822(79)90178-8. [DOI] [PubMed] [Google Scholar]
  119. Garry R.F., Bishop J.M., Parker S., Westbrook K., Lewis G., Waite M.R.F. Na+ and K+ concentrations and the regulation of protein synthesis in Sindbis virus-infected chick cells. Virology. 1979;96:108–120. doi: 10.1016/0042-6822(79)90177-6. [DOI] [PubMed] [Google Scholar]
  120. Gehrke L., Auron P.E., Quigley G.J., Rich A., Sonenberg N. 5′-Conformation of capped alfalfa mosaic virus RNA 4 may reflect its independence of cap structure or of cap-binding protein for efficient translation. Biochemistry. 1983;22:5157–5164. doi: 10.1021/bi00291a015. [DOI] [PubMed] [Google Scholar]
  121. Ghosh P.K., Lebowitz P. SV40 early mRNAs contain multiple 5′-termini upstream and downstream from a Hogness-Goldberg sequence; a shift in 5′ termini during the lytic cycle is mediated by large T antigen. J. Virol. 1981;40:224–240. doi: 10.1128/jvi.40.1.224-240.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Ghosh P.K., Reddy V.B., Swinscoe J., Lebowitz P., Weissman S.M. Heterogeneity and 5′-terminal structures of the late RNAs of SV40. J. Mol. Biol. 1978;126:813–846. doi: 10.1016/0022-2836(78)90022-0. [DOI] [PubMed] [Google Scholar]
  123. Gillies S., Stollar V. Protein synthesis in lysates of Aedes albopictus cells infected with VSV. Mol. Cell. Biol. 1982;2:1174–1186. doi: 10.1128/mcb.2.10.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Giorgi C., Blumberg B.M., Kolakofsky D. Sendai virus contains overlapping genes expressed from a single mRNA. Cell. 1983;35:829–836. doi: 10.1016/0092-8674(83)90115-0. [DOI] [PubMed] [Google Scholar]
  125. Godefroy-Colburn T., Thivent C., Pinck L. Translational discrimination between the four RNAs of alfalfa mosaic virus. Eur. J. Biochem. 1985;147:541–548. doi: 10.1111/j.0014-2956.1985.00541.x. [DOI] [PubMed] [Google Scholar]
  126. Godefroy-Colburn T., Ravelonandro M., Pinck L. Cap accessibility correlates with the initiation efficiency of AMV RNAs. Eur. J. Biochem. 1985;147:549–552. doi: 10.1111/j.0014-2956.1985.00549.x. [DOI] [PubMed] [Google Scholar]
  127. Goelet P., Lomonossoff G., Butler P., Akam M., Gait M., Karn J. Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad. Sci. U.S.A. 1982;79:5818–5822. doi: 10.1073/pnas.79.19.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Golini F., Thach S.S., Birge C.H., Safer B., Merrick W.C., Thach R.E. Competition between cellular and viral mRNAs in vitro is regulated by a messenger discriminatory initiation factor. Proc. Natl. Acad. Sci. U.S.A. 1976;73:3040–3044. doi: 10.1073/pnas.73.9.3040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Gray M.A., Micklem K.J., Pasternak C.A. Protein synthesis in cells infected with Semliki Forest virus is not controlled by intracellular cation changes. Eur. J. Biochem. 1983;135:299–302. doi: 10.1111/j.1432-1033.1983.tb07652.x. [DOI] [PubMed] [Google Scholar]
  130. Grifo J.A., Tahara S.M., Morgan M.A., Shatkin A.J., Merrick W.C. New initiation factor activity required for globin mRNA translation. J. Biol. Chem. 1983;258:5804–5810. [PubMed] [Google Scholar]
  131. Grinnell B.W., Wagner R.R. Inhibition of DNA-dependent transcription by the leader RNA of VSV. Mol. Cell. Biol. 1985;5:2502–2513. doi: 10.1128/mcb.5.10.2502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Gruss P., Ellis R., Shih T., Konig M., Scolnick E.M., Khoury G. SV40 recombinant molecules express the gene encoding p21 transforming protein of Harvey murine sarcoma virus. Nature (London) 1981;293:486–488. doi: 10.1038/293486a0. [DOI] [PubMed] [Google Scholar]
  133. Guarino L.A., Ghosh A., Dasmahapatra B., Dasgupta R., Kaesberg P. Sequence of the black beetle virus subgenomic RNA and its location in the viral genome. Virology. 1984;139:199–203. doi: 10.1016/0042-6822(84)90342-8. [DOI] [PubMed] [Google Scholar]
  134. Guilley H., Carrington J.C., Balazs E., Jonard G., Richards K., Morris T.J. Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Res. 1985;13:6663–6677. doi: 10.1093/nar/13.18.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Haarr L., Marsden H., Preston C.M., Smiley J.R., Summers W.C., Summers W.P. Utilization of internal AUG codons for initiation of protein synthesis directed by mRNAs from normal and mutant genes encoding herpes simplex virus-specified thymidine kinase. J. Virol. 1985;56:512–519. doi: 10.1128/jvi.56.2.512-519.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Hackett P.B., Petersen R.B., Hensel C., Albericio F., Gunderson S., Palmenberg A., Barany G. Synthesis in vitro of a seven amino acid peptide encoded in the leader RNA of Rous sarcoma virus. J. Mol. Biol. 1986 doi: 10.1016/0022-2836(86)90074-4. in press. [DOI] [PubMed] [Google Scholar]
  137. Hackstadt T., Mallavia L.P. Sodium and potassium transport in herpes simplex virus-infected cells. J. Gen. Virol. 1982;60:199–207. doi: 10.1099/0022-1317-60-2-199. [DOI] [PubMed] [Google Scholar]
  138. Halbert D.N., Cutt J.R., Shenk T. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J. Virol. 1985;56:250–257. doi: 10.1128/jvi.56.1.250-257.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Halpern M.E., Smiley J.R. Effects of deletions on expression of the HSV thymidine kinase gene from the intact viral genome: The amino terminus is dispensable for catalytic activity. J. Virol. 1984;50:733–738. doi: 10.1128/jvi.50.3.733-738.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Hay A.J., Abraham G., Skehel J., Smith J.C., Fellner P. Influenza virus mRNAs are incomplete transcripts of the genome RNAs. Nucleic Acids Res. 1977;4:4197–4209. doi: 10.1093/nar/4.12.4197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Hay N., Aloni Y. Attenuation of late SV40 mRNA synthesis is enhanced by the agnoprotein and is temporally regulated in isolated nuclear systems. Mol. Cell. Biol. 1985;5:1327–1334. doi: 10.1128/mcb.5.6.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Heermann K.H., Goldmann U., Schwartz W., Seyffarth T., Baumgarten H., Gerlich W.H. Large surface proteins of hepatitis V virus containing the pre-S sequence. J. Virol. 1984;52:396–402. doi: 10.1128/jvi.52.2.396-402.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Helentjaris T., Ehrenfeld E. Inhibition of host cell protein synthesis by UV-inactivated poliovirus. J. Virol. 1977;21:259–267. doi: 10.1128/jvi.21.1.259-267.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Helentjaris T., Ehrenfeld E. Control of protein synthesis in extracts from poliovirus-infected cells. J. Virol. 1978;26:510–521. doi: 10.1128/jvi.26.2.510-521.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Hewlett M.J., Axelrod J.H., Antinoro N., Feld R. Isolation and preliminary characterization of temperature-sensitive mutants of poliovirus type 1. J. Virol. 1982;41:1089–1094. doi: 10.1128/jvi.41.3.1089-1094.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Hill T.M., Sadler J.R., Betz J.L. Virion component of HSV type 1 KOS interferes with early shutoff of host protein synthesis induced by HSV type 2. J. Virol. 1985;56:312–316. doi: 10.1128/jvi.56.1.312-316.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Hiremath L.S., Webb N.R., Rhoads R.E. Immunological detection of the mRNA cap-binding protein. J. Biol. Chem. 1985;260:7843–7849. [PubMed] [Google Scholar]
  148. Hoess R.H., Foeller C., Bidwell K., Landy A. Site-specific recombination of bacteriophage: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis. Proc. Natl. Acad. Sci. U.S.A. 1980;77:2482–2486. doi: 10.1073/pnas.77.5.2482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Horikami S.M., De Ferra F., Moyer S.A. Characterization of the infections of permissive cells by host range mutants of VSV defective in RNA methylation. Virology. 1984;138:1–15. doi: 10.1016/0042-6822(84)90142-9. [DOI] [PubMed] [Google Scholar]
  150. Hruby D.E., Ball L.A. Control of expression of the vaccinia virus thymidine kinase gene. J. Virol. 1981;40:456–464. doi: 10.1128/jvi.40.2.456-464.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Hruby D.E., Ball L.A. Mapping and identification of the vaccinia virus thymidine kinase gene. J. Virol. 1982;43:403–409. doi: 10.1128/jvi.43.2.403-409.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Hughes S., Mellstrom K., Kosik E., Tamanoi F., Brugge J. Mutation of a termination codon affects src initiation. Mol. Cell. Biol. 1984;4:1738–1746. doi: 10.1128/mcb.4.9.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Huisman M.J., Sarachu A.N., Alblas F., Bol J.F. Alfalfa mosaic virus temperature sensitive mutants. Virology. 1985;141:23–29. doi: 10.1016/0042-6822(85)90179-5. [DOI] [PubMed] [Google Scholar]
  154. Ikegami S., Takahashi N., Itoh N., Higaki T., Sasaki S. Transcription-coupled translation of silkworm cytoplasmic polyhedrosis virus genomic RNA in Xenopus oocytes. Int. Congr. Biochem., 13th, Amsterdam. 1985 Abstr. MO-111. [Google Scholar]
  155. Ikemura T. Correlation between the abundance of E. coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol. 1981;146:1–21. doi: 10.1016/0022-2836(81)90363-6. [DOI] [PubMed] [Google Scholar]
  156. Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. J. Mol. Biol. 1982;158:573–597. doi: 10.1016/0022-2836(82)90250-9. [DOI] [PubMed] [Google Scholar]
  157. Inglis S.C. Inhibition of host protein synthesis and degradation of cellular mRNAs during infection by influenza and HSV. Mol. Cell. Biol. 1982;2:1644–1648. doi: 10.1128/mcb.2.12.1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Izant J.G., Weintraub H. Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science. 1985;229:345–352. doi: 10.1126/science.2990048. [DOI] [PubMed] [Google Scholar]
  159. Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  160. Jacobs B.L., Samuel C.E. Biosynthesis of reovirus-specified polypeptides: The reovirus s1 mRNA encodes two primary translation products. Virology. 1985;143:63–74. doi: 10.1016/0042-6822(85)90097-2. [DOI] [PubMed] [Google Scholar]
  161. Jacobs B.L., Atwater J.A., Munemitsu S.M., Samuel C.E. Biosynthesis of reovirus-specified polypeptides. Virology. 1985;147:9–18. doi: 10.1016/0042-6822(85)90222-3. [DOI] [PubMed] [Google Scholar]
  162. Jacobson M.F., Baltimore D. Polypeptide cleavages in the formation of poliovirus proteins. Proc. Natl. Acad. Sci. U.S.A. 1968;61:77–84. doi: 10.1073/pnas.61.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Janik J.E., Huston M.M., Cho K., Rose J.A. Requirement for adenovirus DNA-binding protein and VA-I RNA for production of adeno-associated virus polypeptides. J. Cell Biochem. 1982;(Suppl.6):209. [Google Scholar]
  164. Janik J.E., Huston M.M., Rose J.A. Adeno-associated virus proteins: Origin of the capsid components. J. Virol. 1984;52:591–597. doi: 10.1128/jvi.52.2.591-597.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Jay G., Nomura S., Anderson C.W., Khoury G. Identification of the SV40 agnogene product: A DNA binding protein. Nature (London) 1981;291:346–349. doi: 10.1038/291346a0. [DOI] [PubMed] [Google Scholar]
  166. Jaye M.C., Godchaux W., Lucas-Lenard J. Further studies on the inhibition of cellular protein synthesis by VSV. Virology. 1982;116:148–162. doi: 10.1016/0042-6822(82)90410-x. [DOI] [PubMed] [Google Scholar]
  167. Jen G., Thach R.E. Inhibition of host translation in EMC virus-infected L cells: A novel mechanism. J. Virol. 1982;43:250–261. doi: 10.1128/jvi.43.1.250-261.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Jen G., Birge C.H., Thach R.E. Comparison of initiation rates of EMC virus and host protein synthesis in infected cells. J. Virol. 1978;27:640–647. doi: 10.1128/jvi.27.3.640-647.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Jen G., De tjen B.M., Thach R.E. Shutoff of HeLa cell protein synthesis by EMC virus and poliovirus: A comparative study. J. Virol. 1980;35:150–156. doi: 10.1128/jvi.35.1.150-156.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Jense H., Knauert F., Ehrenfeld E. Two initiation sites for translation of poliovirus RNA in vitro: Comparison of LSc and Mahoney strains. J. Virol. 1978;28:387–394. doi: 10.1128/jvi.28.1.387-394.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Johnson D.C., Spear P.G. Evidence for translational regulation of HSV type 1 gD expression. J. Virol. 1984;51:389–394. doi: 10.1128/jvi.51.2.389-394.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Jones E.V., Whitaker-Dowling P., Youngner J.S. Restriction of VSV in a nonpermissive rabbit cell line is at the level of protein synthesis. Virology. 1982;121:20–31. doi: 10.1016/0042-6822(82)90115-5. [DOI] [PubMed] [Google Scholar]
  173. Kääriäinen L., Ranki M. Inhibition of cell functions by RNA-virus infections. Annu. Rev. Microbiol. 1984;38:91–109. doi: 10.1146/annurev.mi.38.100184.000515. [DOI] [PubMed] [Google Scholar]
  174. Kastelein R.A., Remaut E., Fiers W., van Duin J. Lysis gene expression of RNA phage MS2 depends on a frameshift during translation of the overlapping coat protein gene. Nature (London) 1982;295:35–41. doi: 10.1038/295035a0. [DOI] [PubMed] [Google Scholar]
  175. Katinka M., Yaniv M. Deletions of N-terminal sequences of polyoma virus T-antigens reduce but do not abolish transformation of rat fibroblasts. Mol. Cell. Biol. 1982;2:1238–1246. doi: 10.1128/mcb.2.10.1238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Katz R.A., Cullen B.R., Malavarca R., Skalka A.M. Role of the avian retrovirus mRNA leader in expression: Evidence for novel translation control. Mol. Cell. Biol. 1986;6:372–379. doi: 10.1128/mcb.6.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Katze M.G., Krug R.M. Metabolism and expression of RNA polymerase II transcripts in influenza virus-infected cells. Mol. Cell. Biol. 1984;4:2198–2206. doi: 10.1128/mcb.4.10.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Katze M.G., Chen Y-T., Krug R.M. Nuclear-cytoplasmic transport and VAI RNA-independent translation of influenza viral mRNAs in late adenovirus- infected cells. Cell. 1984;37:483–490. doi: 10.1016/0092-8674(84)90378-7. [DOI] [PubMed] [Google Scholar]
  179. Katze M.G., De tjen B.M., Safer B., Krug R.M. Translational control by influenza virus: Suppression of the kinase that phosphorylates the alpha subunit of initiation factor eIF-2 and selective translation of influenza viral mRNAs. Mol. Cell. Biol. 1986:6. doi: 10.1128/mcb.6.5.1741. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Kaufman R.J. Identification of the components necessary for adenovirus translational control and their utilization in cDNA expression vectors. Proc. Natl. Acad. Sci. U.S.A. 1985;82:689–693. doi: 10.1073/pnas.82.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Kiberstis P.A., Loesch-Fries L.S., Hall T.C. Viral protein synthesis in barley protoplasts inoculated with native and fractionated brome mosaic virus RNA. Virology. 1981;112:804–808. doi: 10.1016/0042-6822(81)90331-7. [DOI] [PubMed] [Google Scholar]
  182. Kitamura N., Semler B., Rothberg P., Larsen G., Adler C., Dorner A., Emini E., Hanecak R., Lee J., van der Werf S., Anderson C.W., Wimmer E. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature (London) 1981;291:547–553. doi: 10.1038/291547a0. [DOI] [PubMed] [Google Scholar]
  183. Knight E., Anton E.D., Fahey D., Friedland B., Jonak G.J. Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level. Proc. Natl. Acad. Sci. U.S.A. 1985;82:1151–1154. doi: 10.1073/pnas.82.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Knowland J. Protein synthesis directed by the RNA from a plant virus in a normal animal cell. Genetics. 1974;78:383–394. doi: 10.1093/genetics/78.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978;15:1109–1123. doi: 10.1016/0092-8674(78)90039-9. [DOI] [PubMed] [Google Scholar]
  186. Kozak M. Inability of circular mRNA to attach to eukaryotic ribosomes. Nature (London) 1979;280:82–85. doi: 10.1038/280082a0. [DOI] [PubMed] [Google Scholar]
  187. Kozak M. Migration of 40S ribosomal subunits on mRNA when initiation is perturbed by lowering magnesium or adding drugs. J. Biol. Chem. 1979;254:4731–4738. [PubMed] [Google Scholar]
  188. Kozak M. Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes. Cell. 1980;22:7–8. doi: 10.1016/0092-8674(80)90148-8. [DOI] [PubMed] [Google Scholar]
  189. Kozak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 1981;9:5233–5252. doi: 10.1093/nar/9.20.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Kozak M. Mechanism of mRNA recognition by eukaryotic ribosomes during intiation of protein synthesis. Curr. Top. Microbiol. Immunol. 1981;93:81–123. doi: 10.1007/978-3-642-68123-3_5. [DOI] [PubMed] [Google Scholar]
  191. Kozak M. Analysis of ribosome binding sites from the sI message of reovirus: Initiation at the first and second AUG codons. J. Mol. Biol. 1982;156:807–820. doi: 10.1016/0022-2836(82)90143-7. [DOI] [PubMed] [Google Scholar]
  192. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 1983;47:1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Kozak M. Translation of insulin-related polypeptides from mRNAs with tandemly reiterated copies of the ribosome binding site. Cell. 1983;34:971–978. doi: 10.1016/0092-8674(83)90554-8. [DOI] [PubMed] [Google Scholar]
  194. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984;12:857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Kozak M. Selection of initiation sites by eucaryotic ribosomes: Effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res. 1984;12:3873–3893. doi: 10.1093/nar/12.9.3873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eucaryotic ribosomes. Cell. 1986;44:283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  197. Kozak M. Influences of mRNA secondary structure on initiation by eucaryotic ribosomes. Proc. Natl. Acad. Sci. U.S.A. 1986 doi: 10.1073/pnas.83.9.2850. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Kozak M., Shatkin A.J. Migration of 40S ribosomal subunits on mRNA in the presence of edeine. J. Biol. Chem. 1978;253:6568–6577. [PubMed] [Google Scholar]
  199. Kozak M., Shatkin A.J. Identification of features in 5′-terminal fragments from reovirus mRNA which are important for ribosome binding. Cell. 1978;13:201–212. doi: 10.1016/0092-8674(78)90150-2. [DOI] [PubMed] [Google Scholar]
  200. Krug R.M. Priming of influenza viral RNA transcription by capped heterologous RNAs. Curr. Top. Microbiol. Immunol. 1981;93:125–149. doi: 10.1007/978-3-642-68123-3_6. [DOI] [PubMed] [Google Scholar]
  201. Lacal J.C., Carrasco L. Relationship between membrane integrity and the inhibition of host translation in virus-infected mammalian cells. Eur. J. Biochem. 1982;127:359–366. doi: 10.1111/j.1432-1033.1982.tb06880.x. [DOI] [PubMed] [Google Scholar]
  202. Lachmi B., Kääriäinen L. Control of protein synthesis in Semliki Forest virus-infected cells. J. Virol. 1977;22:142–149. doi: 10.1128/jvi.22.1.142-149.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Lai M., Baric R., Brayton P., Stohlman S.A. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc. Natl. Acad. Sci. U.S.A. 1984;81:3626–3630. doi: 10.1073/pnas.81.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Laprevotte I., Hampe A., Sherr C.J., Galibert F. Nucleotide sequence of the gag gene and gag-pol junction of feline leukemia virus. J. Virol. 1984;50:884–894. doi: 10.1128/jvi.50.3.884-894.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Laub O., Rall L.B., Truett M., Shaul Y., Standring D., Valenzuela P., Rutter W.J. Synthesis of hepatitis B surface antigen in mammalian cells: Expression of the entire gene and the coding region. J. Virol. 1983;48:271–280. doi: 10.1128/jvi.48.1.271-280.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Lawrence C.B., Jackson K.J. Translation of adenovirus serotype 2 late mRNAs. J. Mol. Biol. 1982;162:317–334. doi: 10.1016/0022-2836(82)90529-0. [DOI] [PubMed] [Google Scholar]
  207. Lazarowitz S.G., Compans R.W., Choppin P.W. Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes. Virology. 1971;46:830–843. doi: 10.1016/0042-6822(71)90084-5. [DOI] [PubMed] [Google Scholar]
  208. Lee K.A.W., Sonenberg N. Inactivation of cap-binding proteins accompanies the shut-off of host protein synthesis by poliovirus. Proc. Natl. Acad. Sci. U.S.A. 1982;79:3447–3451. doi: 10.1073/pnas.79.11.3447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Lee K.A.W., Edery I., Sonenberg N. Isolation and structural characterization of cap-binding proteins from poliovirus-infected HeLa cells. J. Virol. 1985;54:515–524. doi: 10.1128/jvi.54.2.515-524.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Lee K.A.W., Edery I., Hanecak R., Wimmer E., Sonenberg N. Poliovirus protease 3C (P3-7c) does not cleave p220 of the eucaryotic mRNA cap-binding protein complex. J. Virol. 1985;55:489–493. doi: 10.1128/jvi.55.2.489-493.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Lemieux R., Beaud G. Expression of vaccinia virus early mRNAs in Ehrlich ascites tumor cells. Part of the polysomes at an early stage of virus infection are not bound to the cytoskeleton. Eur. J. Biochem. 1982;129:273–279. doi: 10.1111/j.1432-1033.1982.tb07049.x. [DOI] [PubMed] [Google Scholar]
  212. Lemieux R., Vassef A., Ben-Hamida F., Beaud G. Translation of cellular and viral early mRNA in cell-free systems from uninfected and (vaccinia) virus-infected cells at the early stage. Eur. J. Biochem. 1982;129:265–271. doi: 10.1111/j.1432-1033.1982.tb07048.x. [DOI] [PubMed] [Google Scholar]
  213. Lemieux R., Zarbl H., Millward S. MRNA discrimination in extracts from uninfected and reovirus-infected L-cells. J. Virol. 1984;51:215–222. doi: 10.1128/jvi.51.1.215-222.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Le Moullec J.M., Akusjarvi G., Stalhandske P., Pettersson U., Chambraud B., Gilardi P., Nasri M., Perricaudet M. Polyadenylic acid addition sites in the adenovirus type 2 major late transcription unit. J. Virol. 1983;48:127–134. doi: 10.1128/jvi.48.1.127-134.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Lengyel P. Biochemistry of interferons and their actions. Annu. Rev. Biochem. 1982;51:251–282. doi: 10.1146/annurev.bi.51.070182.001343. [DOI] [PubMed] [Google Scholar]
  216. Lenk R., Penman S. The cytoskeletal framework and poliovirus metabolism. Cell. 1979;16:289–301. doi: 10.1016/0092-8674(79)90006-0. [DOI] [PubMed] [Google Scholar]
  217. Linemeyer D.L., Menke J.G., Martin-Gallardo A., Hughes J., Young A., Mitra S. Molecular cloning and partial sequencing of hepatitis A viral cDNA. J. Virol. 1985;54:247–255. doi: 10.1128/jvi.54.2.247-255.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Liu C.-C., Simonsen C.C., Levinson A.D. Initiation of translation at internal AUG codons in mammalian cells. Nature (London) 1984;309:82–85. doi: 10.1038/309082a0. [DOI] [PubMed] [Google Scholar]
  219. Lizardi P.M., Mahdavi V., Shields D., Candelas G. Discontinuous translation of silk fibroin in a reticulocyte cell-free system and in intact silk gland cells. Proc. Natl. Acad. Sci. U.S.A. 1979;76:6211–6215. doi: 10.1073/pnas.76.12.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Lloyd R.E., Etchison D., Ehrenfeld E. Poliovirus protease does not mediate cleavage of the 220,000-Da component of the cap binding protein complex. Proc. Natl. Acad. Sci. U.S.A. 1985;82:2723–2727. doi: 10.1073/pnas.82.9.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Lodish H.F., Porter M. Translational control of protein synthesis after infection by VSV. J. Virol. 1980;36:719–733. doi: 10.1128/jvi.36.3.719-733.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Lodish H.F., Porter M. VSV mRNA and inhibition of translation of cellular mRNA—is there a P function in VSV? J. Virol. 1981;38:504–517. doi: 10.1128/jvi.38.2.504-517.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Logan J., Shenk T. Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc. Natl. Acad. Sci. U.S.A. 1984;81:3655–3659. doi: 10.1073/pnas.81.12.3655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Lomedico P.T., McAndrew S.J. Eukaryotic ribosomes can recognize pre-proinsulin initiation codons irrespective of their position relative to the 5′-end of mRNA. Nature (London) 1982;299:221–226. doi: 10.1038/299221a0. [DOI] [PubMed] [Google Scholar]
  225. Lopez S., Bell J.R., Strauss E.G., Strauss J.H. The nonstructural proteins of Sindbis virus as studied with an antibody specific for the C terminus of the nonstructural readthrough polyprotein. Virology. 1985;141:235–247. doi: 10.1016/0042-6822(85)90254-5. [DOI] [PubMed] [Google Scholar]
  226. McAllister P.E., Wagner R.R. Differential inhibition of host protein synthesis in L cells infected with RNA temperature-sensitive mutants of VSV. J. Virol. 1976;18:550–558. doi: 10.1128/jvi.18.2.550-558.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Mahr A., Roberts B.E. Arrangment of late RNAs transcribed from a 7.1-kb EcoRI vaccinia virus DNA fragment. J. Virol. 1984;49:510–520. doi: 10.1128/jvi.49.2.510-520.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Mann R., Mulligan R.C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983;33:153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  229. Mardon G., Varmus H.E. Frameshift and intragenic suppressor mutations in a Rous sarcoma provirus suggest src encodes two proteins. Cell. 1983;32:871–879. doi: 10.1016/0092-8674(83)90072-7. [DOI] [PubMed] [Google Scholar]
  230. Margolskee R.F., Nathans D. Suppression of a VP1 mutant of SV40 by missense mutations in serine codons of the viral agnogene. J. Virol. 1983;48:405–409. doi: 10.1128/jvi.48.2.405-409.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Mathews M.B., Grodzicker T. Virus-associated RNAs of naturally occurring strains and variants of group C adenoviruses. J. Virol. 1981;38:849–862. doi: 10.1128/jvi.38.3.849-862.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Meshi T., Kyama R., Ohno T., Okada Y. Nucleotide sequence of the coat protein cistron and the 3′-noncoding region of cucumber green mottle mosaic virus RNA. Virology. 1983;127:54–64. doi: 10.1016/0042-6822(83)90370-7. [DOI] [PubMed] [Google Scholar]
  233. Minor P.D., Hart J.G., Dimmock N.J. Influence of the host cell on proteins synthesized by different strains of influenza virus. Virology. 1979;97:482–487. doi: 10.1016/0042-6822(79)90361-1. [DOI] [PubMed] [Google Scholar]
  234. Misra R., Reeves P. Intermediates in the synthesis of To1C protein include an incomplete peptide stalled at a rare Arg codon. Eur. J. Biochem. 1985;152:151–155. doi: 10.1111/j.1432-1033.1985.tb09175.x. [DOI] [PubMed] [Google Scholar]
  235. Moldave K. Eukaryotic protein synthesis. Ann. Rev. Biochem. 1985;54:1109–1149. doi: 10.1146/annurev.bi.54.070185.005333. [DOI] [PubMed] [Google Scholar]
  236. Monckton R.P., Westaway E.G. Restricted translation of the genome of the flavivirus Kunjin in vitro. J. Gen. Virol. 1982;63:227–232. doi: 10.1099/0022-1317-63-1-227. [DOI] [PubMed] [Google Scholar]
  237. Monstein H-J., Philipson L. The conformation of adenovirus VAI-RNA in solution. Nucleic Acids Res. 1981;9:4239–4250. doi: 10.1093/nar/9.17.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Morrow C.D., Gibbons G.F., Dasgupta A. The host protein required for in vitro replication of poliovirus is a protein kinase that phosphorylates eIF2. Cell. 1985;40:913–921. doi: 10.1016/0092-8674(85)90351-4. [DOI] [PubMed] [Google Scholar]
  239. Mosenkis J., Daniels-McQueen S., Janovec S., Duncan R., Hershey J.W.B., Grifo J., Merrick W.C., Thach R.E. Shutoff of host translation by EMC virus infection does not involve cleavage of the eIF4F polypeptide that accompanies poliovirus infection. J. Virol. 1985;54:643–645. doi: 10.1128/jvi.54.2.643-645.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Moss B. Inhibition of HeLa cell protein synthesis by the vaccinia virion. J. Virol. 1968;2:1028–1037. doi: 10.1128/jvi.2.10.1028-1037.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Moss B., Filler R. Irreversible effects of cycloheximide during the early period of vaccinia virus replication. J. Virol. 1970;5:99–108. doi: 10.1128/jvi.5.2.99-108.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Moss B., Gershowitz A., Wei C.-M., Boone R. Formation of the guanylylated and methylated 5′-terminus of vaccinia virus mRNA. Virology. 1976;72:341–351. doi: 10.1016/0042-6822(76)90163-x. [DOI] [PubMed] [Google Scholar]
  243. Munemitsu S.M., Samuel C.E. Biosynthesis of reovirus-specified polypeptides. Multiplication rate but not yield of reovirus serotypes 1 and 3 correlates with the level of virus-mediated inhibition of cellular protein synthesis. Virology. 1984;136:133–143. doi: 10.1016/0042-6822(84)90254-x. [DOI] [PubMed] [Google Scholar]
  244. Muñoz A., Alonso M.A., Carrasco L. The regulation of translation in reovirus-infected cells. J. Gen. Virol. 1985;66:2161–2170. doi: 10.1099/0022-1317-66-10-2161. [DOI] [PubMed] [Google Scholar]
  245. Muñoz A., Castrillo J.L., Carrasco L. Modification of membrane permeability during Semliki Forest virus infection. Virology. 1985;146:203–212. doi: 10.1016/0042-6822(85)90004-2. [DOI] [PubMed] [Google Scholar]
  246. Murphy E.C., Kopchick J.J., Watson K.F., Arlinghaus R.B. Cell-free synthesis of a precursor polyprotein containing both gag and pol gene products by Rauscher murine leukemia virus 35S RNA. Cell. 1978;13:359–369. doi: 10.1016/0092-8674(78)90204-0. [DOI] [PubMed] [Google Scholar]
  247. Nair C.N., Stowers J.W., Singfield B. Guanidine-sensitive Na+ accumulation by poliovirus-infected HeLa cells. J. Virol. 1979;31:184–189. doi: 10.1128/jvi.31.1.184-189.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Nevins J.R. Adenovirus gene expression: Control at multiple steps of mRNA biogenesis. Cell. 1982;28:1–2. doi: 10.1016/0092-8674(82)90366-x. [DOI] [PubMed] [Google Scholar]
  249. Nickerson J.M., Wawrousek E., Hawkins J., Wakil A., Wistow G., Thomas G., Norman B.L., Piatigorsky J. The complete sequence of the chicken 81 crystallin gene and its 5′ flanking region. J. Biol. Chem. 1985;260:9100–9105. [PubMed] [Google Scholar]
  250. Nishioka Y., Silverstein S. Alterations in the protein synthetic apparatus of Friend erythroleukemia cells infected with VSV or herpes simplex virus. J. Virol. 1978;25:422–426. doi: 10.1128/jvi.25.1.422-426.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Nishioka Y., Silverstein S. Requirement of protein synthesis for the degradation of host mRNA in Friend erythroleukemia cells infected with HSV type 1. J. Virol. 1978;27:619–627. doi: 10.1128/jvi.27.3.619-627.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Nishizawa M., Koyama T., Kawai S. Unusual features of the leader sequence of Rous sarcoma virus packaging mutant TK15. J. Virol. 1985;55:881–885. doi: 10.1128/jvi.55.3.881-885.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Nomoto A., Lee Y.F., Wimmer E. The 5′-end of poliovirus mRNA is not capped with m7G(5′)ppp(5′)Np. Proc. Natl. Acad. Sci. U.S.A. 1976;73:375–380. doi: 10.1073/pnas.73.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Nomoto A., Omata T., Toyoda H., Kuge S., Horie H., Kataoka Y., Genba Y., Nakano Y., Imura N. Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc. Natl. Acad. Sci. U.S.A. 1982;79:5793–5797. doi: 10.1073/pnas.79.19.5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Nonoyama M., Millward S., Graham A.F. Control of transcription of the reovirus genome. Nucleic Acids Res. 1974;1:373–385. doi: 10.1093/nar/1.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Norrie D.H., Wolstenholme J., Howcroft H., Stephen J. Vaccinia virus-induced changes in [Na +] and [K +] in HeLa cells. J. Gen. Virol. 1982;62:127–136. doi: 10.1099/0022-1317-62-1-127. [DOI] [PubMed] [Google Scholar]
  257. Nuss D.L., Oppermann H., Koch G. Selective blockage of initiation of host protein synthesis in RNA-virus-infected cells. Proc. Natl. Acad. Sci. U.S.A. 1975;72:1258–1262. doi: 10.1073/pnas.72.4.1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. O'Malley R.P., Mariano T.M., Siekierka J., Mathews M.B. A mechanism for the control of protein synthesis by adenovirus VA RNAI. Cell. 1986;44:391–400. doi: 10.1016/0092-8674(86)90460-5. [DOI] [PubMed] [Google Scholar]
  259. Oppermann H., Koch G. On the regulation of protein synthesis in vaccinia virus infected cells. J. Gen. Virol. 1976;32:261–273. doi: 10.1099/0022-1317-32-2-261. [DOI] [PubMed] [Google Scholar]
  260. Oppermann H., Bishop J.M., Varmus H.E., Levintow L. A joint product of the genes gag and pol of avian sarcoma virus: A possible precursor of reverse transcriptase. Cell. 1977;12:993–1005. doi: 10.1016/0092-8674(77)90164-7. [DOI] [PubMed] [Google Scholar]
  261. Oren M., Maltzman W., Levine A.J. Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells. Mol. Cell. Biol. 1981;1:101–110. doi: 10.1128/mcb.1.2.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Otto M.J., Lucas-Lenard J. The influence of the host cell on the inhibition of virus protein synthesis in cells doubly infected with VSV and mengovirus. J. Gen. Virol. 1980;50:293–307. doi: 10.1099/0022-1317-50-2-293. [DOI] [PubMed] [Google Scholar]
  263. Ou J.-H., Rice C.M., Dalgarno L., Strauss E.G., Strauss J.H. Sequence studies of several alphavirus genomic RNAs in the region containing the start of the subgenomic RNA. Proc. Natl. Acad. Sci. U.S.A. 1982;79:5235–5239. doi: 10.1073/pnas.79.17.5235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Pacha R.F., Condit R.C. Characterization of a ts mutant of vaccinia virus reveals a novel function that prevents virus-induced breakdown of RNA. J. Virol. 1985;56:395–403. doi: 10.1128/jvi.56.2.395-403.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Pasek M., Goto T., Gilbert W., Zink B., Schaller H., MacKay P., Leadbetter G., Murray K. Hepatitis B virus genes and their expression in. E. coli. Nature (London) 1979;282:575–579. doi: 10.1038/282575a0. [DOI] [PubMed] [Google Scholar]
  266. Patterson J.L., Kolakofsky D. Characterization of LaCrosse virus small-genome transcripts. J. Virol. 1984;49:680–685. doi: 10.1128/jvi.49.3.680-685.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Patterson J.L., Cabradilla C., Holloway B.P., Obijeski J.F., Kolakofsky D. Multiple leader RNAs and mRNAs are transcribed from the LaCrosse virus small genome segment. Cell. 1983;33:791–799. doi: 10.1016/0092-8674(83)90021-1. [DOI] [PubMed] [Google Scholar]
  268. Pattnaik A.K., Abraham G. Identification of four complementary RNA species in Akabane virus-infected cells. J. Virol. 1983;47:452–462. doi: 10.1128/jvi.47.3.452-462.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Payne C.C., Mertens P.P.C. In: Joklik W.K., editor. Plenum; New York: 1983. pp. 425–504. (The Reoviridae). [Google Scholar]
  270. Payvar F., Schimke R.T. Methylmercury hydroxide enhancement of translation and transcription of ovalbumin and conalbumin mRNAs. J. Biol. Chem. 1979;254:7636–7642. [PubMed] [Google Scholar]
  271. Pedersen S. E. coli ribosomes translate in vivo with variable rate. EMBO J. 1984;3:2895–2898. doi: 10.1002/j.1460-2075.1984.tb02227.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Pelham H. Leaky UAG termination codon in tobacco mosaic virus RNA. Nature (London) 1978;272:469–471. doi: 10.1038/272469a0. [DOI] [PubMed] [Google Scholar]
  273. Pelham H.R.B., Sykes J.M.M., Hunt T. Characteristics of a coupled cell-free transcription and translation system directed by vaccinia cores. Eur. J. Biochem. 1978;82:199–209. doi: 10.1111/j.1432-1033.1978.tb12012.x. [DOI] [PubMed] [Google Scholar]
  274. Pelletier J., Sonenberg N. Insertion mutagenesis to increase secondary structure within the 5′-noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell. 1985;40:515–526. doi: 10.1016/0092-8674(85)90200-4. [DOI] [PubMed] [Google Scholar]
  275. Pensiero M.N., Lucas-Lenard J.M. Evidence for the presence of an inhibitor on ribosomes in mouse L cells infected with mengovirus. J. Virol. 1985;56:161–171. doi: 10.1128/jvi.56.1.161-171.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Perdue M.L., Borchelt D., Resnick R.J. Participation of 5′-terminal leader sequences in in vitro translation of Rous sarcoma virus RNA. J. Biol. Chem. 1982;257:6551–6555. [PubMed] [Google Scholar]
  277. Pereira L., Wolff M.H., Fenwick M., Roizman B. Regulation of herpesvirus macromolecular synthesis. Properties of α polypeptides made in HSV-1 and HSV-2 infected cells. Virology. 1977;77:733–749. doi: 10.1016/0042-6822(77)90495-0. [DOI] [PubMed] [Google Scholar]
  278. Perlman S., Hirsch M., Penman S. Utilization of messenger in adenovirus-2-infected cells at normal and elevated temperatures. Nature (London) New Biol. 1972;238:143–144. doi: 10.1038/newbio238143a0. [DOI] [PubMed] [Google Scholar]
  279. Persing D.H., Varmus H.E., Ganem D. A frameshift mutation in the pre-S region of the human hepatitis B virus genome allows production of surface antigen particles but eliminates binding to polymerized albumin. Proc. Natl. Acad. Sci. U.S.A. 1985;82:3440–3444. doi: 10.1073/pnas.82.10.3440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Petersen R.B., Hackett P.B. Characterization of ribosome binding on Rous sarcoma virus RNA in vitro. J. Virol. 1985;56:683–690. doi: 10.1128/jvi.56.3.683-690.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Philipson L., Andersson P., Olshevsky U., Weinberg R., Baltimore D., Gesteland R. Translation of MuLV and MSV RNAs in nuclease-treated reticulocyte extracts: Enhancement of the gag-pol polypeptide with yeast suppressor tRNA. Cell. 1978;13:189–199. doi: 10.1016/0092-8674(78)90149-6. [DOI] [PubMed] [Google Scholar]
  282. Privalsky M.L., Bishop J.M. Proteins specified by avian erythroblastosis virus: Coding region localization and identification of a previously undetected erb-B polypeptide. Proc. Natl. Acad. Sci. U.S.A. 1982;79:3958–3962. doi: 10.1073/pnas.79.13.3958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Racaniello V.R., Baltimore D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc. Natl. Acad. Sci. U.S.A. 1981;78:4887–4891. doi: 10.1073/pnas.78.8.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Raghow R., Granoff A. Cell-free translation of frog virus 3 mRNAs. J. Biol. Chem. 1983;258:571–578. [PubMed] [Google Scholar]
  285. Read G.S., Frenkel N. Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of α (immediate early) viral polypeptides. J. Virol. 1983;46:498–512. doi: 10.1128/jvi.46.2.498-512.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Reddy V.B., Thimmappaya B., Dhar R., Subramanian K.N., Zain B.S., Pan J., Ghosh P.K., Celma M.L., Weissman S.M. The genome of simian virus 40. Science. 1978;200:494–502. doi: 10.1126/science.205947. [DOI] [PubMed] [Google Scholar]
  287. Reichel P.A., Merrick W.C., Siekierka J., Mathews M.B. Regulation of a protein synthesis initiation factor by adenovirus VA-RNAI. Nature (London) 1985;313:196–200. doi: 10.1038/313196a0. [DOI] [PubMed] [Google Scholar]
  288. Rice A.P., Kerr I.M. Interferon-mediated, doubled-stranded RNA-dependent protein kinase is inhibited in extracts from vaccinia virus-infected cells. J. Virol. 1984;50:229–236. doi: 10.1128/jvi.50.1.229-236.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Rice A.P., Roberts B.E. Vaccinia virus induces cellular mRNA degradation. J. Virol. 1983;47:529–539. doi: 10.1128/jvi.47.3.529-539.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Rice A.P., Duncan R., Hershey J.W.B., Kerr I.M. Double-stranded RNA-dependent protein kinase and 2-5A system are both activated in interferon-treated, EMC virus-infected HeLa cells. J. Virol. 1985;54:894–898. doi: 10.1128/jvi.54.3.894-898.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Rice C.M., Lenches E.M., Eddy S.R., Shin S.J., Sheets R.L., Strauss J.H. Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution. Science. 1985;229:726–735. doi: 10.1126/science.4023707. [DOI] [PubMed] [Google Scholar]
  292. Rice C.M., Strauss E.G., Strauss J.H. Structure of the flavivirus genome. In: Schlesinger S., Schlesinger M., editors. Plenum; New York: 1986. (The Togaviruses and Flaviviruses). in press. [Google Scholar]
  293. Robertson J.S. 5′ and 3′ terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acids Res. 1979;6:3745–3757. doi: 10.1093/nar/6.12.3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Robinson M., Lilley R., Little S., Emtage J.S., Yarranton G., Stephens P., Millican A., Eaton M., Humphreys G. Codon usage can affect efficiency of translation of genes in. E. coli. Nucleic Acids Res. 1984;12:6663–6671. doi: 10.1093/nar/12.17.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Rose J.K., Trachsel H., Leong K., Baltimore D. Inhibition of translation by poliovirus: Inactivation of a specific initiation factor. Proc. Natl. Acad. Sci. U.S.A. 1978;75:2732–2736. doi: 10.1073/pnas.75.6.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Rosel J., Moss B. Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J. Virol. 1985;56:830–838. doi: 10.1128/jvi.56.3.830-838.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Rosemond-Hornbeak H., Moss B. Inhibition of host protein synthesis by vaccinia virus: Fate of cell mRNA and synthesis of small poly(A)-rich polyribonucleotides in the presence of actinomycin D. J. Virol. 1975;16:34–42. doi: 10.1128/jvi.16.1.34-42.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Rosen H., Knoller S., Kaempfer R. Messenger RNA specificity in the inhibition of eukaryotic translation by double-stranded RNA. Biochemistry. 1981;20:3011–3020. doi: 10.1021/bi00514a004. [DOI] [PubMed] [Google Scholar]
  299. Rosen C., Sodroski J., Chun-Goh W., Dayton A., Lippke J., Haseltine W.A. Post-transcriptional regulation accounts for the transactivation of the human T-lymphotropic virus type III. Nature (London) 1986;319:555–559. doi: 10.1038/319555a0. [DOI] [PubMed] [Google Scholar]
  300. Saborio J.L., Pong S.-S., Koch G. Selective and reversible inhibition of initiation of protein synthesis in mammalian cells. J. Mol. Biol. 1974;85:195–211. doi: 10.1016/0022-2836(74)90360-x. [DOI] [PubMed] [Google Scholar]
  301. Safer B. 2B or not 2B: Regulation of the catalytic utilization of eIF2. Cell. 1983;33:7–8. doi: 10.1016/0092-8674(83)90326-4. [DOI] [PubMed] [Google Scholar]
  302. Salzman N.P., Shatkin A.J., Sebring E.D. The synthesis of a DNA-like RNA in the cytoplasm of HeLa cells infected with vaccinia virus. J. Mol. Biol. 1964;8:405–416. doi: 10.1016/s0022-2836(64)80204-7. [DOI] [PubMed] [Google Scholar]
  303. Samuel C.E., Duncan R., Knutson G.S., Hershey J.W.B. Mechanisms of interferon action. Increased phosphorylation of eIF-2α in interferon-treated, reovirus-infected mouse fibroblasts. J. Biol. Chem. 1984;259:13451–13457. [PubMed] [Google Scholar]
  304. Sarkar G., Pelletier J., Bassel-Duby R., Jayasuriya A., Fields B.N., Sonenberg N. Identification of a new polypeptide coded by reovirus gene S1. J. Virol. 1985;54:720–725. doi: 10.1128/jvi.54.3.720-725.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Schek N., Bachenheimer S.L. Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells. J. Virol. 1985;55:601–610. doi: 10.1128/jvi.55.3.601-610.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Schneider R.J., Weinberger C., Shenk T. Adenovirus VAI RNA facilitates the initiation of translation in virus-infected cells. Cell. 1984;37:291–298. doi: 10.1016/0092-8674(84)90325-8. [DOI] [PubMed] [Google Scholar]
  307. Schneider R.J., Safer B., Munemitsu S.M., Samuel C.E., Shenk T. Adenovirus VAI RNA prevents phosphorylation of eIF2α subsequent to infection. Proc. Natl. Acad. Sci. U.S.A. 1985;82:4321–4325. doi: 10.1073/pnas.82.13.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  308. Schwartz D.E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983;32:853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  309. Sen G.C., Taira H., Lengyel P. Interferon, double-stranded RNA, and protein phosphorylation. J. Biol. Chem. 1978;253:5915–5921. [PubMed] [Google Scholar]
  310. Sharpe A.H., Fields B.N. Reovirus inhibition of cellular RNA and protein synthesis: Role of the S4 gene. Virology. 1982;122:381–391. doi: 10.1016/0042-6822(82)90237-9. [DOI] [PubMed] [Google Scholar]
  311. Sharpe A.H., Fields B.N. In: Joklik W.K., editor. Plenum; New York: 1984. pp. 431–464. (The Reoviridae). [Google Scholar]
  312. Shatkin A.J. Capping of eucaryotic mRNAs. Cell. 1976;9:645–653. doi: 10.1016/0092-8674(76)90128-8. [DOI] [PubMed] [Google Scholar]
  313. Shatkin A.J. Molecular mechanisms of virus-mediated cytopathology. Philos. Trans. R. Soc. London Ser. B. 1983;303:167–176. [Google Scholar]
  314. Shatkin A.J. MRNA cap binding proteins: Essential factors for initiating translation. Cell. 1985;40:223–224. doi: 10.1016/0092-8674(85)90132-1. [DOI] [PubMed] [Google Scholar]
  315. Shatkin A.J., Kozak M. In: Joklik W.K., editor. Plenum; New York: 1983. pp. 79–106. (The Reoviridae). [Google Scholar]
  316. Shaw M.W., Lamb R.A., Erickson B.W., Briedis D.J., Choppin P.W. Complete nucleotide sequence of the neuraminidase gene of influenza B virus. Proc. Natl. Acad. Sci. U.S.A. 1982;79:6817–6821. doi: 10.1073/pnas.79.22.6817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Shaw M.W., Choppin P.W., Lamb R.A. A previously unrecognized B virus glycoprotein from a bicistronic mRNA that also encodes the viral neuraminidase. Proc. Natl. Acad. Sci. U.S.A. 1983;80:4879–4883. doi: 10.1073/pnas.80.16.4879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Sheppard R.D., Raine C.S., Bornstein M.B., Udem S.A. Measles virus matrix protein synthesized in a subacute sclerosing panencephalitis cell line. Science. 1985;228:1219–1221. doi: 10.1126/science.4001938. [DOI] [PubMed] [Google Scholar]
  319. Shih D.S., Kaesberg P. Translation of brome mosaic viral ribonucleic acid in a cell-free system derived from wheat embryo. Proc. Natl. Acad. Sci. U.S.A. 1973;70:1799–1803. doi: 10.1073/pnas.70.6.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Shinnick T.M., Lerner R.A., Sutcliffe J.G. Nucleotide sequence of Moloney murine leukaemia virus. Nature (London) 1981;293:543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  321. Siekierka J., Manne V., Ochoa S. Mechanism of translational control by partial phosphorylation of the α subunit of eukaryotic initiation factor 2. Proc. Natl. Acad. Sci. U.S.A. 1984;81:352–356. doi: 10.1073/pnas.81.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Siekierka J., Mariano T.M., Reichel P.A., Mathews M.B. Translational control by adenovirus: Lack of VA-RNAI during adenovirus infection results in phosphorylation of eIF-2 and inhibition of protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 1985;82:1959–1963. doi: 10.1073/pnas.82.7.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  323. Silverstein S., Engelhardt D.L. Alterations in the protein synthetic apparatus of cells infected with herpes simplex virus. Virology. 1979;95:334–342. doi: 10.1016/0042-6822(79)90488-4. [DOI] [PubMed] [Google Scholar]
  324. Simizu B. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 19. Plenum; New York: 1984. pp. 465–499. (Comprehensive Virology). [Google Scholar]
  325. Simon L.D., Randolph B., Irwin N., Binkowski G. Stabilization of proteins by a bacteriophage T4 gene cloned in. E. coli. Proc. Natl. Acad. Sci. U.S.A. 1983;80:2059–2062. doi: 10.1073/pnas.80.7.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Skinner M.A., Siddell S.G. Coding sequence of coronavirus MHV-JHM mRNA 4. J. Gen. Virol. 1985;66:593–596. doi: 10.1099/0022-1317-66-3-593. [DOI] [PubMed] [Google Scholar]
  327. Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
  328. Skup D., Millward S. Reovirus-induced modification of cap-dependent translation in infected L cells. Proc. Natl. Acad. Sci. U.S.A. 1980;77:152–156. doi: 10.1073/pnas.77.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Skup D., Zarbl H., Millward S. Regulation of translation in L-cells infected with reovirus. J. Mol. Biol. 1981;151:35–55. doi: 10.1016/0022-2836(81)90220-5. [DOI] [PubMed] [Google Scholar]
  330. Smith A.E. In: Clark B.F.C., editor. Vol. 43. Fed. Eur. Biol. Soc. Symp.; 1977. pp. 37–46. (Gene Expression). [Google Scholar]
  331. Smith A.E., Marcker K.A. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature (London) 1970;226:607–610. doi: 10.1038/226607a0. [DOI] [PubMed] [Google Scholar]
  332. Smith A.E., Smith R., Paucha E. Extraction and fingerprint of SV40 large and small T-antigens. J. Virol. 1978;28:140–153. doi: 10.1128/jvi.28.1.140-153.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Smith G.E., Summers M.D., Fraser M.J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 1983;3:2156–2165. doi: 10.1128/mcb.3.12.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  334. Sonenberg N., Trachsel H., Hecht S., Shatkin A.J. Differential stimulation of capped mRNA translation in vitro by cap binding protein. Nature (London) 1980;285:331–333. doi: 10.1038/285331a0. [DOI] [PubMed] [Google Scholar]
  335. Sonenberg N., Guertin D., Cleveland D., Trachsel H. Probing the function of the eucaryotic 5′ cap structure by using a monoclonal antibody directed against cap-binding proteins. Cell. 1981;27:563–572. doi: 10.1016/0092-8674(81)90398-6. [DOI] [PubMed] [Google Scholar]
  336. Spaan W., De lius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B., Siddell S.G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  337. Spena A., Krause E., Dobberstein B. Translation efficiency of zein mRNA is reduced by hybrid formation between the 5′- and 3′-untranslated region. EMBO J. 1985;4:2153–2158. doi: 10.1002/j.1460-2075.1985.tb03909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Spieth J., De nison K., Zucker E., Blumenthal T. The nucleotide sequence of a nematode vitellogenin gene. Nucleic Acids Res. 1985;13:7129–7138. doi: 10.1093/nar/13.19.7129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  339. Spindler K.R., Berk A.J. Translation efficiency of adenovirus early region 1A mRNAs deleted in the 5′ untranslated region. J. Virol. 1984;51:884–887. doi: 10.1128/jvi.51.3.884-888.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  340. Spindler K.R., Berk A.J. Rapid intracellular turnover of adenovirus 5 early region 1A proteins. J. Virol. 1984;52:706–710. doi: 10.1128/jvi.52.2.706-710.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Stenberg R.M., Pizer L.I. Herpes simplex virus-induced changes in cellular and adenovirus RNA metabolism in an adenovirus type 5-transformed human cell line. J. Virol. 1982;42:474–487. doi: 10.1128/jvi.42.2.474-487.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  342. Stevely W.S., McGrath B.M. The effect of hypertonic conditions on protein synthesis in cells infected with herpes virus. FEBS Lett. 1978;87:308–310. doi: 10.1016/0014-5793(78)80357-3. [DOI] [PubMed] [Google Scholar]
  343. Strauss E.G., Rice C.M., Strauss J.H. Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon. Proc. Natl. Acad. Sci. U.S.A. 1983;80:5271–5275. doi: 10.1073/pnas.80.17.5271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  344. Svensson C., Akusjarvi G. Adenovirus VA RNAI: A positive regulator of mRNA translation. Mol. Cell. Biol. 1984;4:736–742. doi: 10.1128/mcb.4.4.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  345. Svensson C., Akusjarvi G. Adenovirus VA RNAI mediates a translational stimulation which is not restricted to the viral mRNAs. EMBO J. 1985;4:957–964. doi: 10.1002/j.1460-2075.1985.tb03724.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  346. Svensson C., Pettersson U., Akusjarvi G. Splicing of adenovirus 2 early region 1A mRNAs is non-sequential. J. Mol. Biol. 1983;165:475–499. doi: 10.1016/s0022-2836(83)80214-9. [DOI] [PubMed] [Google Scholar]
  347. Svitkin Y.V., Ginevskaya V.A., Ugarova T.Y., Agol V.I. A cell-free model of the EMC virus-induced inhibition of host cell protein synthesis. Virology. 1978;87:199–203. doi: 10.1016/0042-6822(78)90172-1. [DOI] [PubMed] [Google Scholar]
  348. Tahara S.M., Morgan M.A., Shatkin A.J. Two forms of purified m7G-cap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 1981;256:7691–7694. [PubMed] [Google Scholar]
  349. Tarpley W.G., Temin H.M. The location of v-src in a retrovirus vector determines whether the virus is toxic or transforming. Mol. Cell. Biol. 1984;4:2653–2660. doi: 10.1128/mcb.4.12.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  350. Thimmappaya B., Weinberger C., Schneider R.J., Shenk T. Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell. 1982;31:543–551. doi: 10.1016/0092-8674(82)90310-5. [DOI] [PubMed] [Google Scholar]
  351. Tiollais P., Pourcel C., De jean A. The hepatitis B virus. Nature (London) 1985;317:489–495. doi: 10.1038/317489a0. [DOI] [PubMed] [Google Scholar]
  352. Toyoda H., Kohara M., Kataoka Y., Suganuma T., Omata T., Imura N., Nomoto A. Complete nucleotide sequences of all three poliovirus serotype genomes. J. Mol. Biol. 1984;174:561–585. doi: 10.1016/0022-2836(84)90084-6. [DOI] [PubMed] [Google Scholar]
  353. Tso J.Y., Sun X.-H., Kao T., Reece K., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: Genomic complexity and molecular evolution of the gene. Nucleic Acids. Res. 1985;13:2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. van Steeg H., Thomas A., Verbeek S., Kasperaitis M., Voorma H.O., Benne R. Shutoff of neuroblastoma cell protein synthesis by Semliki Forest virus: Loss of ability of crude initiation factors to recognize early SFV and host mRNAs. J. Virol. 1981;38:728–736. doi: 10.1128/jvi.38.2.728-736.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  355. van Steeg H., Kasperaitis M., Voorma H.O., Benne R. Infection of neuroblastoma cells by SFV. Eur. J. Biochem. 1984;138:473–478. doi: 10.1111/j.1432-1033.1984.tb07940.x. [DOI] [PubMed] [Google Scholar]
  356. Varenne S., Buc J., Lloubes R., Lazdunski C. Translation is a nonuniform process. Effects of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 1984;180:549–576. doi: 10.1016/0022-2836(84)90027-5. [DOI] [PubMed] [Google Scholar]
  357. Vassef A., Ben-Hamida F., Dru A., Beaud G. Translational control of early protein synthesis at the late stage of vaccinia virus infection. Virology. 1982;118:45–53. doi: 10.1016/0042-6822(82)90318-x. [DOI] [PubMed] [Google Scholar]
  358. Villarreal L.P., White R.T., Berg P. Mutational alterations within the SV40 leader segment generate altered 16S and 19S mRNAs. J. Virol. 1979;29:209–219. doi: 10.1128/jvi.29.1.209-219.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. Wagner E.K. Individual HSV transcripts: Characterization of specific genes. In: Roizman B., editor. Vol. 3. Plenum; New York: 1985. pp. 45–104. (The Herpesviruses). [Google Scholar]
  360. Wagner M.J., Sharp J.A., Summers W.C. Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc. Natl. Acad. Sci. U.S.A. 1981;78:1441–1445. doi: 10.1073/pnas.78.3.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Walden W.E., Godefroy-Colburn T., Thach R.E. The role of mRNA competition in regulating translation. J. Biol. Chem. 1981;256:11739–11746. [PubMed] [Google Scholar]
  362. Weiner A.M., Weber K. A single UGA codon functions as a natural termination signal in the coliphage Qβ coat protein cistron. J. Mol. Biol. 1973;80:837–855. doi: 10.1016/0022-2836(73)90213-1. [DOI] [PubMed] [Google Scholar]
  363. Welch W.J., Feramisco J.R. Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock. Mol. Cell. Biol. 1985;5:1571–1581. doi: 10.1128/mcb.5.7.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  364. Wengler G., Wengler G. Protein synthesis in BHK-21 cells infected with Semliki Forest virus. J. Virol. 1976;17:10–19. doi: 10.1128/jvi.17.1.10-19.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  365. Whitaker-Dowling P., Youngner J.S. Characterization of a specific kinase inhibitory factor produced by vaccinia virus which inhibits the interferon-induced protein kinase. Virology. 1984;137:171–181. doi: 10.1016/0042-6822(84)90020-5. [DOI] [PubMed] [Google Scholar]
  366. Willis D., Foglesong D., Granoff A. Nucleotide sequence of an immediate-early frog virus 3 gene. J. Virol. 1984;52:905–912. doi: 10.1128/jvi.52.3.905-912.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  367. Willis D.B., Goorha R., Chinchar V.G. Macromolecular synthesis in cells infected by frog virus 3. Curr. Top. Microbiol. Immunol. 1985;116:77–106. doi: 10.1007/978-3-642-70280-8_5. [DOI] [PubMed] [Google Scholar]
  368. Willumsen B.M., Ellis R.W., Scolnick E.M., Lowy D.R. Further genetic localization of the transforming sequences of the p21 v-ras gene of Harvey murine sarcoma virus. J. Virol. 1984;49:601–603. doi: 10.1128/jvi.49.2.601-603.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  369. Wilson M.C., Darnell J.E. Control of mRNA concentration by differential cytoplasmic half-life. J. Mol. Biol. 1981;148:231–251. doi: 10.1016/0022-2836(81)90537-4. [DOI] [PubMed] [Google Scholar]
  370. Wold W.S.M., De utscher S.L., Takemori N., Bhat B.M., Magie S.C. Evidence that AGUAUAUGA and CCAAGAUGA initiate translation in the same mRNA in region E3 of adenovirus. Virology. 1986;148:168–180. doi: 10.1016/0042-6822(86)90412-5. [DOI] [PubMed] [Google Scholar]
  371. Wong S.T., Mastropaolo W., Henshaw E.C. Differential phosphorylation of soluble versus ribosome-bound eIF2 in the Ehrlich ascites tumor cell. J. Biol. Chem. 1982;257:5231–5238. [PubMed] [Google Scholar]
  372. Yates J.R., Nuss D.L. Resistance to inhibitors of mammalian cell protein synthesis induced by preincubation in hypertonic growth medium. J. Biol. Chem. 1982;257:15030–15034. [PubMed] [Google Scholar]
  373. Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc. Natl. Acad. Sci. U.S.A. 1985;82:1618–1622. doi: 10.1073/pnas.82.6.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  374. Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S. Translational read-through of an amber termination codon during synthesis of feline leukemia virus protease. J. Virol. 1985;55:870–873. doi: 10.1128/jvi.55.3.870-873.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  375. Ziff E.B. Splicing in adenovirus and other animal viruses. Int. Rev. Cytol. 1985;93:327–358. doi: 10.1016/s0074-7696(08)61377-7. [DOI] [PubMed] [Google Scholar]
  376. Zitomer R.S., Walthall D.A., Rymond B.C., Hollenberg C.P. S. cerevisiae ribosomes recognize non-AUG initiation codons. Mol. Cell. Biol. 1984;4:1191–1197. doi: 10.1128/mcb.4.7.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  377. Zweerink H.J., Joklik W.K. Studies on the intracellular synthesis of reovirus-specified proteins. Virology. 1970;41:501–518. doi: 10.1016/0042-6822(70)90171-6. [DOI] [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES