Abstract
The covalent attachment of fatty acids to the glycoproteins of orthomyxo-, paramyxo, alpha-, and coronavirus was studied. All enveloped viruses analyzed afford covalently bound fatty acid in at least one species of their spike glycoproteins. No internal components of the viruses studied including the hydrophobic M proteins of myxo- and rhabdoviruses contained fatty acid. Analysis of myxovirus particles devoid of the exposed portions of their spikes revealed that fatty acids are linked to the hydrophobic tail fragment of the glycoprotein which is associated with the viral lipid bilayer. With influenza virus hemagglutinin the fatty acid attachment site could be located at the cyanogen bromide peptide of the small subunit (HA2) which contains the membrane-embedded region of the polypeptide. The binding of fatty acids to viral glycoproteins occurs in a wide range of host cells including mammalian, avian, and insect cells.
References
- Bonner W.M., Laskey R.A. A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 1974;46:83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Brand C.M., Skehel J.J. Crystalline antigens from the influenza virus envelope. Nature New BioL. 1972;238:145–147. doi: 10.1038/newbio238145a0. [DOI] [PubMed] [Google Scholar]
- Burge B.W., Strauss J.H. Glycopeptides of the membrane glycoprotein of Sindbis virus. J. MoL BioL. 1970;47:449–466. doi: 10.1016/0022-2836(70)90314-1. [DOI] [PubMed] [Google Scholar]
- Cursiefen D., Becht H. In vitro cultivation of cells from the chorioallantoic membrane of chick embryos. Med. Microbiol. Immunol. 1975;161:3–10. doi: 10.1007/BF02120764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Etchison J.R., Holland J.J. Vol. 71. 1974. Carbohydrate composition of the membrane glycoprotein of vesicular stomatitis virus grown in four mammalian cell lines; pp. 4011–4014. (Proc. Nat Acad. SCi. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garoff H., Frischauf A.M., Simons K., Lehrach H., Delius H. Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature (London) 1980;288:236–241. doi: 10.1038/288236a0. [DOI] [PubMed] [Google Scholar]
- Homma M., Ohuchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and in tissue culture cells. J. Virol. 1973;12:1457–1465. doi: 10.1128/jvi.12.6.1457-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang A., Huang L., Kennel S.J. Monoclonal antibody covalently coupled with fatty acid. J. Biol. Chem. 1980;255:8015–8018. [PubMed] [Google Scholar]
- Huang R.T.C., Wahn K., Klenk H.-D., Rott R. Association of the envelope glycoproteins of influenza virus with liposomes. A model study on viral envelope assembly. Virology. 1979;97:212–217. doi: 10.1016/0042-6822(79)90390-8. [DOI] [PubMed] [Google Scholar]
- Huang R.T.C., Wahn K., Klenk H.-D., Rott R. Fusion between cell membrane and liposomes containing the glycoproteins of influenza virus. Virology. 1980;104:294–302. doi: 10.1016/0042-6822(80)90334-7. [DOI] [PubMed] [Google Scholar]
- Kalkkinen N., Jörnvall H., Söderlund H., Kä→iäinen L. Analysis of Semliki-Forestvirus structural proteins to illustrate polyprotein processing of alpha viruses. Eur. J. Biochem. 1980;108:31–37. doi: 10.1111/j.1432-1033.1980.tb04692.x. [DOI] [PubMed] [Google Scholar]
- Klenk H.-D., Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr. Top. MicrobioL Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
- Klenk H.-D., Rott R., Becht H. On the structure of the influenza virus envelope. Virology. 1972;47:579–597. doi: 10.1016/0042-6822(72)90547-8. [DOI] [PubMed] [Google Scholar]
- Klenk H.-D., Rott R., Orlich M., Blödorn J. Activation of influenza viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lazarowitz S.G., Choppin P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440–454. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
- Lowry 0.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. BioL Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- Min-Jou W., Verhoeyen M., Devos R., Saman E., Fang R., Huylebroeck D., Fiers W., Threlfall G., Barber C., Carey N., Emtage S. Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell. 1980;19:683–696. doi: 10.1016/s0092-8674(80)80045-6. [DOI] [PubMed] [Google Scholar]
- Nagai Y., Klenk H.-D., Rott R. Proteolytic cleavage of the viral glycoproteins and its significance to the virulence of Newcastle disease virus. Virology. 1976;72:494–508. doi: 10.1016/0042-6822(76)90178-1. [DOI] [PubMed] [Google Scholar]
- Niemann H., Klenk H.-D. Coronavirus glycoprotein El: A new type of viral glycoprotein. J. Mol. Biol. 1981 doi: 10.1016/0022-2836(81)90463-0. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pesonen M., Renkonen 0. Serum glycoprotein-type sequence of monosaccharides in membrane glycoproteins of Semliki Forest virus. Biochim. Biophys. Acta. 1976;455:510–525. doi: 10.1016/0005-2736(76)90321-7. [DOI] [PubMed] [Google Scholar]
- Petri W.A., Wagner R.R. Glycoprotein micelles isolated from vesicular stomatitis virus spontaneously partition into sonicated phosphatidyl vesicles. Virology. 1980;107:543–547. doi: 10.1016/0042-6822(80)90323-2. [DOI] [PubMed] [Google Scholar]
- Porter A.G., Barber C., Carey N.H., Hallewell R.A., Threlfall G., Emtage J.S. Complete nucleotide sequence of an influenza virus hemagglutinin gene from cloned DNA. Nature (London) 1979;282:471–477. doi: 10.1038/282471a0. [DOI] [PubMed] [Google Scholar]
- Rice C.M., Strauss J.M. Vol. 78. 1981. Nucleotide sequence of the 26s mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins; pp. 2062–2066. (Proc. Nat Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose J.K., Welch W.J., Sefton B.M., Esch F.S., Ling N.C. Vol. 77. 1980. Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus; pp. 3884–3888. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rott R., Klenk H.-D. Structure and assembly of viral envelopes. In: Poste G., Nicholson G.L., editors. Vol. 2. North Holland; Amsterdam: 1977. pp. 47–81. (Cell Surface Reviews). [Google Scholar]
- Schlesinger M.J., Magee A.I., Schmidt M.F.G. Fatty acid acylation of proteins in cultured cells. J. Biol. Chem. 1980;255:10021–10024. [PubMed] [Google Scholar]
- Schmidt M.F.G., Bracha M., Schlesinger M.J. Vol. 76. 1979. Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins; pp. 1687–1691. (Proc. Nat Acad Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt M.F.G., Schlesinger M.J. Fatty acid binding to vesicular stomatitis virus glycoprotein: A new type of post-translational modification of the viral glycoprotein. Cell. 1980;17:813–819. doi: 10.1016/0092-8674(79)90321-0. [DOI] [PubMed] [Google Scholar]
- Schmidt M.F.G., Schlesinger M.J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J. Biol. Chem. 1980;255:3334–3339. [PubMed] [Google Scholar]
- Schulze I.T. The structure of influenza virus. II. A model based on the morphology and composition of subviral particles. Virology. 1972;47:181–196. doi: 10.1016/0042-6822(72)90251-6. [DOI] [PubMed] [Google Scholar]
- Schwarz R.T., Schmidt M.F.G., Anwer U., Klenk H.-D. Carbohydrates of influenza virus. I. Glycopeptides derived from viral glycoproteins after labeling with radioactive sugars. J. Virol. 1977;23:217–226. doi: 10.1128/jvi.23.2.217-226.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skehel J.J., Waterfield M.D. Vol. 72. 1975. Studies on the primary structure of the influenza virus hemagglutinin; pp. 93–97. (Proc. Nat Acad, Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storz J., Rott R., Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic bovine coronavirus by trypsin treatment. Infect. Immun. 1981;31:1214–1222. doi: 10.1128/iai.31.3.1214-1222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storz J., Kaluza G., Niemann H., Rott R. On enteropathogenic bovine coronavirus. In: ter Meulen V., Siddell S., editors. Biochemistry and Biology of Coronaviruses. Plenum; New York: 1981. in press. [Google Scholar]
- Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utermann G., Simons K. Studies on the amphipathic nature of the membrane proteins in Semliki Forest virus. J. MoL Biol. 1974;85:569–587. doi: 10.1016/0022-2836(74)90316-7. [DOI] [PubMed] [Google Scholar]
- Verhoeyen M., Fang R., Min-Jou W., Devos R., Huylebroeck D., Saman E., Fiers W. Antigenic drift between the hemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature (London) 1980;286:771–776. doi: 10.1038/286771a0. [DOI] [PubMed] [Google Scholar]
- Ward C.W. Structure of influenza virus hemagglutinin. Curr. Top. Microbiol. ImmunoL. 1981 doi: 10.1007/978-3-642-68120-2_1. in press. [DOI] [PubMed] [Google Scholar]
- Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature (London) 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
- Zilberstein A., Snider M.D., Porter M., Lodish H.F. Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell. 1980;21:417–427. doi: 10.1016/0092-8674(80)90478-x. [DOI] [PubMed] [Google Scholar]