Abstract
The nucleotide sequence of the rubella virus (RUB) genomic RNA was determined. The RUB genomic RNA is 9757 nucleotides in length [excluding the poly(A) tail] and has a G/C content of 69.5%, the highest of any RNA virus sequenced to date. The RUB genomic RNA contains two long open reading frames (ORFs), a 5′-proximal ORF of 6656 nucleotides and a 3′-proximal ORF of 3189 nucleotides which encodes the structural proteins. Thus, the genomic organization of RUB is similar to that of alphaviruses, the other genus of the Togavirus family, and the 5′-proximal ORF of RUB therefore putatively codes for the nonstructural proteins. Sequences homologous to three regions of nucleotide sequence highly conserved among alphaviruses (a stem-and-loop structure at the 5′ end of the genome, a 51-nucleotide conserved sequence near the 5′ end of the genome, and a 20-nucleotide conserved sequence at the subgenomic RNA start site) were found in the RUB genomic RNA. Amino acid sequence comparisons between the nonstructural ORF of RUB and alphaviruses revealed only one short (122 amino acids) region of significant homology, indicating that these viruses are only distantly related. This region of homology is located at the NH2 terminus of nsP3 in the alphavirus genome. The RUB nonstructural protein ORF contains two global amino acid motifs conserved in a large number of positive-polarity RNA viruses, a motif indicative of helicase activity and a motif indicative of replicase activity. The order of the helicase motif and the nsP3 homology region in the RUB genome is reversed with respect to the alphavirus genome indicating that a genetic rearrangement has occurred during the evolution of these viruses.
Footnotes
Sequence data reported in this article have been submitted to GenBank and assigned the accession number M32735.
References
- Ahlquist P., Janda M. cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Mol. Cell. Biol. 1984;4:2876–2882. doi: 10.1128/mcb.4.12.2876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahlquist P., Strauss E.G., Rice C.M., Strauss J.H., Haseloff J., Zimmern D. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. J. Virol. 1985;53:536–542. doi: 10.1128/jvi.53.2.536-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bankier A.T., Barrell B.G. Shotgun DNA sequencing. Techniques in the Life Sciences, B5. Nucleic Acid Biochem. 1983;B508:1–34. [Google Scholar]
- Clarke D.M., Loo T.W., Hui I., Chong P., Gillam S. Nucleotide sequence and in vitro expression of rubella virus 24 S subgenomic messenger RNA encoding the structural proteins E1, E2, and C. Nucl. Acids Res. 1987;15:3041–3057. doi: 10.1093/nar/15.7.3041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding M., Schlesinger M.J. Evidence that Sindbis virus nsP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology. 1989;171:280–284. doi: 10.1016/0042-6822(89)90539-4. [DOI] [PubMed] [Google Scholar]
- Eschenfeldt W.H., Berger S.L. Purification of large double-stranded cDNA fragments. In: Berger S.L., Kimmel A.R., editors. Vol 152. Academic Press; New York: 1987. pp. 335–337. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Frey T.K., Mark L.D. Sequence of the region coding for virion proteins C and E2 and the carboxy terminus of the nonstructural proteins of rubella virus: Comparison with alphaviruses. Gene. 1988;62:85–99. doi: 10.1016/0378-1119(88)90582-3. [DOI] [PubMed] [Google Scholar]
- Frey T.K., Marr L.D., Hemphill M.L., Dominguez G. Molecular cloning and sequencing of the region of the rubella virus genome coding for glycoprotein E1. Virology. 1986;154:228–232. doi: 10.1016/0042-6822(86)90446-0. [DOI] [PubMed] [Google Scholar]
- Frey T.K., Marr L.D., Sanchez A., Simmons B. Identification of the 5′ end of the rubella virus subgenomic RNA. Virology. 1989;168:191–194. doi: 10.1016/0042-6822(89)90422-4. [DOI] [PubMed] [Google Scholar]
- Goldbach R.W. Molecular evolution of plant RNA viruses. Annu. Rev. Phytopathol. 1986;24:289–310. [Google Scholar]
- Goldbach R.W. Genomic similarities between plant and animal RNA viruses. Microbiol. Sci. 1987;4:197–202. [PubMed] [Google Scholar]
- Goldbach R.W. Genome similarities between positive strand RNA viruses from plants and animals. In: Brinton M.A., Heinz F.X., editors. New Aspects of Positive Strand RNA Viruses. ASM Press; Washington, DC: 1990. [Google Scholar]
- Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. A novel superfamily of nucleotide triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEB Lett. 1988;235:16–24. doi: 10.1016/0014-5793(88)81226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grakoui A., Levis R., Raju R., Huang H.V., Rice C.M. A cis-acting mutation in the Sindbis virus junction region which affects subgenomic RNA synthesis. J. Virol. 1989;63:5216–5227. doi: 10.1128/jvi.63.12.5216-5227.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta K.C., Kingsbury D.W. Complete sequences of the intergenic and mRNA start signals in the Sendai virus genome: Homologies with the genome of vesicular stomatitis virus. Nucl. Acids Res. 1984;12:3829–3841. doi: 10.1093/nar/12.9.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn Y.S., Grakoui A., Rice C.M., Strauss E.G., Strauss J.H. Mapping of RNA− temperature-sensitive mutants of Sindbis virus: Complementation group F mutants have lesions in nsP4. J. Virol. 1989;63:1194–1202. doi: 10.1128/jvi.63.3.1194-1202.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn Y.S., Strauss E.G., Strauss J.H. Mapping of RNA− temperature-sensitive mutants of Sindbis virus: Assignment of complementation groups A, B, and G to nonstructural proteins. J. Virol. 1989;63:3142–3150. doi: 10.1128/jvi.63.7.3142-3150.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy W.R., Strauss J.H. Processing the nonstructural polyproteins of Sindbis virus: Nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J. Virol. 1989;63:4653–4664. doi: 10.1128/jvi.63.11.4653-4664.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemphill M.L., Forng R.Y., Abernathy E.S., Frey T.K. Time-course of virus-specific macromolecular synthesis in rubella virus infected Vero cells. Virology. 1988;162:65–75. doi: 10.1016/0042-6822(88)90395-9. [DOI] [PubMed] [Google Scholar]
- Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984;28:351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
- Ho-Terry L., Cohen A. Rubella virion polypeptides: Characterization by polyacrylamide gel electrophoresis, isoelectric focusing and peptide mapping. Arch. Virol. 1982;72:47–54. doi: 10.1007/BF01314449. [DOI] [PubMed] [Google Scholar]
- Kalkkinen N., Oker-Blom C., Pettersson R.F. Three genes code for rubella virus structural proteins El, E2a, E2b and C. J. Gen. Virol. 1984;65:1549–1557. doi: 10.1099/0022-1317-65-9-1549. [DOI] [PubMed] [Google Scholar]
- Kamer G., Argos P. Primary structural comparison of RNA-dependent polymerases from plant, animal, and bacterial viruses. Nucl. Acids Res. 1984;12:7269–7282. doi: 10.1093/nar/12.18.7269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley D.E., Coleclough C., Perry R.P. Functional significance and evolutionary development of the 5′-terminal regions of immunoglobulin variable-region genes. Cell. 1982;29:681–689. doi: 10.1016/0092-8674(82)90184-2. [DOI] [PubMed] [Google Scholar]
- Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 1987;15:8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levis R., Weiss B.G., Tsiang M. Deletion mapping of Sindbis virus DI RNAs derived from cDNAs defines the sequences essential for replication and packaging. Cell. 1986;44:137–145. doi: 10.1016/0092-8674(86)90492-7. [DOI] [PubMed] [Google Scholar]
- Maizel J.V., Lenk R.P. Vol. 78. 1981. Enhanced graphic matrix analysis of nucleic acid and protein sequences; pp. 7665–7669. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T., Gojobori T., Aota S., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucl. Acids Res. 1986;14:r151–r197. doi: 10.1093/nar/14.suppl.r151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews R.E.F. Classification and nomenclature of viruses. Intervirology. 1982;17:1–199. doi: 10.1159/000149278. [DOI] [PubMed] [Google Scholar]
- Mi S., Durbin R., Huang H.V., Rice C.M., Stollar V. Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology. 1989;170:385–391. doi: 10.1016/0042-6822(89)90429-7. [DOI] [PubMed] [Google Scholar]
- Oker-Blom C. The gene order for rubella virus structural proteins is NH2-C-E2-E1-COOH. J. Virol. 1984;51:354–358. doi: 10.1128/jvi.51.2.354-358.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oker-Blom C., Kalkkinen N., Kaariainen L., Pettersson R.F. Rubella virus contains one capsid protein and three envelope glycoproteins E1, E2a, and E2b. J. Virol. 1983;46:964–973. doi: 10.1128/jvi.46.3.964-973.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oker-Blom C., Ulmanen I., Kaariainen L., Pettersson R.F. Rubella virus 40 S genome RNA specifies a 24 S subgenomic mRNA that codes for a precursor to structural proteins. J. Virol. 1984;49:403–408. doi: 10.1128/jvi.49.2.403-408.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice C.M., Lenches E.M., Eddy S.R., Shin S.J., Sheets R.L., Strauss J.H. Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution. Science. 1985;229:726–733. doi: 10.1126/science.4023707. [DOI] [PubMed] [Google Scholar]
- Rice C.M., Strauss E.G., Strauss J.H. Structure of the flavivirus genome. In: Schlesinger S., Schlesinger M.J., editors. The Togaviridae and Flaviviridae. Plenum; New York: 1986. pp. 279–326. [Google Scholar]
- Rico-Hesse R., Pallansch M.A., Nottay B.K., Kew O.M. Geographic distribution of wild poliovirus type 1 genotypes. Virology. 1987;160:311–322. doi: 10.1016/0042-6822(87)90001-8. [DOI] [PubMed] [Google Scholar]
- Roizman B., Batterson W. Herpesvinuses and their replication. In: Fields B.N., Knipe D.M., editors. Fundamental Virology. Raven Press; New York: 1986. pp. 607–636. [Google Scholar]
- Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedman S.A., Gelembiuk G.W., Mertz J.E. Translation initiation at a downstream AUG occurs with increased efficiency when the upstream AUG is located very close to the 5′ cap. J. Virol. 1990;64:453–457. doi: 10.1128/jvi.64.1.453-457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strauss E.G., Levinson R., Rice C.M., Dalrymple J., Strauss J.H. Nonstructural proteins nsP3 and nsP4 of Ross River and O'Nyong-nyong viruses: Sequence and comparison with those of other alphaviruses. Virology. 1988;164:265–274. doi: 10.1016/0042-6822(88)90644-7. [DOI] [PubMed] [Google Scholar]
- Strauss E.G., Rice C.M., Strauss J.H. Vol. 80. 1983. Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon; pp. 5271–5275. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strauss E.G., Strauss J.H. Structure and replication of the alphavirus genome. In: Schlesinger S., Schlesinger M.J., editors. The Togaviridae and Flaviviridae. Plenum; New York: 1986. pp. 35–90. [Google Scholar]
- Takkinen K., Vidgren G., Ulf-Hellman J.E., Kalkkinen N., Wernstedt C., Pettersson R.F. Nucleotide sequence of the rubella virus capsid protein gene reveals an unusually high G/C content. J. Gen. Virol. 1988;69:603–612. doi: 10.1099/0022-1317-69-3-603. [DOI] [PubMed] [Google Scholar]
- Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 1973;246:40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
- Tsiang M., Weiss B.G., Schlesinger S. Effects of 5'terminal modifications on the biological activity of defective interfering RNAs of Sindbis virus. J. Virol. 1988;62:47–53. doi: 10.1128/jvi.62.1.47-53.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidgren G., Takkinen K., Kalkkinen N., Kaariainen L., Pettersson R.F. Nucleotide sequence of the genes coding for the membrane glycoproteins El and E2 rubella virus. J. Gen. Virol. 1987;68:2347–2357. doi: 10.1099/0022-1317-68-9-2347. [DOI] [PubMed] [Google Scholar]
- Waxham M.N., Wolinsky J.S. Immunochemical identification of rubella virus hemagglutinin. Virology. 1983;126:194–203. doi: 10.1016/0042-6822(83)90471-3. [DOI] [PubMed] [Google Scholar]
- Zimmern D., Kaesberg P. Vol. 75. 1978. 3′-Terminal nucleotide sequence of encephalomyocarditis virus RNA determined by reverse transcriptase and chain terminating inhibitors; pp. 4257–4261. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxialiary information. Nucl. Acids Res. 1981;9:133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]