Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;245(2):303–312. doi: 10.1006/viro.1998.9164

Characterization of the Two Overlapping Papain-like Proteinase Domains Encoded in Gene 1 of the Coronavirus Infectious Bronchitis Virus and Determination of the C-Terminal Cleavage Site of an 87-kDa Protein

KP Lim 1, DX Liu 1,1
PMCID: PMC7131824  PMID: 9636369

Abstract

In a previous report, we showed that proteolytic processing of an 87-kDa mature viral protein from the coronavirus infectious bronchitis virus (IBV) 1a and 1a/1b polyproteins was mediated by two putative overlapping papain-like proteinase domains (PLPDs) encoded within the region from nucleotides 4243 to 5553 of ORF 1a (Liuet al.,1995). In this study, we demonstrate that only the first domain, PLPD-1, is responsible for this cleavage, as deletion of the second domain did not affect the formation of the 87-kDa protein. Site-directed mutagenesis studies further showed that a previously predicted nucleophilic cysteine residue (Cys1274) and a histidine residue (His1437) were essential for the proteinase activity, indicating that they may be important components of the catalytic center of the proteinase. Meanwhile, expression of a series of deletion mutants revealed that the 87-kDa protein was encoded by the 5′-most 2.6 kb of ORF 1a. Deletion and amino acid substitution mutation studies demonstrated that the Gly673–Gly674dipeptide bond was most likely the cleavage site responsible for releasing the C-terminus of the 87-kDa protein from the 1a and 1a/1b polyproteins.

References

REFERENCES

  • 1.Baker S.C., Yokomori K., Dong S.H., Carlisle R., Gorbalenya A.E., Koonin E.V., Lai M.C. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J. Virol. 1993;67:6056–6063. doi: 10.1128/jvi.67.10.6056-6063.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Bonilla P.J., Hughes S.A., Pinon J.D., Weiss S.R. Characterization of the leader papain-like proteinase of MHV-A59: Identification of a newin vitro. Virology. 1995;209:489–497. doi: 10.1006/viro.1995.1281. [DOI] [PubMed] [Google Scholar]
  • 3.Bonilla P.J., Hughes S.A., Weiss S.R. Characterization of a second cleavage site and demonstration of activity intrans. J. Virol. 1997;71:900–909. doi: 10.1128/jvi.71.2.900-909.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  • 5.Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Brierley I., Digard P., Inglis S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Rolley N.J., Brown T.D.K., Inglis S.C. Products of the polymerase-encoding region of the coronavirus IBV. Adv. Exp. Med. Biol. 1990;276:275–281. doi: 10.1007/978-1-4684-5823-7_38. [DOI] [PubMed] [Google Scholar]
  • 8.Denison M., Perlman S. Identification of putative polymerase gene product in cells infected with murine coronavirus A59. Virology. 1987;157:565–568. doi: 10.1016/0042-6822(87)90303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Denison M.R., Hughes S.A., Weiss S.R. Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotien of the murine coronavirus MHV-A59. Virology. 1995;207:316–320. doi: 10.1006/viro.1995.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Dong S.H., Baker S.C. Determination of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology. 1994;204:541–549. doi: 10.1006/viro.1994.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Fuerst T.R., Niles E.G., Studier F.W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA. 1986;83:8122–8127. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. Coronavirus genome: Prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 1989;17:4847–4861. doi: 10.1093/nar/17.12.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Gorbalenya A.E., Koonin E.V., Lai M.M.C. Putative papain-related thiol proteases of positive-strand RNA viruses. FEBS Lett. 1991;288:201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Grotzinger C., Heusipp G., Ziebuhr J., Harms U., Suss J., Siddell S.G. Characterization of a 105-kDa polypeptide encoded in gene 1 of the human coronavirus HCV 229E. Virology. 1996;222:227–235. doi: 10.1006/viro.1996.0413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Herold J., Gorbalenya A.E., Thiel V., Schelle B., Siddell S.G. Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: Identification of a papain-like proteinase and its substrate. J. Virol. 1998;72:910–918. doi: 10.1128/jvi.72.2.910-918.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Heusipp G., Harms U., Siddell S.G., Ziebuhr J. Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. J. Virol. 1997;71:5631–5634. doi: 10.1128/jvi.71.7.5631-5634.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Heusipp G., Grotzinger C., Herold J., Siddell S.G., Ziebuhr J. Identification and subcellular localization of a 41 kDa, polyprotein lab processing product in human coronavirus 229E-infected cells. J. Gen. Virol. 1997;78:2789–2794. doi: 10.1099/0022-1317-78-11-2789. [DOI] [PubMed] [Google Scholar]
  • 18.Hughes S.A., Bonilla P.J., Weiss S.R. Identification of the murine coronavirus p28 cleavage site. J. Virol. 1995;69:809–813. doi: 10.1128/jvi.69.2.809-813.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 20.Lee H-J., Shieh C-K., Gorbalenya A.E., Koonin E.V., Monica N.L., Tuler J., Bagdzhadzhyan A., Lai M.M.C. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991;190:567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Liu D.X., Cavanagh D., Green P., Inglis S.C. A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology. 1991;184:531–544. doi: 10.1016/0042-6822(91)90423-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Liu D.X., Brierley I., Tibbles K.W., Brown T.D.K. A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. J. Virol. 1994;68:5772–5780. doi: 10.1128/jvi.68.9.5772-5780.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Liu D.X., Brown T.D.K. Characterization and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology. 1995;209:420–427. doi: 10.1006/viro.1995.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Liu D.X., Tibbles K.W., Cavanagh D., Brown T.D.K., Brierley I. Identification, expression and processing of an 87 kDa polypeptide encoded by ORF 1a of the coronavirus infectious bronchitis virus. Virology. 1995;208:48–57. doi: 10.1006/viro.1995.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Liu D.X., Xu H.Y., Brown T.D.K. Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein: Identification of a 10-kilodalton polypeptide and determination of its cleavage sites. J. Virol. 1997;71:1814–1820. doi: 10.1128/jvi.71.3.1814-1820.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Lu Y., Lu X., Denison M.R. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J. Virol. 1995;69:3554–3559. doi: 10.1128/jvi.69.6.3554-3559.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Stern D.F., Sefton B.M. Coronavirus multiplication: Location of genes for virion proteins on the avian infectious bronchitis virus genome. J. Virol. 1984;50:22–29. doi: 10.1128/jvi.50.1.22-29.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ziebuhr J., Herold J., Siddell S.G. Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J. Virol. 1995;69:4331–4338. doi: 10.1128/jvi.69.7.4331-4338.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES