Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Mar 3;76(Pt 4):481–483. doi: 10.1107/S2056989020002674

Crystal structure of ethyl 2-(5-amino-1-benzene­sulfonyl-3-oxo-2,3-di­hydro-1H-pyrazol-2-yl)acetate

Nadia H Metwally a, Galal H Elgemeie b, Peter G Jones c,*
PMCID: PMC7133039  PMID: 32280488

In the title compound, C13H15N3O5S, the two rings face each other in a ‘V′ form at the S atom, with one N—H⋯O=S and one C—H⋯O=S contact from the pyrazolyl substituents to the sulfonyl group. Two classical hydrogen bonds from the amine group, one of the form N—H⋯O=S and one N—H⋯O=Coxo, link the mol­ecules to form layers parallel to the bc plane.

Keywords: crystal structure, pyrazine, sulfon­yl, hydrogen bonds

Abstract

In the title compound, C13H15N3O5S, the two rings face each other in a ‘V′ form at the S atom, with one N—H⋯O=S and one C—H⋯O=S contact from the pyrazolyl substituents to the sulfonyl group. Two classical hydrogen bonds from the amine group, one of the form N—H⋯O=S and one N—H⋯O=Coxo, link the mol­ecules to form layers parallel to the bc plane.

Chemical context  

We are inter­ested in the development of innovative synthetic strategies for N-sulfonyl- and N-sulfonyl­amino-based heterocyclic ring systems that have found application as new anti­microbial and anti-viral agents (Azzam et al., 2017, 2019a b ; Elgemeie et al., 2017, 2019; Zhu et al., 2013). Michael et al. (2007) investigated the inhibition capabilities of a novel series of our reported N-sulfonyl­pyrazoles (Elgemeie et al., 1998, 1999, 2013) towards the enzyme cathepsin B16. Shyama et al. (2009) also identified some of our reported N-aryl­sulfonyl­pyrazole series to be active inhibitors of the NS2B-NS3 virus. These promising results led our research group to investigate new approaches to other derivatives of N-sulfonyl­pyrazoles, thereby seeking alternative scaffolds for use as promising chemotherapeutics (Azzam & Elgemeie, 2019; Elgemeie & Jones, 2002; Zhang et al., 2020). Accordingly, we synthesized the N-1-substituted derivative of N-sulfonyl­pyrazole 1.graphic file with name e-76-00481-scheme1.jpg

The reaction 1 with ethyl bromo­acetate 2 in the presence of anhydrous potassium carbonate in dry N,N-di­methyl­formamide at room temperature produced an adduct for which two possible isomers, the O-alkyl­ated or N-alkyl­ated N-sulfonyl­pyrazole structures 3 or 4, were considered. The 1H NMR spectra of the product revealed the presence of an amino group at 7.34 ppm and a pyrazole CH at 4.34 ppm, but spectroscopic data cannot differentiate between structures 3 and 4. The crystal structure determination indicated unambiguously the formation of the N-alkyl­ated N-sulfonyl­pyrazole 4 as the only product in the solid state.

Structural commentary  

The structure analysis confirms the formation of compound 4 (Fig. 1). The mol­ecule displays an intra­molecular hydrogen bond of the form N—H⋯O=S, and the intra­molecular contact H12A⋯O2 is also quite short at 2.38 Å (Table 1). Accordingly, the two rings face each other in a roughly ‘V-shaped’ form around the central SO2 unit, with an inter­planar angle of 53.45 (5)° and torsion angles C7—C6⋯N1—N2 = −13.10 (10) and C11—C6⋯N1—C5 = 21.26 (11)°. The corresponding angle N1—S1—C6 is the narrowest at S1 (the largest is, as expected, O1=S=O2). In the pyrazole ring, the bond C4—C5 is the shortest, consistent with a major contribution from the resonance form shown in the Scheme. The exocyclic C5—N3 bond is appreciably shorter than the two C—N bonds in the ring. The side-chain atom sequence C12—C13—O5—C14—C15 displays an extended conformation. See Table 2 for selected mol­ecular dimensions.

Figure 1.

Figure 1

Structure of the title compound 4 in the crystal. Ellipsoids represent 50% probability levels. The dashed line indicates the intra­molecular hydrogen bond.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H01⋯O1 0.866 (19) 2.355 (19) 2.8296 (15) 114.8 (15)
N3—H01⋯O1i 0.866 (19) 2.593 (19) 3.3644 (15) 148.8 (16)
N3—H02⋯O3ii 0.871 (19) 1.961 (19) 2.8257 (15) 171.5 (17)
C12—H12A⋯O2 0.99 2.38 3.0214 (16) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Selected geometric parameters (Å, °).

N1—C5 1.4305 (15) N3—C5 1.3306 (16)
N1—N2 1.4313 (14) C3—C4 1.4184 (18)
N2—C3 1.4139 (15) C4—C5 1.3640 (17)
       
O2—S1—O1 120.63 (6) N1—S1—C6 104.30 (5)
       
C14—O5—C13—C12 −175.81 (11) C13—O5—C14—C15 158.95 (12)

Supra­molecular features  

Two classical hydrogen bonds (Table 1) are observed, one from each hydrogen atom of the amino group; the contact H01⋯O1i, involving the same hydrogen atom that forms the intra­molecular hydrogen bond, is however much longer than H02⋯O3ii. The mol­ecules are thereby connected to form layers parallel to the bc plane (Fig. 2).

Figure 2.

Figure 2

Packing diagram of 4 projected parallel to the bc plane. Dashed lines indicate inter­molecular hydrogen bonds (intra­molecular H bonds are omitted). Hydrogen atoms not involved in this hydrogen bonding system are omitted.

Database survey  

A search of the Cambridge Database (Version 5.4; Groom et al., 2016) for the fragment Ar-SO2 bonded to one nitro­gen atom of an NNCCC ring (all atoms three-coordinate, any bond orders and any or no other substituents) gave only two hits, our previously reported structures NARCOY (Ar = Ph; Elgemeie et al., 1998) and LERBIV (Ar = p-Tol; Elgemeie et al., 2013). These are closely related, but the former is pseudosymmetric; for a detailed discussion, see Elgemeie et al. (2013). Both bear the same oxo and amino substituents as in the current structure; the latter is, however, substituted at N2, so that one fewer hydrogen-bond donor is available and the packing is different from those of the previous structures.

Synthesis and crystallization  

A mixture of compound 1 (0.01 mol), ethyl bromo­acetate 2 (0.01 mol) and anhydrous potassium carbonate (0.01 mol) in N,N-di­methyl­formamide (5 mL) was stirred at room temperature for 2 h. The mixture was poured onto ice–water; the solid thus formed was filtered off and recrystallized from ethanol to give pale yellow crystals in 60% yield, m.p. = 394 K. IR (KBr, cm−1): ν 3330, 3250 (NH2), 1730 (ester C=O), 1690 (ring C=O); 1H NMR (DMSO-d 6): δ = 1.17 (t, 3H, J = 7.2 Hz, CH3), 4.07 (q, 2H, J = 7.2 Hz, CH2), 4.34 (s, 1H, CH), 4.43 (s, 2H, CH2), 7.34 (s, 2H, NH2), 7.63–7.88 (m, 5H, Ar). Analysis calculated C13H15N3O5S (325.34); C, 47.99; H, 4.65; N, 12.92; S, 9.85. Found: C, 48.17; H, 4.84; N, 13.15; S, 9.67%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The NH hydrogen atoms were refined freely. The methyl group was refined as an idealized rigid group allowed to rotate but not tip (‘AFIX 137′; C—H 0.98 Å, H—C—H 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The U(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent U iso value of the parent carbon atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C13H15N3O5S
M r 325.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.2139 (4), 8.8122 (4), 18.3486 (7)
β (°) 104.521 (4)
V3) 1442.22 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.35 × 0.30 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.964, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 74051, 4193, 3708
R int 0.044
(sin θ/λ)max−1) 0.704
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.085, 1.11
No. of reflections 4193
No. of parameters 208
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.31

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020002674/nr2077sup1.cif

e-76-00481-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002674/nr2077Isup2.hkl

e-76-00481-Isup2.hkl (334.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020002674/nr2077Isup3.cml

CCDC reference: 1986369

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C13H15N3O5S F(000) = 680
Mr = 325.34 Dx = 1.498 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.2139 (4) Å Cell parameters from 16307 reflections
b = 8.8122 (4) Å θ = 2.6–30.3°
c = 18.3486 (7) Å µ = 0.25 mm1
β = 104.521 (4)° T = 100 K
V = 1442.22 (11) Å3 Tablet, colourless
Z = 4 0.35 × 0.30 × 0.15 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 4193 independent reflections
Radiation source: fine-focus sealed X-ray tube 3708 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1 Rint = 0.044
ω–scan θmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) h = −12→12
Tmin = 0.964, Tmax = 1.000 k = −12→12
74051 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: mixed
wR(F2) = 0.085 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.8673P] where P = (Fo2 + 2Fc2)/3
4193 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The NH hydrogens were refined freely. The methyl was refined as an idealized rigid group allowed to rotate but not tip. Other hydrogens were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21827 (3) 0.35269 (3) 0.02872 (2) 0.01371 (8)
N1 0.33782 (11) 0.22191 (12) 0.08270 (6) 0.01304 (19)
N2 0.25215 (11) 0.11750 (12) 0.11476 (6) 0.0142 (2)
N3 0.54212 (13) 0.38935 (14) 0.13239 (7) 0.0187 (2)
H01 0.547 (2) 0.411 (2) 0.0871 (11) 0.029 (5)*
H02 0.602 (2) 0.431 (2) 0.1716 (11) 0.027 (4)*
O1 0.31374 (10) 0.45322 (11) 0.00110 (5) 0.01845 (19)
O2 0.10901 (10) 0.26285 (11) −0.02197 (5) 0.01864 (19)
O3 0.27967 (10) 0.00832 (11) 0.23139 (5) 0.0201 (2)
O4 0.32627 (13) −0.17922 (12) −0.00343 (6) 0.0282 (2)
O5 0.46016 (11) −0.09414 (11) 0.10922 (5) 0.0206 (2)
C3 0.32177 (13) 0.10511 (15) 0.19250 (7) 0.0151 (2)
C4 0.43781 (13) 0.21500 (15) 0.20999 (7) 0.0159 (2)
H4 0.497420 0.238013 0.258957 0.019*
C5 0.44943 (13) 0.28208 (14) 0.14470 (7) 0.0139 (2)
C6 0.13579 (13) 0.44475 (14) 0.09267 (7) 0.0148 (2)
C7 0.00733 (14) 0.38207 (15) 0.10759 (7) 0.0187 (2)
H7 −0.038852 0.294967 0.081123 0.022*
C8 −0.05126 (15) 0.45024 (17) 0.16212 (8) 0.0219 (3)
H8 −0.137945 0.408731 0.173735 0.026*
C9 0.01580 (15) 0.57863 (17) 0.19982 (8) 0.0223 (3)
H9 −0.025685 0.624603 0.236866 0.027*
C10 0.14298 (15) 0.64049 (16) 0.18388 (7) 0.0206 (3)
H10 0.187588 0.728962 0.209625 0.025*
C11 0.20494 (14) 0.57298 (15) 0.13031 (7) 0.0173 (2)
H11 0.292829 0.613492 0.119539 0.021*
C12 0.20730 (14) −0.01978 (15) 0.07046 (7) 0.0189 (2)
H12A 0.136124 0.008368 0.022367 0.023*
H12B 0.153689 −0.087254 0.098087 0.023*
C13 0.33651 (15) −0.10706 (15) 0.05324 (7) 0.0185 (2)
C14 0.59637 (16) −0.16389 (17) 0.09781 (8) 0.0225 (3)
H14A 0.602432 −0.149340 0.045151 0.027*
H14B 0.596692 −0.274125 0.108255 0.027*
C15 0.72666 (16) −0.08824 (19) 0.15109 (8) 0.0263 (3)
H15A 0.724485 0.020857 0.140513 0.039*
H15B 0.820526 −0.131624 0.144566 0.039*
H15C 0.720047 −0.104563 0.202995 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01461 (14) 0.01428 (15) 0.01147 (13) 0.00241 (10) 0.00185 (10) 0.00165 (10)
N1 0.0123 (4) 0.0133 (5) 0.0126 (4) 0.0006 (4) 0.0014 (3) 0.0012 (4)
N2 0.0141 (5) 0.0141 (5) 0.0136 (4) −0.0002 (4) 0.0021 (4) 0.0024 (4)
N3 0.0174 (5) 0.0223 (6) 0.0158 (5) −0.0045 (4) 0.0029 (4) −0.0011 (4)
O1 0.0216 (4) 0.0181 (5) 0.0170 (4) 0.0021 (4) 0.0074 (3) 0.0038 (3)
O2 0.0191 (4) 0.0197 (5) 0.0137 (4) 0.0022 (4) −0.0021 (3) −0.0003 (3)
O3 0.0190 (4) 0.0245 (5) 0.0177 (4) 0.0022 (4) 0.0060 (3) 0.0066 (4)
O4 0.0372 (6) 0.0253 (5) 0.0202 (5) −0.0032 (4) 0.0037 (4) −0.0071 (4)
O5 0.0211 (5) 0.0230 (5) 0.0167 (4) 0.0060 (4) 0.0029 (3) −0.0030 (4)
C3 0.0134 (5) 0.0183 (6) 0.0136 (5) 0.0055 (4) 0.0035 (4) 0.0017 (4)
C4 0.0150 (5) 0.0199 (6) 0.0120 (5) 0.0025 (5) 0.0017 (4) −0.0010 (4)
C5 0.0112 (5) 0.0154 (6) 0.0144 (5) 0.0025 (4) 0.0019 (4) −0.0025 (4)
C6 0.0145 (5) 0.0155 (6) 0.0143 (5) 0.0042 (4) 0.0033 (4) 0.0020 (4)
C7 0.0147 (5) 0.0191 (6) 0.0210 (6) 0.0019 (5) 0.0023 (5) 0.0017 (5)
C8 0.0157 (6) 0.0273 (7) 0.0243 (6) 0.0040 (5) 0.0078 (5) 0.0047 (5)
C9 0.0226 (6) 0.0265 (7) 0.0187 (6) 0.0086 (5) 0.0070 (5) 0.0018 (5)
C10 0.0238 (6) 0.0186 (6) 0.0186 (6) 0.0035 (5) 0.0039 (5) −0.0007 (5)
C11 0.0177 (6) 0.0155 (6) 0.0184 (6) 0.0016 (5) 0.0039 (4) 0.0020 (5)
C12 0.0183 (6) 0.0160 (6) 0.0194 (6) −0.0026 (5) −0.0010 (5) 0.0006 (5)
C13 0.0250 (6) 0.0130 (6) 0.0163 (6) −0.0026 (5) 0.0029 (5) 0.0018 (4)
C14 0.0249 (7) 0.0235 (7) 0.0206 (6) 0.0084 (5) 0.0086 (5) −0.0015 (5)
C15 0.0221 (6) 0.0333 (8) 0.0242 (7) 0.0047 (6) 0.0074 (5) 0.0012 (6)

Geometric parameters (Å, º)

S1—O2 1.4268 (9) C6—C7 1.3941 (17)
S1—O1 1.4280 (10) C7—C8 1.3871 (19)
S1—N1 1.7249 (10) C7—H7 0.9500
S1—C6 1.7491 (12) C8—C9 1.388 (2)
N1—C5 1.4305 (15) C8—H8 0.9500
N1—N2 1.4313 (14) C9—C10 1.388 (2)
N2—C3 1.4139 (15) C9—H9 0.9500
N2—C12 1.4583 (16) C10—C11 1.3883 (18)
N3—C5 1.3306 (16) C10—H10 0.9500
N3—H01 0.866 (19) C11—H11 0.9500
N3—H02 0.871 (19) C12—C13 1.5156 (19)
O3—C3 1.2353 (16) C12—H12A 0.9900
O4—C13 1.2023 (16) C12—H12B 0.9900
O5—C13 1.3338 (16) C14—C15 1.501 (2)
O5—C14 1.4589 (16) C14—H14A 0.9900
C3—C4 1.4184 (18) C14—H14B 0.9900
C4—C5 1.3640 (17) C15—H15A 0.9800
C4—H4 0.9500 C15—H15B 0.9800
C6—C11 1.3926 (18) C15—H15C 0.9800
O2—S1—O1 120.63 (6) C7—C8—H8 119.8
O2—S1—N1 104.37 (5) C9—C8—H8 119.8
O1—S1—N1 104.88 (5) C8—C9—C10 120.59 (12)
O2—S1—C6 109.90 (6) C8—C9—H9 119.7
O1—S1—C6 111.12 (6) C10—C9—H9 119.7
N1—S1—C6 104.30 (5) C11—C10—C9 119.97 (13)
C5—N1—N2 105.78 (9) C11—C10—H10 120.0
C5—N1—S1 115.93 (8) C9—C10—H10 120.0
N2—N1—S1 109.08 (7) C10—C11—C6 118.73 (12)
C3—N2—N1 107.87 (9) C10—C11—H11 120.6
C3—N2—C12 119.46 (10) C6—C11—H11 120.6
N1—N2—C12 114.36 (10) N2—C12—C13 114.18 (10)
C5—N3—H01 120.9 (12) N2—C12—H12A 108.7
C5—N3—H02 117.4 (12) C13—C12—H12A 108.7
H01—N3—H02 121.5 (17) N2—C12—H12B 108.7
C13—O5—C14 116.94 (10) C13—C12—H12B 108.7
O3—C3—N2 120.48 (12) H12A—C12—H12B 107.6
O3—C3—C4 131.97 (12) O4—C13—O5 125.29 (13)
N2—C3—C4 107.53 (10) O4—C13—C12 123.59 (12)
C5—C4—C3 108.53 (11) O5—C13—C12 111.11 (11)
C5—C4—H4 125.7 O5—C14—C15 107.20 (11)
C3—C4—H4 125.7 O5—C14—H14A 110.3
N3—C5—C4 130.69 (12) C15—C14—H14A 110.3
N3—C5—N1 119.50 (11) O5—C14—H14B 110.3
C4—C5—N1 109.80 (11) C15—C14—H14B 110.3
C11—C6—C7 121.97 (12) H14A—C14—H14B 108.5
C11—C6—S1 119.17 (9) C14—C15—H15A 109.5
C7—C6—S1 118.76 (10) C14—C15—H15B 109.5
C8—C7—C6 118.25 (12) H15A—C15—H15B 109.5
C8—C7—H7 120.9 C14—C15—H15C 109.5
C6—C7—H7 120.9 H15A—C15—H15C 109.5
C7—C8—C9 120.49 (12) H15B—C15—H15C 109.5
O2—S1—N1—C5 −172.95 (9) O2—S1—C6—C11 −159.28 (10)
O1—S1—N1—C5 59.29 (9) O1—S1—C6—C11 −23.16 (12)
C6—S1—N1—C5 −57.61 (10) N1—S1—C6—C11 89.33 (10)
O2—S1—N1—N2 −53.74 (9) O2—S1—C6—C7 24.42 (12)
O1—S1—N1—N2 178.50 (8) O1—S1—C6—C7 160.54 (10)
C6—S1—N1—N2 61.60 (9) N1—S1—C6—C7 −86.97 (10)
C5—N1—N2—C3 −5.93 (12) C11—C6—C7—C8 −0.47 (19)
S1—N1—N2—C3 −131.28 (8) S1—C6—C7—C8 175.72 (10)
C5—N1—N2—C12 −141.43 (10) C6—C7—C8—C9 0.85 (19)
S1—N1—N2—C12 93.23 (10) C7—C8—C9—C10 −0.3 (2)
N1—N2—C3—O3 −171.44 (11) C8—C9—C10—C11 −0.6 (2)
C12—N2—C3—O3 −38.61 (17) C9—C10—C11—C6 0.97 (19)
N1—N2—C3—C4 7.23 (13) C7—C6—C11—C10 −0.44 (19)
C12—N2—C3—C4 140.06 (11) S1—C6—C11—C10 −176.61 (10)
O3—C3—C4—C5 172.70 (13) C3—N2—C12—C13 −74.54 (14)
N2—C3—C4—C5 −5.75 (14) N1—N2—C12—C13 55.45 (14)
C3—C4—C5—N3 −179.13 (13) C14—O5—C13—O4 5.0 (2)
C3—C4—C5—N1 2.02 (14) C14—O5—C13—C12 −175.81 (11)
N2—N1—C5—N3 −176.57 (11) N2—C12—C13—O4 −147.96 (13)
S1—N1—C5—N3 −55.56 (13) N2—C12—C13—O5 32.79 (15)
N2—N1—C5—C4 2.43 (13) C13—O5—C14—C15 158.95 (12)
S1—N1—C5—C4 123.44 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H01···O1 0.866 (19) 2.355 (19) 2.8296 (15) 114.8 (15)
N3—H01···O1i 0.866 (19) 2.593 (19) 3.3644 (15) 148.8 (16)
N3—H02···O3ii 0.871 (19) 1.961 (19) 2.8257 (15) 171.5 (17)
C12—H12A···O2 0.99 2.38 3.0214 (16) 122

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y+1/2, −z+1/2.

References

  1. Azzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62–70.
  2. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  3. Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2019a). J. Mol. Struct. 1173, 707–742.
  4. Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019b). Acta Cryst. E75, 367–371. [DOI] [PMC free article] [PubMed]
  5. Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. 11, 3389–3399. [DOI] [PMC free article] [PubMed]
  6. Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099–1131.
  7. Elgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385–386.
  8. Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136–138.
  9. Elgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250–o1252.
  10. Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90–92. [DOI] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Michael, C. M., Andrew, D. N., Nuzhat, M., Parag, P. S., Chun-Hao, C., Mary, P. B., Scott, L. D., Donna, M. H. & Amos, B. S. (2007). Bioorg. Med. Chem. Lett. 17, 4761–4766.
  13. Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Shyama, S., Sergey, A. S., Boris, I. R., Ananda, H., Ying, S., Alex, Y. S. & Nicholas, D. P. C. (2009). Bioorg. Med. Chem. Lett. 19, 5773–5777.
  17. Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.
  18. Zhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 10, 1002eoc. 201901886.
  19. Zhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146–4149. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020002674/nr2077sup1.cif

e-76-00481-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002674/nr2077Isup2.hkl

e-76-00481-Isup2.hkl (334.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020002674/nr2077Isup3.cml

CCDC reference: 1986369

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES