Abstract
Bovine coronavirus (BCV) and hemagglutinating encephalomyelitis virus (HEV) from swine were found to grow to high titers in MDCK I cells, a subline of Madin Darby canine kidney cells. Virus grown in these cells was used to isolate and purify the HE-protein. This protein has been shown recently to have acetylesterase activity and to function as the receptor-destroying enzyme of BCV. Here we show that HEV contains this enzyme, too. The glycoproteins were solubilized by treatment of virions with octylglucoside. Following centrifugation through a sucrose gradient the surface proteins S and HE (hemagglutinin-esterase) were obtained in purified form. After removal of the detergent by dialysis, HE formed rosettes as shown by electron microscopy. The purified HE protein retained acetylesterase activity and was able to function as a receptor-destroying enzyme rendering red blood cells resistant against agglutination by both coronaviruses. HE protein released from the viral membrane failed to agglutinate red blood cells. However, it was found to recognize glycoconjugates containing N-acetyl-9-O-acetylneuraminic acid as indicated by a binding assay with rat serum proteins blotted to nitrocellulose and by its ability to inhibit the hemagglutinating activity of BCV, HEV, and influenza C virus. The purified enzyme provides a useful tool for analyzing the cellular receptors for coronaviruses.
References
- Boyle J.F., Weismiller D.G, Holmes K.V. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. J. Virol. 1987;61:185–189. doi: 10.1128/jvi.61.1.185-189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callebaut P.E., Pensaert M.B. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J. Gen. Virol. 1980;48:193–204. doi: 10.1099/0022-1317-48-1-193. [DOI] [PubMed] [Google Scholar]
- Doms R.W., Keller D.S., Helenius A., Balch W.E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stromatitis virus G protein trimers. J. Cell Biol. 1987;105:1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller S., von Bonsdorff C.-H., Simons K. Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell. 1984;38:65–77. doi: 10.1016/0092-8674(84)90527-0. [DOI] [PubMed] [Google Scholar]
- Herrler G., Rott R., Klenk H.-D. Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology. 1985;141:144–147. doi: 10.1016/0042-6822(85)90190-4. [DOI] [PubMed] [Google Scholar]
- Herrler G., Geyer R., Müller H.-P., Stirm S., Klenk H.-D. Rat a1-macroglobulin inhibits hemagglutination by influenza C virus. Virus Res. 1985;2:183–192. doi: 10.1016/0168-1702(85)90248-5. [DOI] [PubMed] [Google Scholar]
- Herrler G., Rott R., Klenk H.-D., Müller H.-P., Shukla A.K., Schauer R. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J. 1985;4:1503–1506. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrler G., Klenk H.-D. The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology. 1987;159:102–108. doi: 10.1016/0042-6822(87)90352-7. [DOI] [PubMed] [Google Scholar]
- Herrler G., Dürkop I., Becht H., Klenk H.-D. The glycoprotein of influenza C virus is the hemagglutinin, esterase and fusion factor. J. Gen. Virol. 1988;69:839–846. doi: 10.1099/0022-1317-69-4-839. [DOI] [PubMed] [Google Scholar]
- Herrler G., Multhaup G., Beyreuther K., Klenk H.-D. Serine 71 of the glycoprotein HEF is located at the active site of the acetylesterase of influenza C virus. Arch. Virol. 1988;102:269–274. doi: 10.1007/BF01310831. [DOI] [PubMed] [Google Scholar]
- Hess R.G., Bachmann P.A. Erbrechen und Kümmern der Ferkel: Vorkommen und Verbreitung in Süddeutschland. Tieraerztl. Umsch. 1978;33:571–574. [Google Scholar]
- Hirst G.K. The relationship of a new strain of virus to those of the mumps-NDV-influenza group. J. Exp. Med. 1950;91:177–185. doi: 10.1084/jem.91.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitame F., Nakamura K., Saito A., Sinohara H., Homma M. Isolation and characterization of influenza C virus inhibitor in rat serum. Virus Res. 1985;3:231–244. doi: 10.1016/0168-1702(85)90048-6. [DOI] [PubMed] [Google Scholar]
- Klenk E., Faillard H., Lempfrid H. Über die enzymatische Wirkung von Influenza-Virus. Z. Physiol. Chem. 1955;301:235–246. [PubMed] [Google Scholar]
- Laver W.G., Valentine R.C. Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology. 1969;38:105–119. doi: 10.1016/0042-6822(69)90132-9. [DOI] [PubMed] [Google Scholar]
- Luyjies W., Bredenbeek P.J., Noten A.F.H., Horzinek M.C., Spaan W. Sequence of mouse hepatitis virus A59 mRNA2: Indications for RNA-recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muchmore E.A., Varki A. Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science. 1987;236:1293–1295. doi: 10.1126/science.3589663. [DOI] [PubMed] [Google Scholar]
- Parker M.D., Cox G.J., Deregt D., Fitzpatrick D.R., Babiuk L.A. Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. J. Gen. Virol. 1989;70:155–167. doi: 10.1099/0022-1317-70-1-155. [DOI] [PubMed] [Google Scholar]
- Pfleiderer M., Routledge E., Siddell S.G. Functional analysis of the coronavirus MHV-JHM surface glycoproteins in Vaccinia virus recombinants. In: Cavanagh D., Brown T.D.K., editors. Coronaviruses and their Diseases. Plenum; New York: 1990. in press. [DOI] [PubMed] [Google Scholar]
- Richardson J.C.W., Scalera V., Simmons N.L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochem. Biophys. Acta. 1981;673:26–36. [PubMed] [Google Scholar]
- Rodriguez-Boulan E., Sabatini D.D. Vol. 75. 1978. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity; pp. 5071–5075. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers G.N., Herrler G., Paulson J.C., Klenk H.-D. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 1986;261:5947–5951. [PubMed] [Google Scholar]
- Schauer R., Reuter G., Stoll S., Posadas del Rio F., Herrler G., Klenk H.-D. Isolation and characterization of sialate 9(4)-O-acetylesterase from influenza C virus. Biol. Chem. Hoppe-Seyler. 1988;369:1121–1130. doi: 10.1515/bchm3.1988.369.2.1121. [DOI] [PubMed] [Google Scholar]
- Schultze B., Gross H.-J., Brossmer R., Klenk H.-D., Herrler G. Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetyl neuraminic acid-containing receptors on erythrocytes: Comparison with bovine coronavirus and influenza C virus. Virus Res. 1990;16:185–194. doi: 10.1016/0168-1702(90)90022-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shieh C.-K., Lee H.-J., Yokomori K., La Monica N., Making S., Lai M.N.C. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 1989;63:3729–3736. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddell S.G., Wege H., ter Mellen V. The structure and replication of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:131–161. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
- Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Storz J., Rott R. Reactivity of antibodies in human serum with antigens of an enteropathogenic bovine coronavirus. Med. Microbiol. Immunol. 1981;169:169–178. doi: 10.1007/BF02123590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Styk B. Non-specific inhibitors in normal rat serum for the influenza C virus. Folia Biol. 1955;1:207–212. [Google Scholar]
- Sugiyama K., Amano Y. Hemagglutination and structural polypeptides of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 1980;66:95–105. doi: 10.1007/BF01314978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szepanski S., Klenk H.-D., Herrler G. Analysis of a mutant of influenza C virus with a change in the receptor specificity. In: Compans R.W., Helenius A., Oldstone M.B.A., editors. Cell Biology of Virus Entry, Replication, and Pathogenesis. A. R. Liss, Inc; New York: 1989. pp. 125–134. [Google Scholar]
- Tooze J., Tooze S., Warren G. Replication of coronavirus MHV-A59 in sac- cells: Determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 1984;33:281–293. [PubMed] [Google Scholar]
- Vlasak R., Krystal M., Nacht M., Palese P. The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology. 1987;160:419–425. doi: 10.1016/0042-6822(87)90013-4. [DOI] [PubMed] [Google Scholar]
- Vlasak R., Luytjes W., Spaan W., Palese P. Vol. 85. 1988. Human and bovine coronaviruses recognize sialic acid containing receptors similar to those of influenza C viruses; pp. 4526–4529. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokomori K., La Monica N., Making S., Shieh C.-K., Lai M.M.C. Biosynthesis, structure, and biological activities of envelope protein gp 65 of murine coronavirus. Virology. 1989;137:683–691. doi: 10.1016/0042-6822(89)90581-3. [DOI] [PMC free article] [PubMed] [Google Scholar]