Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;55:185–229. doi: 10.1016/S0065-3527(00)55004-0

Mechanism of genome transcription in segmented dsRNA viruses

Jeffrey A Lawton 1, Mary K Estes 2, BV Venkataram Prasad 1
PMCID: PMC7131957  PMID: 11050943

Abstract

This chapter discusses the mechanism of genome transcription in segmented double-stranded RNA (dsRNA) viruses. Genome transcription is a critical stage in the life cycle of a virus, as this is the process by which the viral genetic information is presented to the host cell protein-synthesis machinery for the production of the viral proteins needed for genome replication and progeny virion assembly. Viruses with dsRNA genomes face a particular challenge in that host cells do not produce proteins that can transcribe from a dsRNA template. One of the more striking observations about genome transcription in dsRNA viruses is that this process occurs efficiently only when the transcriptionally competent particle is fully intact. This observation suggests that all of the components of the transcriptionally competent particle, including the viral genome, the transcription enzymes, and the viral capsid, function together to produce and release messenger RNA transcripts and that each component has a specific and critical role to play in promoting the efficiency of this process.

References

  1. Bamford J.K.H, Bamford D.H, Li T, Thomas G.J., Jr. Structural studies of the enveloped dsRNA bacteriophage ϕ6 of Pseudomonas syringae by Raman spectroscopy. II. Nucleocapsid structure and thermostability of the virion, nucleocapsid, and polymerase complex. J. Mol. Biol. 1993;230:473–482. doi: 10.1006/jmbi.1993.1164. [DOI] [PubMed] [Google Scholar]
  2. Banerjee A.K, Shatkin A.J. Transcription in vitro by reovirus-associated ribonucleic acid- dependent polymerase. J. Virol. 1970;6:1–11. doi: 10.1128/jvi.6.1.1-11.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartlett N.M, Gillies S.C, Bullivant S, Bellamy A.R. Electron microscopy study of reovirus reaction cores. J. Virol. 1974;14:315–326. doi: 10.1128/jvi.14.2.315-326.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bellamy A.R, Nichols J.L, Joklik W.K. Nucleotide sequences of reovirus oligonucleotides: Evidence for abortive RNA synthesis during virus maturation. Nature New Biol. 1972;238:49–51. doi: 10.1038/newbio238049a0. [DOI] [PubMed] [Google Scholar]
  5. Bernstein J.M, Hruska J.F. Characterization of RNA polymerase products of Nebraska calf diarrhea virus and SA11 rotavirus. J. Virol. 1981;37:1071–1074. doi: 10.1128/jvi.37.3.1071-1074.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bican P, Cohen J, Charpilienne A, Scherrer R. Purification and characterization of bovine rotavirus cores. J. Virol. 1982;43:1113–1117. doi: 10.1128/jvi.43.3.1113-1117.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bisaillon M, Bergeron J, Lemay G. Characterization of the nucleoside triphosphate phosphohydrolase and helicase activities of the reovirus λ1 protein. J. Biol. Chem. 1997;272:18298–18303. doi: 10.1074/jbc.272.29.18298. [DOI] [PubMed] [Google Scholar]
  8. Böttcher B, Kiselev N.A, Stel'mashchuk V.Y, Perevozchikova N.A, Borisov A.V, Crowther R.A. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 1997;71:325–330. doi: 10.1128/jvi.71.1.325-330.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boyle J.F, Holmes K.V. RNA-binding proteins of bovine rotavirus. J. Virol. 1986;58:561–568. doi: 10.1128/jvi.58.2.561-568.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown D.M, Todd A.R. Nucleotides. Part X. Some observations on the structure and chemical behavior of the nucleic acids. J. Chem. Soc. 1952:52–58. Part 1. [Google Scholar]
  11. Bruenn J.A. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res. 1991;19:217–226. doi: 10.1093/nar/19.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Butcher S.J, Dokland T, Ojala P.M, Bamford D.H, Fuller S.D. Intermediates in the assembly pathway of the double-stranded RNA virus ϕ6. EMBO J. 1997;16:4477–4487. doi: 10.1093/emboj/16.14.4477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Campbell A.M. Bacteriophages. In: Fields B.N, Knipe D.M, Chanock R.M, Hirsch M.S, Melnick J.L, Monath T.P, Roizman B, editors. Virology. Raven Press; New York: 1996. pp. 587–608. [Google Scholar]
  14. Castón J.R, Trus B.L, Booy F.P, Wickner R.B, Wall J.S, Steven A.C. Structure of L-A virus: A specialized compartment for the transcription and replication of double-stranded RNA. J. Cell Biol. 1997;138:975–985. doi: 10.1083/jcb.138.5.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen D, Gombold J.L, Ramig R.F. Intracellular RNA synthesis directed by temperature sensitive mutants of simian rotavirus SA11. Virology. 1990;178:143–151. doi: 10.1016/0042-6822(90)90387-7. [DOI] [PubMed] [Google Scholar]
  16. Chen D, Ramig R.F. Rescue of infectivity by sequential in vitro transcapsidation of rotavirus core particles with inner capsid and outer capsid proteins. Virology. 1993;194:743–751. doi: 10.1006/viro.1993.1315. [DOI] [PubMed] [Google Scholar]
  17. Chen D, Zeng C.Q, Wentz M.J, Gorziglia M, Estes M.K, Ramig R.F. Template-dependent, in vitro replication of rotavirus RNA. J. Virol. 1994;68:7030–7039. doi: 10.1128/jvi.68.11.7030-7039.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chen D, Luongo C.L, Nibert M.L, Patton J.T. Rotavirus open cores catalyze 5′-capping and methylation of enogenous RNA: evidence that VP3 is a methyl transferase. Virology. 1999;265:120–130. doi: 10.1006/viro.1999.0029. [DOI] [PubMed] [Google Scholar]
  19. Cheng R.H, Caston J.R, Wang G.J, Gu F, Smith T.J, Baker T.S, Bozarth R.F, Trus B.L, Cheng N, Wickner R.B, Steven A.C. Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J. Mol. Biol. 1994;244:255–258. doi: 10.1006/jmbi.1994.1726. [DOI] [PubMed] [Google Scholar]
  20. Cohen J. Ribonucleic acid polymerase activity associated with purified calf rotavirus. J. Gen. Virol. 1977;36:395–402. doi: 10.1099/0022-1317-36-3-395. [DOI] [PubMed] [Google Scholar]
  21. Cohen J, LaPorte J, Charpilienne A, Scherrer R. Activation of rotavirus RNA polymerase by calcium chelation. Arch. Virol. 1979;60:177–186. doi: 10.1007/BF01317489. [DOI] [PubMed] [Google Scholar]
  22. Cohen H.A, Jeng T.W, Grant R.A, Chiu W. Specimen preparation methods for electron crystallography of soluble proteins. Ultramicroscopy. 1984;13:19–25. doi: 10.1016/0304-3991(84)90053-6. [DOI] [PubMed] [Google Scholar]
  23. Cohen J, Charpilienne A, Chilmonczyk S, Estes M.K. Nucleotide sequence of bovine rotavirus gene 1 and expression of the gene product in baculovirus. Virology. 1989;171:131–140. doi: 10.1016/0042-6822(89)90519-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Crawford S.E, Labbé M, Cohen J, Burroughs M.H, Zhou Y-J, Estes M.K. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 1994;68:5945–5952. doi: 10.1128/jvi.68.9.5945-5952.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Dai R.M, Wu A.Z, Shen X.R, Li Q, Sun Y.K. Isolation of genomeenzyme complex from cytoplasmic polyhedrosis virus of silkworm Bombyx mori. Scientia Sinica (Series B) 1982;25:29–35. [PubMed] [Google Scholar]
  26. Dryden K.A, Wang G, Yeager M, Nibert M.L, Coombs K.M, Furlong D.B, Fields B.N, Baker T.S. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: Analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J. Cell Biol. 1993;122:1023–1041. doi: 10.1083/jcb.122.5.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dryden K.A, Farsetta D.L, Wang G, Keegan J.M, Fields B.N, Baker T.S, Nibert M.L. Internal structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. Virology. 1998;245:33–46. doi: 10.1006/viro.1998.9146. [DOI] [PubMed] [Google Scholar]
  28. Eickbush T.H, Moudrianakis E.N. The compaction of DNA helices into either continuous supercoils or folded-fiber rods and toroids. Cell. 1978;13:295–306. doi: 10.1016/0092-8674(78)90198-8. [DOI] [PubMed] [Google Scholar]
  29. Emori Y, Iba H, Okada Y. Semi-conservative transcription of doublestranded RNA catalyzed by bacteriophage ϕ6 RNA polymerase. J. Biochem. 1980;88:1569–1575. doi: 10.1093/oxfordjournals.jbchem.a133131. [DOI] [PubMed] [Google Scholar]
  30. Estes M.K. Rotaviruses and their replication. In: Fields B.N, Knipe D.M, Chanock R.M, Hirsch M.S, Melnick J.L, Monath T.P, Roizman B, editors. Virology. Raven Press; New York: 1996. pp. 1625–1655. [Google Scholar]
  31. Fields B.N. Reoviridae. In: Fields B.N, Knipe D.M, Chanock R.M, Hirsch M.S, Melnick J.L, Monath T.P, Roizman B, editors. Virology. Raven Press; New York: 1996. pp. 1553–1555. [Google Scholar]
  32. Flores J, Myslinski J, Kalica A.R, Greenberg H.B, Wyatt R.G, Kapikian A.Z, Chanock R.M. In vitro transcription of two human rotaviruses. J. Virol. 1982;43:1032–1037. doi: 10.1128/jvi.43.3.1032-1037.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Freifelder D, Kleinschmidt A.K. Single-strand breaks in duplex DNA of coliphage T7 as demonstrated by electron cryomicroscopy. J. Mol. Biol. 1965;14:271–278. doi: 10.1016/s0022-2836(65)80246-7. [DOI] [PubMed] [Google Scholar]
  34. Furuichi Y. Allosteric stimulatory effect of S-adenosylmethionine on the RNA polymerase in cytoplasmic polyhedrosis virus. A model for the positive control of eukaryotic transcription. J. Biol. Chem. 1981;256:483–493. [PubMed] [Google Scholar]
  35. Furuichi Y, Miura K. A blocked structure at the 5′-terminus of mRNA of cytoplasmic polyhedrosis virus. Nature. 1975;253:374–375. doi: 10.1038/253374a0. [DOI] [PubMed] [Google Scholar]
  36. Furuichi Y, Morgan M, Muthukrishnan S, Shatkin A.J. Vol. 72. 1975. Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m-7G (5′)ppp(5′)GMpCp; pp. 362–366. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Furuichi Y, Muthukrishnan S, Tomasz J, Shatkin A.J. Mechanism of formation of reovirus mRNA 5′-terminal blocked and methylated sequence, m7GpppGmpC. J. Biol. Chem. 1976;251:5043–5053. [PubMed] [Google Scholar]
  38. Gillies S, Bullivant S, Bellamy A.R. Viral RNA polymerases: Electron microscopy of reovirus reaction cores. Science. 1971;174:694–696. doi: 10.1126/science.174.4010.694. [DOI] [PubMed] [Google Scholar]
  39. Gorziglia M, Esparza J. Poly(A) polymerase activity in human rotavirus. J. Gen. Virol. 1981;53:357–362. doi: 10.1099/0022-1317-53-2-357. [DOI] [PubMed] [Google Scholar]
  40. Gottlieb P, Strassman J, Qiao X, Frucht A, Mindich L. In vitro replication, packaging, and transcription of the segmented double-stranded RNA genome of bacteriophage ϕ6: Studies with procapsids assembled from plasmid-encoded proteins. J. Bacteriol. 1990;172:5774–5782. doi: 10.1128/jb.172.10.5774-5782.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Gouet P, Diprose D.I, Grimes J.M, Malby R, Burroughs J.N, Zientara S, Stuart D.I, mertens P.C.C. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell. 1999;97:481–490. doi: 10.1016/s0092-8674(00)80758-8. [DOI] [PubMed] [Google Scholar]
  42. Grimes J.M, Basak A.K, Roy P, Stuart D.I. The crystal structure of bluetongue virus VP7. Nature. 1995;373:167–170. doi: 10.1038/373167a0. [DOI] [PubMed] [Google Scholar]
  43. Grimes J.M, Jakana J, Chosh M, Basak A.K, Roy P, Chiu W, Stuart D.I, Prasad B.V.V. An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure. 1997;5:885–893. doi: 10.1016/s0969-2126(97)00243-8. [DOI] [PubMed] [Google Scholar]
  44. Grimes J.M, Burroughs J.N, Gouet P, Diprose J.M, Malby R, Zientara S, Mertens P.P, Stuart D.I. The atomic structure of the bluetongue virus core. Nature. 1998;395:470–478. doi: 10.1038/26694. [DOI] [PubMed] [Google Scholar]
  45. Harvey J.D, Bellamy A.R, Earnshaw W.C, Schutt C. Biophysical studies of reovirus type 3. IV Low-angle x-ray diffraction studies. Virology. 1981;112:240–249. doi: 10.1016/0042-6822(81)90629-2. [DOI] [PubMed] [Google Scholar]
  46. Hewat E.A, Booth T.F, Roy P. Structure of bluetongue virus particles by cryo-electron microscopy. J. Struct. Biol. 1992;109:61–69. doi: 10.1016/1047-8477(92)90068-l. [DOI] [PubMed] [Google Scholar]
  47. Hill C.L, Booth T.F, Prasad B.V.V, Grimes J.M, Mertens P.P.C, Sutton G.C, Stuart D.I. The structure of a cypovirus and the functional organisation of dsRNA viruses. Nature Struct Biol. 1999;6:565–568. doi: 10.1038/9347. [DOI] [PubMed] [Google Scholar]
  48. Huismans H, Verwoerd D.W. Control of transcription during the expression of the bluetongue virus genome. Virology. 1973;52:81–88. doi: 10.1016/0042-6822(73)90400-5. [DOI] [PubMed] [Google Scholar]
  49. Hundley F, McIntyre M, Clark B, Beards G, Wood D, Chrystie I, Desselberger U. Heterogeneity of genome rearrangements in rotaviruses isolated from a chronically infected, immunodeficient child. J. Virol. 1987;61:3365–3372. doi: 10.1128/jvi.61.11.3365-3372.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Iborra F.J, Pombo A, McManus J, Jackson D.A, Cook P.R. The topology of transcription by immobilized polymerases. Exp. Cell Res. 1996;229:167–173. doi: 10.1006/excr.1996.0355. [DOI] [PubMed] [Google Scholar]
  51. Imai M, Akatani K, Ikegami N, Furuichi Y. Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. J. Virol. 1983;47:125–136. doi: 10.1128/jvi.47.1.125-136.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kapahnke R, Rappold W, Desselberger U, Riesner D. The stiffness of dsRNA: Hydrodynamic studies on fluorescence-labeled RNA segments of bovine rotavirus. Nucleic Acids Res. 1986;14:3215–3228. doi: 10.1093/nar/14.8.3215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kapuler A.M. An extraordinary temperature dependence of the reovirus transcriptase. Biochemistry. 1970;9:4453–4457. doi: 10.1021/bi00824a029. [DOI] [PubMed] [Google Scholar]
  54. Kibenge F.S.B, Dhillon A.S, Russell R.G. Biochemistry and immunology of infectious bursal disease virus. J. Gen. Virol. 1988;69:1757–1775. doi: 10.1099/0022-1317-69-8-1757. [DOI] [PubMed] [Google Scholar]
  55. Kohli E, Pothier P, Tosser G, Cohen J, Sandino A.M, Spencer E. In vitro reconstitution of rotavirus transcriptional activity using virviral cores and recombinant baculovirus expressed VP6. Arch. Virol. 1993;133:451–458. doi: 10.1007/BF01313782. [DOI] [PubMed] [Google Scholar]
  56. Koonin E.V. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and λ2 protein of reovirus. J. Gen. Virol. 1993;74:733–740. doi: 10.1099/0022-1317-74-4-733. [DOI] [PubMed] [Google Scholar]
  57. Labbe M, Charpilienne A, Crawford S.E, Estes M.K, Cohen J. Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 1991;65:2946–2952. doi: 10.1128/jvi.65.6.2946-2952.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Labbe M, Baudoux P, Charpilienne A, Poncet D, Cohen J. Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J. Gen. Virol. 1994;75:3423–3430. doi: 10.1099/0022-1317-75-12-3423. [DOI] [PubMed] [Google Scholar]
  59. Lawton J.A, Estes M.K, Prasad B.V.V. Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat. Struct. Biol. 1997;4:118–121. doi: 10.1038/nsb0297-118. [DOI] [PubMed] [Google Scholar]
  60. Lawton J.A, Zeng C.Q, Mukherjee S.K, Cohen J, Estes M.K, Prasad B.V.V. Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: Implications for the architecture of the VP2 capsid layer. J. Virol. 1997;71:7353–7360. doi: 10.1128/jvi.71.10.7353-7360.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lawton J.A, Estes M.K, Prasad B.V.V. Vol. 96. 1999. Comparative structural analysis of transcriptionally-competent and incompetent rotavirus-antibody complexes; pp. 5428–5433. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Liu L.F, Wang J.C. Vol. 84. 1987. Supercoiling of the DNA template during transcription; pp. 7024–7027. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Liu M, Offit P.A, Estes M.K. Identification of the simian rotavirus SA-11 genome segment 3 product. Virology. 1988;163:26–32. doi: 10.1016/0042-6822(88)90230-9. [DOI] [PubMed] [Google Scholar]
  64. Liu M, Mattion N.M, Estes M.K. Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology. 1992;188:77–84. doi: 10.1016/0042-6822(92)90736-9. [DOI] [PubMed] [Google Scholar]
  65. López S, Espinosa R, Greenberg H.B, Arias C.F. Mapping the subgroup epitopes of rotavirus protein VP6. Virology. 1994;204:153–162. doi: 10.1006/viro.1994.1519. [DOI] [PubMed] [Google Scholar]
  66. Lu G, Zhou Z.H, Baker M.L, Jakana J, Cai D, Wei X, Chen S, Gu X, Chiu W. Structure of double-shelled rice dwarf virus. J. Virol. 1998;72:8541–8549. doi: 10.1128/jvi.72.11.8541-8549.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Luongo C.L, Contreras C.M, Farsetta D.L, Nibert M.L. Binding site for S-adenosyl-L-methionine in a central region of mammalian reovirus λ2 protein. Evidence for activities in mRNA cap methylation. J. Biol. Chem. 1998;273:23773–23780. doi: 10.1074/jbc.273.37.23773. [DOI] [PubMed] [Google Scholar]
  68. Mattinez-Costas J, Sutton G, Ramadevi N, Roy P. Guanylyltransferase and RNA 5′-triphosphatase activities of the purified expressed VP4 protein of bluetongue virus. J. Mol. Biol. 1998;280:859–866. doi: 10.1006/jmbi.1998.1926. [DOI] [PubMed] [Google Scholar]
  69. Mason B.B, Graham D.Y, Estes M.K. in vitro transcription and translation of simian rotavirus SAll gene products. J. Virol. 1980;33:1111–1121. doi: 10.1128/jvi.33.3.1111-1121.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Mathieu M, Petitpas I, Prasad B.V.V, Kohli E, Pothier P, Cohen J, Rey F.A. 2000. Atomic resolution structure of a major capsid protein of rotavirus and its implications in the virion structure. Submitted for publication. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. McCrae M.A, McCorquodale J.G. Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology. 1983;126:204–212. doi: 10.1016/0042-6822(83)90472-5. [DOI] [PubMed] [Google Scholar]
  72. Mertens P.P, Payne C.C. The effects of S-adenosyl methionine (AdoMet) and its analogues on the control of transcription and translation in vitro of the mRNA products of two cytoplasmic polyhedrosis viruses. Virology. 1983;131:18–29. doi: 10.1016/0042-6822(83)90529-9. [DOI] [PubMed] [Google Scholar]
  73. Mertens P.P.C, Sanger D.V. Analysis of the terminal sequences of the genome segments of four orbiviruses. In: Barger T.L, Yochim M.M, editors. Bluetongue and related orbiviruses. Alan R. Liss; New York: 1985. pp. 371–387. [Google Scholar]
  74. Mindich L. Precise packaging of the three genomic segments of the doublestranded-RNA bacteriophage ϕ6 Microbiol. Mol. Biol. Rev. 1999;63:149–160. doi: 10.1128/mmbr.63.1.149-160.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Murphy F.A, Fauquet C.M, Bishop D.H.L, Ghabrial S.A, Jarvis A.W, Martalli G.P, Mayo M.A, Summers M.D. Sixth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag; Vienna: 1995. Virus taxonomy-the classification and nomenclature of viruses. [Google Scholar]
  76. Nason E.L, Samal S.K, Prasad B.V.V. Trypsin-induced structural transformation in aquareovirus. J. Virol. 2000;74:6546–6555. doi: 10.1128/jvi.74.14.6546-6555.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Nibert M.L. Structure of mammalian orthoreovirus particles. In: Tyler K.L, Oldstone M.B.A, editors. Reoviruses 1: Structure, Proteins, and Genetics. Springer-Verlag; New York: 1998. pp. 1–30. [Google Scholar]
  78. Noble S, Nibert M.L. Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein λ1. J. Virol. 1997;71:1282–1291. doi: 10.1128/jvi.71.3.2182-2191.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Noble S, Nibert M.L. Core protein p2 is a second determinant of nucleoside triphosphatase activities by reovirus cores. J. Virol. 1997;71:7728–7735. doi: 10.1128/jvi.71.10.7728-7735.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Ojala P.M, Bamford D.H. In vitro transcription of the double-stranded RNA bacteriophage ϕ6 is influenced by purine NTPs and calcium. Virology. 1995;207:400–408. doi: 10.1006/viro.1995.1099. [DOI] [PubMed] [Google Scholar]
  81. Olkkonen V.M, Gottlieb P, Strassman J, Qiao X.Y, Bamford D.H, Mindich L. Vol. 87. 1990. In vitro assembly of infectious nucleocapsids of bacteriphage ϕ6: Formation of a recombinant double-stranded RNA virus; pp. 9173–9177. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Partridge J.E, Van Etten J.L, Burbank D.E, Vidaver A.K. RNA polymerase activity associated with bacteriophage ϕ6 nucleocapsid. J. Gen. Virol. 1979;43:299–307. [Google Scholar]
  83. Patton J.T. Rotavirus VP1 alone specifically binds to the 3′ end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis. J. Virol. 1996;70:7940–7947. doi: 10.1128/jvi.70.11.7940-7947.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Patton J.T, Chen D. RNA-binding and capping activities of proteins in rotavirus open cores. J. Virol. 1999;73:1382–1391. doi: 10.1128/jvi.73.2.1382-1391.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Patton J.T, Wentz M, Xiaobo J, Ramig R.F. cis-Acting signals that promote genome replication in rotavirus mRNA. J. Virol. 1996;70:3961–3971. doi: 10.1128/jvi.70.6.3961-3971.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Patton J.T, Jones M.T, Kalbach A.N, He Y.-W, Xiaobo J. Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J. Virol. 1997;71:9618–9626. doi: 10.1128/jvi.71.12.9618-9626.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Payne C.C, Mertens P.C.C. Cytoplasmic polyhedrosis viruses. In: Joklik W.G, editor. The Reoviridae. Plenum Press; New York: 1983. pp. 425–504. [Google Scholar]
  88. Pelletier H, Sawaya M.R, Wolfle W, Wilson S.H, Kraut J. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase β. Biochemistry. 1996;35:12762–12777. doi: 10.1021/bi9529566. [DOI] [PubMed] [Google Scholar]
  89. Pizarro J.L, Sandino A.M, Pizarro J.M, Fernández J, Spencer E. Characterization of rotavirus guanylyltransferase activity associated with polypeptide VP3. J. Gen. Virol. 1991;72:325–332. doi: 10.1099/0022-1317-72-2-325. [DOI] [PubMed] [Google Scholar]
  90. Pizarro J.M, Pizarro J.L, Fernandez J, Sandino A.M, Spencer E. Effect of nucleotide analogues on rotavirus transcription and replication. Virology. 1991;184:768–772. doi: 10.1016/0042-6822(91)90449-l. [DOI] [PubMed] [Google Scholar]
  91. Poch O, Sauvaget I, Delarue M, Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989;8:3867–3874. doi: 10.1002/j.1460-2075.1989.tb08565.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Prasad B.V.V, Chiu W. Structure of rotavirus. In: Ramig R.F, editor. Rotaviruses. Springer-Verlag; New York: 1994. pp. 9–29. [Google Scholar]
  93. Prasad B.V.V, Estes M.K. Molecular basis of rotavirus replication: Structure-function correlations. In: Chiu W, Burnett R, Garcia R, editors. Structural biology of viruses. Oxford University Press; New York: 1997. pp. 239–268. [Google Scholar]
  94. Prasad B.V.V, Wang G.J, Clerx J.P, Chiu W. Three-dimensional structure of rotavirus. J. Mol. Biol. 1988;199:269–275. doi: 10.1016/0022-2836(88)90313-0. [DOI] [PubMed] [Google Scholar]
  95. Prasad B.V.V, Burns J.W, Marietta E, Estes M.K, Chiu W. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature. 1990;343:476–479. doi: 10.1038/343476a0. [DOI] [PubMed] [Google Scholar]
  96. Prasad B.V.V, Yamaguchi S, Roy P. Three-dimensional structure of single-shelled BTV. J. Virol. 1992;66:2135–2142. doi: 10.1128/jvi.66.4.2135-2142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Prasad B.V.V, Rothnagel R, Zeng C.Q, Jakana J, Lawton J.A, Chiu W, Estes M.K. Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature. 1996;382:471–473. doi: 10.1038/382471a0. [DOI] [PubMed] [Google Scholar]
  98. Qiao X, Qiao J, Mindich L. Vol. 94. 1997. Stoichiometric packaging of the three genomic segments of double-stranded RNA bacteriophage ϕ6; pp. 4074–4079. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Ramadevi N, Burroughs N.J, Mertens P.P, Jones I.M, Roy P. Vol. 95. 1998. Capping and methylation of mRNA by purified recombinant VP4 protein of bluetongue virus; pp. 13537–13542. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Ramadevi N, Roy P. Bluetongue virus core protein VP4 has nucleoside triphosphate phosphohydrolase activity. J. Gen. Virol. 1998;79:2475–2480. doi: 10.1099/0022-1317-79-10-2475. [DOI] [PubMed] [Google Scholar]
  101. Rankin J.T.J, Eppes S.B, Antczak J.B, Joklik W.K. Studies on the mechanism of the antiviral activity of ribavirin against reovirus. Virology. 1989;168:147–158. doi: 10.1016/0042-6822(89)90413-3. [DOI] [PubMed] [Google Scholar]
  102. Reinisch K.M, Nibert M.L, Harrison S.C. Structure of the reovirus core at 3.6A. Nature. 2000;404:960–967. doi: 10.1038/35010041. [DOI] [PubMed] [Google Scholar]
  103. Rimon A, Haselkorn R. Transcription and replication of bacteriophage ϕ6 RNA. Virology. 1978;89:206–217. doi: 10.1016/0042-6822(78)90053-3. [DOI] [PubMed] [Google Scholar]
  104. Robberson D.L, Thornton G.B, Marshall M.V, Arlinghaus R.B. Novel circular forms of mengovirus-specific double-stranded RNA detected by electron microscopy. Virology. 1982;116:454–467. doi: 10.1016/0042-6822(82)90139-8. [DOI] [PubMed] [Google Scholar]
  105. Romanova L.I, Agol V.I. Interconversion of linear and circular forms of double-stranded RNA of encephalomyocarditis virus. Virology. 1979;93:574–577. doi: 10.1016/0042-6822(79)90260-5. [DOI] [PubMed] [Google Scholar]
  106. Samuel C.E. Reoviruses and the interferon system. In: Tyler K.L, Oldstone M.B.A, editors. Vol. 233. Springer-Verlag; New York: 1998. pp. 125–145. (Reoviruses II: Cytopathogenicity and Pathogenesis). [Google Scholar]
  107. Sandino A.M, Jashes M, Faundez G, Spencer E. Role of the inner protein capsid on in vitro human rotavirus transcription. J. Virol. 1986;60:797–802. doi: 10.1128/jvi.60.2.797-802.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Schoehn G, Moss S.R, Nuttall P.A, Hewat E.A. Structure of Broadhaven virus by cryoelectron microscopy: Correlation of structural and antigenic properties of Broadhaven virus and bluetongue virus outer capsid proteins. Virology. 1997;235:191–200. doi: 10.1006/viro.1997.8685. [DOI] [PubMed] [Google Scholar]
  109. Seliger L.S, Zheng K, Shatkin A.J. Complete nucleotide sequence of reovirus L2 gene and deduced amino acid sequence of viral mRNA guanylyltransferase. J. Biol. Chem. 1987;262:16289–16293. [PubMed] [Google Scholar]
  110. Shatkin A.J. Vol. 71. 1974. Methylated messenger RNA synthesis in vitro by purified reovirus; pp. 3204–3207. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Shatkin A.J, Sipe J.D. Vol. 61. 1968. RNA polymerase activity in purified Roviruses; pp. 1462–1469. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Shatkin A.J, Kozak M. Reovirus transcription and translation. In: Joklik W.G, editor. The Reoviridae. Plenum Press; New York: 1983. pp. 425–504. [Google Scholar]
  113. Shaw A.L, Rothnagel R, Chen D, Ramig R.F, Chiu W, Prasad B.V.V. Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell. 1993;74:693–701. doi: 10.1016/0092-8674(93)90516-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Shaw A.L, Samal S.K, Subramanian K, Prasad B.V.V. The structure of aquareovirus shows how the different geometries of the two layers of the capsid are reconciled to provide symmetrical interactions and stabilization. Structure. 1996;4:957–967. doi: 10.1016/s0969-2126(96)00102-5. [DOI] [PubMed] [Google Scholar]
  115. Shimotohno K, Miura K. Single-stranded RNA synthesis in vitro by the RNA polymerase associated with cytoplasmic polyhedrosis virus containing doublestranded RNA. J. Biochem. (Tokyo) 1973;74:117–125. doi: 10.1093/oxfordjournals.jbchem.a130214. [DOI] [PubMed] [Google Scholar]
  116. Shimotohno K, Miura K. Nucleoside triphosphate phosphohydrolase associated with cytoplasmic polyhedrosis virus. J. Biochem. (Tokyo) 1977;81:371–379. doi: 10.1093/oxfordjournals.jbchem.a131468. [DOI] [PubMed] [Google Scholar]
  117. Skehel J.J, Joklik W.K. Studies on the in vitro transcription of reovirus RNA catalyzed by reovirus cores. Virology. 1969;39:822–831. doi: 10.1016/0042-6822(69)90019-1. [DOI] [PubMed] [Google Scholar]
  118. Smith R.E, Furuichi Y. The double-stranded RNA genome segments of cytoplasmic polyhedrosis virus are independently transcribed. J. Virol. 1982;41:326–329. doi: 10.1128/jvi.41.1.326-329.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Spencer E, Arias M.L. In vitro transcription catalyzed by heat-treated human rotavirus. J. Virol. 1981;40:1–10. doi: 10.1128/jvi.40.1.1-10.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Spencer E, Garcia B.I. Effect of S-adenosylmethionine on human rotavirus RNA synthesis. J. Virol. 1984;52:188–197. doi: 10.1128/jvi.52.1.188-197.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Spencer C.A, Groudine M. Transcription elongation and eukaryotic gene regulation. Oncogene. 1990;5:777–785. [PubMed] [Google Scholar]
  122. Stacy-Phipps S, Patton J.T. Synthesis of plus- and minus-strand RNA in rotavirus-infected cells. J. Virol. 1987;61:3479–3484. doi: 10.1128/jvi.61.11.3479-3484.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Starnes M.C, Joklik W.K. Reovirus protein λ3 is a poly(C)-dependent poly(G) polymerase. Virology. 1993;193:356–366. doi: 10.1006/viro.1993.1132. [DOI] [PubMed] [Google Scholar]
  124. Stäuber N, Martinez-Costas J, Sutton G, Monastyrskaya K, Roy P. Bluetongue virus VP6 protein binds ATP and exhibits an RNA-dependent ATPase function an a helicase activity that catalyze the unwinding of double-stranded RNA substrates. J. Virol. 1997;71:7220–7226. doi: 10.1128/jvi.71.10.7220-7226.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Suzuki N, Tanimura M, Watanabe Y, Kusano T, Kitagawa Y, Suda N, Kudo H, Uyeda I, Shikata E. Molecular analysis of rice dwarf phytoreovirus segment S1: Interviral homology of the putative RNA-dependent RNA polymerase between plant- and animal-infecting reoviruses. Virology. 1992;190:240–247. doi: 10.1016/0042-6822(92)91210-l. [DOI] [PubMed] [Google Scholar]
  126. Taylor J.A, O'Brien J.A, Yeager M. The cytoplasmic tail of NSP4, the endoplasmic-reticulum located non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J. 1996;15:4469–4476. [PMC free article] [PubMed] [Google Scholar]
  127. Urukawa T, Ritter D.G, Roy P. Expression of largest RNA segment and synthesis of VP1 protein of bluetongue virus in insect cells by recombinant baculovirus: Association of VP1 protein with RNA polymerase activity. Nucleic Acids Res. 1989;17:7395–7401. doi: 10.1093/nar/17.18.7395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Usala S.J, Brownstein B.H, Haselkorn R. Displacement of parental RNA strands during in vitro transcription by bacteriophage ϕ6 nucleocapsid. Cell. 1980;19:855–862. doi: 10.1016/0092-8674(80)90076-8. [DOI] [PubMed] [Google Scholar]
  129. Valenzuela S, Pizarro J, Sandino A.M, Vasquez M, Fernandez J, Hernandez O, Patton J, Spencer E. Photoaffinity labeling of rotavirus VPI with 8azido-ATP: Identification of the viral RNA polymerase. J. Virol. 1991;65:3964–3967. doi: 10.1128/jvi.65.7.3964-3967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Van Dijk A.A, Huismans H. The in vitro activation and further characterization of the bluetongue virus-associated transcriptase. Virology. 1980;104:347–356. doi: 10.1016/0042-6822(80)90339-6. [DOI] [PubMed] [Google Scholar]
  131. Van Dijk A.A, Huismans H. In vitro transcription and translation of bluetongue virus mRNA. J. Gen. Virol. 1988;69:573–581. doi: 10.1099/0022-1317-69-3-573. [DOI] [PubMed] [Google Scholar]
  132. Van Dijk A.A, Frilander M, Bamford D.H. Differentiation between minus- and plus-strand synthesis: Polymerase activity of dsRNA bacteriophage ϕ6 in an in vitro packaging and replication system. Virology. 1995;211:320–323. doi: 10.1006/viro.1995.1409. [DOI] [PubMed] [Google Scholar]
  133. Van Etten J.L, Burbank D.E, Cuppels D.A, Lane L.C, Vidaver A.K. Semiconservative synthesis of single-stranded RNA by bacteriophage ϕ6 RNA polymerase. J. Virol. 1980;33:769–773. doi: 10.1128/jvi.33.2.769-773.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Wertheimer A.M, Chen S.-Y, Borchardt R.T, Furuichi Y. S-adenosylmethionine and its analogs: Structural features correlated with synthesis and methylation of mRNAs of cytoplasmic polyhedrosis virus. J. Biol. Chem. 1980;255:5924–5930. [PubMed] [Google Scholar]
  135. Wickner R.B. Viruses of yeasts, fungi, and parasitic microorganisms. In: Fields B.N, Knipe D.M, Chanock R.M, Hirsch M.S, Melnick J.L, Monath T.P, Roizman B, editors. Virology. Raven Press; New York: 1996. pp. 557–585. [Google Scholar]
  136. Witkiewicz H, Schweiger M. A model of lambda DNA arrangement in the viral particle. J. Theor. Biol. 1985;116:587–605. doi: 10.1016/s0022-5193(85)80089-8. [DOI] [PubMed] [Google Scholar]
  137. Yamakawa M, Furuichi Y, Nakashima K, LaFiandra A.J, Shatkin A.J. Excess synthesis of viral mRNA 5-terminal oligonucleotides by reovirus transcriptase. J. Biol. Chem. 1981;256:6507–6514. [PubMed] [Google Scholar]
  138. Yamakawa M, Furuichi Y, Shatkin A.J. Reovirus transcriptase and capping enzymes are active in intact virions. Virology. 1982;115:157–168. doi: 10.1016/0042-6822(82)90329-4. [DOI] [PubMed] [Google Scholar]
  139. Yazaki K, Miura K. Relation of the structure of cytoplasmic polyhedrosis virus and the synthesis of its messenger RNA. Virology. 1980;105:467–479. doi: 10.1016/0042-6822(80)90047-1. [DOI] [PubMed] [Google Scholar]
  140. Yazaki K, Mizuno A, Sano T, Fujii H, Miura K. A new method for extracting circular and supercoiled genome segments from cytoplasmic polyhedrosis virus. J. Virol. Methods. 1986;14:275–283. doi: 10.1016/0166-0934(86)90029-7. [DOI] [PubMed] [Google Scholar]
  141. Yeager M, Dryden K.A, Olson N.H, Baker T.S. Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J. Cell Biol. 1990;110:2133–2144. doi: 10.1083/jcb.110.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Yeager M, Berriman J.A, Baker T.S, Bellamy A.R. Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J. 1994;13:1011–1018. doi: 10.1002/j.1460-2075.1994.tb06349.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Yeager M, Weiner S, Coombs K.M. Transcriptionally active reovirus core particles visualized by electron cryo-microscopy and image reconstruction. Biophys. J. 1996;70:A116. [Google Scholar]
  144. Zarbl H, Hastings K.E, Millward S. Reovirus core particles synthesize capped oligonucleotides as a result of abortive transcription. Arch. Biochem. Biophys. 1980;202:348–360. doi: 10.1016/0003-9861(80)90437-3. [DOI] [PubMed] [Google Scholar]
  145. Zeng C.Q.-Y, Labbé M, Cohen J, Prasad B.V.V, Chen D, Ramig R.F, Estes M.K. Characterization of rotavirus VP2 particles. Virology. 1994;201:55–65. doi: 10.1006/viro.1994.1265. [DOI] [PubMed] [Google Scholar]
  146. Zeng C.Q.-Y, Wentz M.J, Cohen J, Estes M.K, Ramig R.F. Characterization and replicase activity of double-layered and single- layered rotavirus-like particles expressed from baculovirus recombinants. J. Virol. 1996;70:2736–2742. doi: 10.1128/jvi.70.5.2736-2742.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Zeng C.Q.-Y, Estes M.K, Charpilienne A, Cohen J. The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3. J. Virol. 1998;72:201–208. doi: 10.1128/jvi.72.1.201-208.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Zhang H, Zhang J, Yu X, Lu X, Zhang Q, Jakana J, Chen D.H, Zhang X, Zhou Z.H. Visualization of protein-RNA interactions in cytoplasmic polyhedrosis virus. J. Virol. 1999;73:1624–1629. doi: 10.1128/jvi.73.2.1624-1629.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES