Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jul 22;183(1):320–330. doi: 10.1016/0042-6822(91)90145-2

Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation

F Lafay , P Coulon , L Astic , D Saucier , D Riche §, A Holley , A Flamand
PMCID: PMC7131780  PMID: 2053286

Abstract

After intranasal instillation in the mouse, rabies virus (CVS strain) selectively infected olfactory receptor cells. In the main olfactory bulb (MOB), infection was observed in periglomerular, tufted, and mitral cells and in interneurons located in the internal plexiform layer. Beyond the MOB, CVS spread into the brain along the olfactory pathways. This infection is specific to chains of functionally related neurons but at the death of the animal some nuclei remain uninfected. CVS also penetrated the trigeminal system. The avirulent mutant AvOl, carrying a mutation in position 333 of the glycoprotein, infected the olfactory epithelium and the trigeminal nerve as efficiently as CVS. During the second cycle of infection, the mutant was able to infect efficiently periglomerular cells in the MOB and neurons of the horizontal limb of the diagonal band, which indicates that maturation of infective particles is not affected in primarily infected neuronal cells. On the other hand, other neuronal cells permissive for CVS, such as mitral cells or the anterior olfactory nucleus, are completely free of infection with the mutant, indicating that restriction is related to the ability of AvO1 to penetrate several categories of neurons. From these observations, we concluded that CVS should be able to bind several different receptors to penetrate neurons, while the mutant would be unable to recognize some of them.

Abbreviations: AON, anterior olfactory nucleus; CNS, central nervous system; GABA, Gamma aminobutyric acid; HDB, horizontal limb of the diagonal band; HRP, horseradish peroxidase; HSV1, herpes simplex type 1; IPL, internal plexiform layer; LC, locus coeruleus; LD50, lethal dose 50%; LPA, lateral preoptic area; MCPO, magnocellular preoptic nucleus; MHV, murine hepatitis virus; MOB, main olfactory bulb; PFU, plaque-forming unit; p.i., post-infection; SCG, superior cervical ganglion; VSV, vesicular stomatitis virus

References

  1. Barthold S.W. Olfactory neural pathway in mouse hepatitis virus nasoencephalitis. Acta Neuropathol. 1988;76:502–506. doi: 10.1007/BF00686390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carson K.A. Quantitative localization of neurons projecting to the mouse main olfactory bulb. Brain Res. Bull. 1984;12:629–634. doi: 10.1016/0361-9230(84)90143-6. [DOI] [PubMed] [Google Scholar]
  3. Coulon P., Derbin C., Kucera P., Lafay F., Préhaud C., Flamand A. Invasion of the peripheral nervous systems of adult mice by the CVS strain of rabies virus and its avirulent derivative AvO1. J. Virol. 1989;63:3550–3554. doi: 10.1128/jvi.63.8.3550-3554.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coulon P., Rollin P., Aubert M., Flamand A. Molecular basis of rabies virus virulence. I. Selection of avirulent mutants of the CVS strain with anti-G monoclonal antibodies. J. Gen. Virol. 1982;61:97–100. doi: 10.1099/0022-1317-61-1-97. [DOI] [PubMed] [Google Scholar]
  5. Coulon P., Rollin P., Blancou J., Flamand A. Avirulent mutants of the CVS strain of rabies virus. Comp. Immunol. Microbiol. Infect. Dis. 1982;5:117–122. doi: 10.1016/0147-9571(82)90024-8. [DOI] [PubMed] [Google Scholar]
  6. Coulon P., Rollin P.E., Flamand A. Molecular basis of rabies virus virulence. II. Identification of a site on the CVS glycoprotein associated with virulence. J. Gen. Virol. 1983;64:693–696. doi: 10.1099/0022-1317-64-3-693. [DOI] [PubMed] [Google Scholar]
  7. Dietzschold B., Wiktor T.J., Trojanowski I.Q., MacFarlan R.L., Wunner W.H., Torres-Anjel M.I., Koprowski H. Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J. Virol. 1985;56:12–18. doi: 10.1128/jvi.56.1.12-18.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietzschold B., Wunner W.H., Wiktor T.J., Lopes A.D., Lafon M., Smith C.L., Koprowski H. Vol. 80. 1983. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus; pp. 70–74. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dolivo M., Honegger P., Kucera P., Kiraly M., Bommeli W. Essai Sur la structure, le métabolisme et la fonction des neurones infectés par le virus herpés suis et celui de la rage. Rev. Inst. Pasteur Lyon. 1981;14:401–419. [Google Scholar]
  10. Fekadu M., Shaddock B.S. Peripheral distribution of virus in dogs inoculated with two strains of rabies virus. Am. J. Vet. Res. 1986;45:724–729. [PubMed] [Google Scholar]
  11. Halasz N., Shepherd G.M. Neurochemistry of the vertebrate olfactory bulb. Neuroscience. 1983;10:579–619. doi: 10.1016/0306-4522(83)90206-3. [DOI] [PubMed] [Google Scholar]
  12. Jackson A.C. Biological basis of rabies virus neurovirulence in mice: Comparative pathogenesis study using the immunoperoxidase technique. J. Virol. 1991;65:537–540. doi: 10.1128/jvi.65.1.537-540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kucera P., Dolivo M., Coulon P., Flamand A. Pathways of the early propagation of virulent and avirulent rabies virus strains from the eye to the brain. J. Virol. 1985;55:158–162. doi: 10.1128/jvi.55.1.158-162.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehmann A. Editions du Centre National de la Recherche Scientifique; Paris: 1974. Atlas Stéréotaxique du Cerveau de la Souris. [Google Scholar]
  15. Lentz T.L., Burrage T.G., Smith A.B., Crick J., Tignor G.H. Is the acetylcholine receptor a rabies virus receptor? Science. 1982;215:182–184. doi: 10.1126/science.7053569. [DOI] [PubMed] [Google Scholar]
  16. Lentz T.L., Wilson P.T., Hawrot E., Speicher D.W. Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science. 1984;226:847–848. doi: 10.1126/science.6494916. [DOI] [PubMed] [Google Scholar]
  17. Lundh B., Kristensson K., Norrby E. Selective infections of olfactory and respiratory epithelium by vesicular stomatitis virus and Sendai virus. Neuropathol. Appl. Neurobiol. 1987;13:111–122. doi: 10.1111/j.1365-2990.1987.tb00175.x. [DOI] [PubMed] [Google Scholar]
  18. Lundh B., Löve A., Kristensson K., Norrby E. Nonlethal infection of aminergic reticular core neurons: Age-dependent spread of is mutant of vesicular stomatitis virus from the nose. J. Neuropathol. Exp. Neurol. 1988;47:497–506. doi: 10.1097/00005072-198809000-00001. [DOI] [PubMed] [Google Scholar]
  19. Mclean J.H., Shipley M.T. Serotonergic afferents to the rat olfactory bulb. I. Origins of laminar specificity of serotonergic inputs in the adult rat. J. Neurosci. 1987;7:3016–3028. doi: 10.1523/JNEUROSCI.07-10-03016.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mclean J.H., Shipley M.T., Bernstein D.I. Golgi-like, transneuronal retrograde labelling with CNS injections of herpes simplex virus type 1. Brain Res. Bull. 1989;22:867–881. doi: 10.1016/0361-9230(89)90032-4. [DOI] [PubMed] [Google Scholar]
  21. Meisami E., Safari L. Quantitative study of the effects of early unilateral olfactory deprivation on the number of mitral and tufted cells in the rat olfactory bulb. Brain Res. 1981;221:81–107. doi: 10.1016/0006-8993(81)91065-9. [DOI] [PubMed] [Google Scholar]
  22. Murphy F.A., Bauer S.P. Early street rabies virus infection in striated muscle and later progression to the central nervous system. Intervirology. 1974;3:256–268. doi: 10.1159/000149762. [DOI] [PubMed] [Google Scholar]
  23. Murphy F.A., Harrison A.K., Winn W.C., Jr Comparative pathogenesis of rabies and rabies-like viruses. Infection of the central nervous system and centrifugal spread of virus to peripheral tissues. Lab. Invest. 1973;29:1–16. [PubMed] [Google Scholar]
  24. Nickell W.T., Shipley M.T. Two anatomically specific classes of candidate cholinoceptive neurons in the rat olfactory bulb. J. Neurosci. 1988;8:4482–4491. doi: 10.1523/JNEUROSCI.08-12-04482.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Paxinos G., Watson C. 2nd ed. Academic Press; San Diego: 1986. The Rat Brain in Stereotaxic Coordinates. [Google Scholar]
  26. Perlman S., Jacobsen G., Afifi A. Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. Virology. 1989;170:556–560. doi: 10.1016/0042-6822(89)90446-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Préhaud C., Coulon P., Lafay F., Thiers C., Flamand A. Antigenic site II of the rabies glycoprotein: Structure and role in viral virulence. J. Virol. 1988;62:1–7. doi: 10.1128/jvi.62.1.1-7.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schneider S.P., Macrides F. Laminar distributions of interneurons in the main olfactory bulb of adult hamster. Brain Res. Bull. 1978;3:73–82. doi: 10.1016/0361-9230(78)90063-1. [DOI] [PubMed] [Google Scholar]
  29. Seif I., Coulon P., Rollin P.E., Flamand A. Rabies virus virulence: Effect on pathogenicity and sequence characterization of mutations affecting antigenic site III of the glycoprotein. J. Virol. 1985;53:926–935. doi: 10.1128/jvi.53.3.926-934.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shipley M.T. Transport of molecules from nose to brain: Transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res. Bull. 1985;15:129–142. doi: 10.1016/0361-9230(85)90129-7. [DOI] [PubMed] [Google Scholar]
  31. Shipley M.T., Halloran F.J., De La Torre J. Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat. Brain Res. 1985;329:294–299. doi: 10.1016/0006-8993(85)90537-2. [DOI] [PubMed] [Google Scholar]
  32. Switzer R.C., De Olmos J., Heimer L. Olfactory system. In: Paxinos G., editor. Vol. 1. Academic Press; Sydney: 1985. pp. 1–36. (The Rat Nervous System). [Google Scholar]
  33. Tsiang H., Derer M., Taxi J. An in vivo and in vitro study of rabies virus infection of the rat superior cervical ganglia. Arch. Virol. 1983;76:231–243. doi: 10.1007/BF01311107. [DOI] [PubMed] [Google Scholar]
  34. Tuffereau C., Leblois H., Benejean J., Coulon P., Lafay F., Flamand A. Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology. 1989;172:206–212. doi: 10.1016/0042-6822(89)90122-0. [DOI] [PubMed] [Google Scholar]
  35. Wertz G.W., Davis N.L., Patton J. The role of proteins in vesicular stomatitis virus replication. In: Wagner R.R., editor. The Rhabdoviruses. Plenum; New York: 1987. pp. 271–296. [Google Scholar]
  36. Winkler W.C. Airborne rabies. In: Baer G.M., editor. The Natural History of Rabies. Academic Press; London: 1975. pp. 115–121. [Google Scholar]
  37. Záborszky L., Carlsen J., Brashear H.R., Heimer L. Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J. Comp. Neurol. 1986;243:488–509. doi: 10.1002/cne.902430405. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES