Abstract
RNA-binding proteins of coronavirus MHV-A59 were identified using an RNA overlay-protein blot assay (ROPBA). The major viral RNA-binding protein in virions and infected cells was the phosphorylated nucleocapsid protein N (50K). A new 140K virus structural protein was identified as a minor RNA-binding protein both in virions and in infected cells. The 140K protein was antigenically related to N, and upon reduction, yielded only 50K N. Thus, the 140K protein is probably a trimer of N subunits linked by intermolecular disulfide bonds. Several cellular RNA-binding proteins were also detected. RNA-binding of N was not nucleotide sequence specific. Single-stranded RNA of MHV, VSV, or cellular origin, a DNA probe of the MHV leader sequence, and double-stranded bovine rotavirus RNA could all bind to N. Binding of MHV RNA was optimal between pH 7 and 8, and the RNA could be eluted in 0.1 M NaCl. The ROPBA is a useful method for the initial identification of RNA-binding proteins, such as N and the 140K protein of murine coronavirus.
References
- Armstrong J., Smeekens S., Rottier P. Sequence of the nucleocapsid gene from murine coronavirus MHV-A59. Nucleic Acids Res. 1983;11:883–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong J., Smeekens S., Rottier P., Spaan W., van der Zeijst B.A.M. Cloning and sequencing the nucleocapsid and El genes of coronavirus MHV-A59. Adv. Exp. Med. Biol. 1983;173:155–162. doi: 10.1007/978-1-4615-9373-7_16. [DOI] [PubMed] [Google Scholar]
- Bark R.S., Stohlman S.A., Lai M.M.C. Characterization of replicative intermediate RNA of mouse hepatitis virus: Presence of leader RNA sequences on nascent chains. J. Virol. 1983;48:633–640. doi: 10.1128/jvi.48.3.633-640.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair E.D., Honess R.W. DNA-binding proteins specified by herpesvirus saimiri. J. Gen. Virol. 1983;64:2697–2715. doi: 10.1099/0022-1317-64-12-2697. [DOI] [PubMed] [Google Scholar]
- Blumberg B.M., Giorgi C., Kolakofsky D. N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro. Cell. 1983;32:559–567. doi: 10.1016/0092-8674(83)90475-0. [DOI] [PubMed] [Google Scholar]
- Bowen B., Steinberg J., Laemmli U.K., Weontraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980;8:1–21. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle J.F., Holmes K.V. RNA binding proteins of bovine rotavirus. J. Virol. 1985 doi: 10.1128/jvi.58.2.561-568.1986. submitted. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Braun D.K., Batterson W., Roiman B. Identification and genetic mapping of a herpes simplex virus capsid protein that binds DNA. J. Virol. 1984;50:645–648. doi: 10.1128/jvi.50.2.645-648.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler P.J.G. The current picture of the structure and assembly of tobacco mosaic virus. J. Gen. Virol. 1984;65:253–279. doi: 10.1099/0022-1317-65-2-253. [DOI] [PubMed] [Google Scholar]
- Cheley S., Anderson R. Cellular synthesis and modification of murine hepatitis virus polypeptides. J. Gen. Virol. 1981;54:301–311. doi: 10.1099/0022-1317-54-2-301. [DOI] [PubMed] [Google Scholar]
- DeBenedetti A., Baglioni C. Inhibition of mRNA binding to ribosomes by localized activation of ds RNA-dependent protein kinase. Nature (London) 1984;311:79–81. doi: 10.1038/311079a0. [DOI] [PubMed] [Google Scholar]
- Eagle H. Amino acid metabolism in mammalian cell cultures. Science (Washington, D. C) 1959;130:432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
- England T.E., Uhlenbeck O.C. 3′-terminal labelling of RNA with T4 RNA ligase. Nature (London) 1978;275:560–561. doi: 10.1038/275560a0. [DOI] [PubMed] [Google Scholar]
- Gourse R.L., Thurlow D.L., Gerbi S.A., Zimmermann R.A. Vol. 78. 1981. Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: Implications for evolution and autoregulation; pp. 2722–2726. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal. Biochem. 1982;119:142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
- Hogue B.G., King B., Brian D.A. Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59. J. Virol. 1984;51:384–388. doi: 10.1128/jvi.51.2.384-388.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horzinek M.C., Ederveen J., Weiss M. The nucleocapsid of Berne virus. J. Gen. Virol. 1985;66:1287–1296. doi: 10.1099/0022-1317-66-6-1287. [DOI] [PubMed] [Google Scholar]
- Ichihashi Y., Oie M., Tsuruhara T. Location of DNA-binding proteins and disulfide-linked proteins in vaccinia virus structural elements. J. Virol. 1984;50:929–938. doi: 10.1128/jvi.50.3.929-938.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leis J., Johnson S. Effects of phosphorylation of avian retrovirus nucleocapsid protein pp12 on binding of viral RNA. J. Biol. Chem. 1984;259:7726–7732. [PubMed] [Google Scholar]
- Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, N. Y.,: 1982. pp. 191–192. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
- Maxam A.M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. In: Grossman L., Moldave K., editors. Vol. 65. Academic Press; New York: 1980. pp. 499–560. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Meric C., Darlix J.-L., Spahr P.-F. It is Rous sarcoma virus protein P12 and not P19 that binds tightly to Rous Sarcoma Virus RNA. J. Mol. Biol. 1984;173:531–538. doi: 10.1016/0022-2836(84)90396-6. [DOI] [PubMed] [Google Scholar]
- Okuno T., Yamanishi K., Shiraki K., Takahashi M. Synthesis and processing of glycoproteins of varicella-zoster virus (VZV) as studied with monoclonal antibodies to VZV antigens. Virology. 1983;129:357–368. doi: 10.1016/0042-6822(83)90175-7. [DOI] [PubMed] [Google Scholar]
- Partanen P., Turunen H.J., Paasivuo R., Forsblom E., Suni J., Leinikki P.O. Identification of antigenic components of Toxoplasma gondii by an immunoblotting technique. FEBS Lett. 1983;158:252–254. doi: 10.1016/0014-5793(83)80589-4. [DOI] [PubMed] [Google Scholar]
- Peiit M., Pillot J. HBc and HBe antigenicity and DNA-binding activity of major core protein P22 in hepatitis B virus core particles isolated from the cytoplasm of human liver cells. J. Virol. 1985;53:543–551. doi: 10.1128/jvi.53.2.543-551.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riggs A.D., Suzuki H., Bourgeois S. lac Repressor-operator interaction. I. Equilibrium studies. J. Mol. Biol. 1970;48:67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
- Robb J.A., Bond C.W. Pathogenic murine coronaviruses. I. Characterization of biological behavior in vitro and virus-specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59 viruses. Virology. 1979;94:352–370. doi: 10.1016/0042-6822(79)90467-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts C.R., Weir A.C., Hay J., Straus S.E., Ruyechan W.T. DNA-binding proteins present in varicella-zoster virus-infected cells. J. Virol. 1985;55:45–53. doi: 10.1128/jvi.55.1.45-53.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozier C., Mache R. Binding of 168 rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose. Nucleic Acids Res. 1984;12:7293–7304. doi: 10.1093/nar/12.19.7293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell P.K., Chiewsilp D., Brandt W.E. Immunoprecipitation analysis of soluble complement-fixing ntigens of Dengue viruses. J. Immunol. 1970;105:838–845. [PubMed] [Google Scholar]
- Shatkin A.J., Darzynkiewicz E., Furuichi Y., Kroath H., Morgan M.A., Tahara S.M., Yamakawa M. Vol. 47. 1982. 5′-Terminal caps, cap-binding proteins and eukaryotic mRNA function; pp. 129–143. (Biochem. Soc. Symp.). [PubMed] [Google Scholar]
- Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
- Skinner M.A., Siddell S.G. Coronavirus JHM: Nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Res. 1983;11:5045–5054. doi: 10.1093/nar/11.15.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skinner M.A., Siddell S.G. Coding sequence of coronavirus MHV-JHM mRNA 4. J. Gen. Virol. 1985;66:593–596. doi: 10.1099/0022-1317-66-3-593. [DOI] [PubMed] [Google Scholar]
- Spaan W.J.M., Rottier P.J.M., Horzinek M.C., van der Zeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stohlman S.A., Lai M.M.C. Phosphoproteins of murine hepatitis viruses. J. Virol. 1979;32:672–675. doi: 10.1128/jvi.32.2.672-675.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V. Characterization of a coronavirus. II. Glycoproteins of the viral envelope: Tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsu T.T., Herzenberg L.A. Solid-phase radioimmune assays. In: Mishell B.B., Shiigi S.M., editors. Selected Methods in Cellular Immunology. Freeman; San Francisco: 1980. pp. 373–397. [Google Scholar]
- Wege H., Siddell S., Sturm M., ter Meulen V. Coronavirus JHM: Characterization of intracellular viral RNA. J. Gen. Virol. 1981;54:213–217. doi: 10.1099/0022-1317-54-1-213. [DOI] [PubMed] [Google Scholar]
- Wilcox K.W., Kohn A., Sklyanskaya E., Roizman B. Herpes simplex virus phosphoproteins. I. Phosphate cycles on and off some viral polypeptides and can alter their affinity for DNA. J. Virol. 1980;33:167–182. doi: 10.1128/jvi.33.1.167-182.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeevi M., Nevins J.R., Darnell J.E., Jr. Nuclear RNA is spliced in the absence of poly (A) addition. Cell. 1981;26:39–46. doi: 10.1016/0092-8674(81)90031-3. [DOI] [PubMed] [Google Scholar]
- Zweig M., Heilman C.J., Jr., Hampar B. Identification of disulfide-linked protein complexes in the nucleocapsids of herpes simplex virus type 2. Virology. 1979;94:442–450. doi: 10.1016/0042-6822(79)90474-4. [DOI] [PubMed] [Google Scholar]