Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Apr 14;85:221–252. doi: 10.1016/S0074-7696(08)62374-8

The Confined Function Model of the Golgi Complex: Center for Ordered Processing of Biosynthetic Products of the Rough Endoplasmic Reticulum

Alan M Tartakoff 1
PMCID: PMC7133172  PMID: 6363328

Publisher Summary

The organized and characteristic elements of the Golgi complex (GC) are the stacked smooth-surfaced cisternae, which are found in the centrosphere of all eukaryotic cells. These cisternae, in conjunction with other associated smooth-surfaced membranes, are responsible for executing net unidirectional intracellular transport (ICT) from the rough endoplasmic reticulum (RER) toward more distally located structures. This chapter focuses on the broad range of accessory activities that occur during transport, the family of “posttranslational modifications.” These events are, in all likelihood, not essential for the “primary” function of the GC yet they are crucial in allowing the cell to tailor its biosynthetic products for its own needs and the needs of the organism as a whole. In addition to modifying products of the rough endoplasmic reticulum, the GC may be involved in processing events because of its participation in other routes of vesicular traffic—for example, centripetal traffic from the cell surface. Various nonequivalent criteria have been used to ascribe processing events to the GC-autoradiography, preparative or analytic subcellular fractionation, interruption by ICT inhibitors, and delay in the impact of cycloheximide.

References

  1. Anderson D., Grimes E. J. Biol. Chem. 1982;257:14858–14864. [PubMed] [Google Scholar]
  2. Appel A., Horwitz A., Dorfman A. J. Biol. Chem. 1979;254:12199–12203. [PubMed] [Google Scholar]
  3. Ballou C. Adv. Microbiol. Physiol. 1976;14:93–158. doi: 10.1016/s0065-2911(08)60227-1. [DOI] [PubMed] [Google Scholar]
  4. Banerjee D., Redman C. J. Cell Biol. 1983;96:651–656. doi: 10.1083/jcb.96.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barland P., Smith C., Hamerman D. J. Cell Biol. 1968;37:13–26. doi: 10.1083/jcb.37.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Basu S., Goldstein J., Brown M. Science. 1983;219:871–873. doi: 10.1126/science.6823554. [DOI] [PubMed] [Google Scholar]
  7. Beyer T., Sadler J., Rearick J., Paulson J., Hill R. Adv. Enzymol. 1981;52:24–175. doi: 10.1002/9780470122976.ch2. [DOI] [PubMed] [Google Scholar]
  8. Bosch J., Ziemiecki R., Schwarz A., Friis R. Virology. 1982;119:122–132. doi: 10.1016/0042-6822(82)90070-8. [DOI] [PubMed] [Google Scholar]
  9. Bracha M., Schlesinger M. Virology. 1976;74:441–449. doi: 10.1016/0042-6822(76)90350-0. [DOI] [PubMed] [Google Scholar]
  10. Brandan E., Fleischer B. Biochemistry. 1982;21:4640–4645. doi: 10.1021/bi00262a019. [DOI] [PubMed] [Google Scholar]
  11. Bretz R., Bretz H., Palade G. J. Cell Biol. 1980;84:87–101. doi: 10.1083/jcb.84.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Briand J., Andrews S., Calik E., Conway N., Young J. J. Biol. Chem. 1981;256:12205–12207. [PubMed] [Google Scholar]
  13. Bumol T., Reisfeld R. Proc. Natl. Acad. Sci. U.S.A. 1982;79:1245–1249. doi: 10.1073/pnas.79.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carey D., Sommers L., Hirschberg C. Cell. 1980;19:597–605. doi: 10.1016/s0092-8674(80)80036-5. [DOI] [PubMed] [Google Scholar]
  15. Clermont Y., Lalli M., Rambourg A. Am. J. Anat. 1981;201:613–622. doi: 10.1002/ar.1092010405. [DOI] [PubMed] [Google Scholar]
  16. Comb M., Seeburg P., Adelman J., Eiden L., Herbert E. Nature (London) 1982;295:663–666. doi: 10.1038/295663a0. [DOI] [PubMed] [Google Scholar]
  17. Coudron C., Koerner T., Jacobson I., Rodén L., Schwartz N. Fed. Proc. 1980;39:1671. [Google Scholar]
  18. Creek K., Morré D. Biochim. Biophys. Acta. 1981;643:292–305. doi: 10.1016/0005-2736(81)90075-4. [DOI] [PubMed] [Google Scholar]
  19. Crine P., Dufour L. Biochem. Biophys. Res. Commun. 1982;109:500–506. doi: 10.1016/0006-291x(82)91749-1. [DOI] [PubMed] [Google Scholar]
  20. Docherty K., Steiner D. Annu. Rev. Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  21. Dorfman A. In: Hay E., editor. Plenum; New York: 1982. (Cell Biology of the Extracellular Matrix). [Google Scholar]
  22. Dunphy W., Fries E., Urbani L., Rothman J. Proc. Natl. Acad. Sci. U.S.A. 1981;78:7453–7457. doi: 10.1073/pnas.78.12.7453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Esmon B., Novick P., Schekman P. Cell. 1981;25:452–460. doi: 10.1016/0092-8674(81)90063-5. [DOI] [PubMed] [Google Scholar]
  24. Eppler C., Morré D., Keenan T. Biochim. Biophys. Acta. 1980;619:318–331. doi: 10.1016/0005-2760(80)90080-6. [DOI] [PubMed] [Google Scholar]
  25. Farquhar M. Transport of Macromolecules in Cellular Systems. 1978:341–362. Dahlem Life Sciences Report II. [Google Scholar]
  26. Farquhar M., Palade G. J. Cell Biol. 1981;91:77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fellini S., Kimura J., Hascall V. J. Cell Biol. 1981;256:7883–7889. [PubMed] [Google Scholar]
  28. Fishman P., Brady R. Science. 1976;194:906–915. doi: 10.1126/science.185697. [DOI] [PubMed] [Google Scholar]
  29. Fishman P. Miller-Podraza H.1983). In press.
  30. Fleischer B. J Supramol. Struct. 1977;7:79–89. doi: 10.1002/jss.400070108. [DOI] [PubMed] [Google Scholar]
  31. Fleischer B. Academic Press; New York: 1978. pp. 27–47. (Cell Surface Carbohydrate Chemistry). [Google Scholar]
  32. Fleischer B., Zambrano F. J. Biol. Chem. 1974;249:5995–6003. [PubMed] [Google Scholar]
  33. Fleischer B., Brandan E. In: Popper H., Gudat F., Kottgen E., Rentter W., editors. MTP Press; Lancaster, England: 1983. (Structural Carbohydrates in the Liver). [Google Scholar]
  34. Fries E., Rothman J. J. Cell Biol. 1981;90:697–704. doi: 10.1083/jcb.90.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Gabel C., Goldberg D., Kornfeld S. J. Cell Biol. 1982;95:536–542. doi: 10.1083/jcb.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Garten W., Bosch F., Linder D., Rott R., Klenk H.-D. Virology. 1981;115:361–374. doi: 10.1016/0042-6822(81)90117-3. [DOI] [PubMed] [Google Scholar]
  37. Glembotski C. J. Biol. Chem. 1981;256:7433–7439. [PubMed] [Google Scholar]
  38. Godman G., Lane N. J. Cell Biol. 1964;21:353–356. doi: 10.1083/jcb.21.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Goldberg D., Kornfeld S. J. Biol. Chem. 1981;256:13060–13067. [PubMed] [Google Scholar]
  40. Goldberg D., Kornfeld S. J. Biol. Chem. 1983;258:3159–3165. [PubMed] [Google Scholar]
  41. Goldfischer S. J. Histochem. Cytochem. 1982;30:717–733. doi: 10.1177/30.7.6286754. [DOI] [PubMed] [Google Scholar]
  42. Green J., Griffiths G., Louvard G., Quinn P., Warren G. J. Mol. Biol. 1981;152:663–698. doi: 10.1016/0022-2836(81)90122-4. [DOI] [PubMed] [Google Scholar]
  43. Griffiths G., Brands R., Louvard D., Warren G. J. Cell Biol. 1983;95:781–792. doi: 10.1083/jcb.95.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Griffiths G., Quinn P., Warren G. J. Cell Biol. 1983;96:835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gumbiner B., Kelly R. Proc. Natl. Acad. Sci. U.S.A. 1981;78:318–322. doi: 10.1073/pnas.78.1.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hakamori S. Annu. Rev. Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  47. Hand A., Oliver C. Methods Cell Biol. 1981;23:137–153. [PubMed] [Google Scholar]
  48. Hanover J., Elting J., Mintz G., Lennarz W. J. Biol. Chem. 1982;257:10172–10177. [PubMed] [Google Scholar]
  49. Hanover J., Lennarz W., Young J. J. Biol. Chem. 1980;255:6713–6718. [PubMed] [Google Scholar]
  50. Hart G., Lennarz W. J. Biol. Chem. 1978;253:5795–5801. [PubMed] [Google Scholar]
  51. Hascall V., Hascall G. In: Hay E., editor. Plenum; New York: 1982. (Cell Biology of the Extracellular Matrix). [Google Scholar]
  52. Hasilik A., von Figura K. Eur. J. Biochem. 1981;121:125–129. doi: 10.1111/j.1432-1033.1981.tb06440.x. [DOI] [PubMed] [Google Scholar]
  53. Herbert E., Uhler M. Cell. 1982;30:1–2. doi: 10.1016/0092-8674(82)90002-2. [DOI] [PubMed] [Google Scholar]
  54. Herzog V., Bücherm T., Sebald W., Weiss H. Biological Chemistry of Organelle Formation. 1980:119–145. [Google Scholar]
  55. Hinman B., Herbert E. Biochemistry. 1980;19:5395–5402. doi: 10.1021/bi00564a038. [DOI] [PubMed] [Google Scholar]
  56. Hino Y., Asano A., Sato R. Biochem. J. (Tokyo) 1978;83:909–942. doi: 10.1093/oxfordjournals.jbchem.a132018. [DOI] [PubMed] [Google Scholar]
  57. Holzer H., Heinrich P. Annu. Rev. Biochem. 1980;49:63–91. doi: 10.1146/annurev.bi.49.070180.000431. [DOI] [PubMed] [Google Scholar]
  58. Horwitz A., Dorfman A. J. Cell Biol. 1971;38:358–368. doi: 10.1083/jcb.38.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Howell K., Palade G. J. Cell Biol. 1982;92:833–845. doi: 10.1083/jcb.92.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Ito A., Palade G. J. Cell Biol. 1978;79:590–597. doi: 10.1083/jcb.79.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Johnson D., Schlesinger M. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  62. Johnson D., Spear P. Cell. 1983;32:987–997. doi: 10.1016/0092-8674(83)90083-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Jokinen M., Ulmanen I., Kándersson L., Uäriäinen L., Gahmberg C. Eur. J. Biochem. 1981;114:393–397. doi: 10.1111/j.1432-1033.1981.tb05159.x. [DOI] [PubMed] [Google Scholar]
  64. Kääriäinen L., Hasimoto K., Saraste J., Virtanen I., Pentinnen K. J. Cell Biol. 1980;87:783–791. doi: 10.1083/jcb.87.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kajiwara T., Tanzer M. Arch. Biochem. Biophys. 1982;214:51–55. doi: 10.1016/0003-9861(82)90007-8. [DOI] [PubMed] [Google Scholar]
  66. Keenan T., Morré D., Basu S. J. Biol. Chem. 1974;249:310–315. [PubMed] [Google Scholar]
  67. Khatra B., Herries D., Brew K. Eur. J. Biochem. 1974;44:537–560. doi: 10.1111/j.1432-1033.1974.tb03513.x. [DOI] [PubMed] [Google Scholar]
  68. Kiang W.-L., Krusius T., Finne J., Margolis R., Margolis R. J. Biol. Chem. 1982;257:1651–1659. [PubMed] [Google Scholar]
  69. Kim Y., Perdomo J., Nordberg J. J. Biol. Chem. 1971;246:5466–5476. [PubMed] [Google Scholar]
  70. Kimura J., Osdoby P., Caplan A., Hascall V. J. Biol. Chem. 1978;253:4721–4779. [PubMed] [Google Scholar]
  71. Kimura J., Hardingham T., Hascall V., Solursch M. J. Biol. Chem. 1979;254:2600–2609. [PubMed] [Google Scholar]
  72. Kimura J., Caputo C., Hascall V. J. Biol. Chem. 1981;256:4368–4376. [PubMed] [Google Scholar]
  73. Kimura J., Ihonam E., Hascall V., Reiner A., Poole A. J. Biol. Chem. 1981;256:7890–7897. [PubMed] [Google Scholar]
  74. Kjellen L., Petterson I., Höök M. Proc. Natl. Acad. Sci. U.S.A. 1981;78:5372–5375. doi: 10.1073/pnas.78.9.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Kleine T. Int. Rev. Connec. Tissue Res. 1981;19:27–98. doi: 10.1016/b978-0-12-363709-3.50008-5. [DOI] [PubMed] [Google Scholar]
  76. Klenk H.-D., Rott R. Current Top. Microbiol. Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  77. Loh Y., Gaines H. Proc. Natl. Acad. Sci. U.S.A. 1982;79:108–112. doi: 10.1073/pnas.79.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Kornblatt M., Knapp A., Leinine M., Schachter H., Murray R. Can. J. Biochem. 1974;52:689. doi: 10.1139/o74-098. [DOI] [PubMed] [Google Scholar]
  79. Kornfeld S. Academic Press; New York: 1982. pp. 3–23. (The Glycoconjugates III). [Google Scholar]
  80. Krag S., Robbins A. J. Biol. Chem. 1982;257:8424–8431. [PubMed] [Google Scholar]
  81. Kramer M., Geuze J. J. Histochem. Cytochem. 1980;28:381–387. doi: 10.1177/28.5.7381190. [DOI] [PubMed] [Google Scholar]
  82. Kuhn N., White A. Biochem. J. 1977;168:423–433. doi: 10.1042/bj1680423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Land H., Schutz G., Schmale Richter D. Nature (London) 1982;295:299–303. doi: 10.1038/295299a0. [DOI] [PubMed] [Google Scholar]
  84. Li Y.-T., Li S.-C. Adv. Carbohydr. Chem. Biochem. 1982;40:235–286. doi: 10.1016/s0065-2318(08)60110-9. [DOI] [PubMed] [Google Scholar]
  85. Lindahl V., Höök M., Bäckström G., Jacobsson I., Riesenfeld J., Malmström A., Rodén L., Feingold D. Fed. Proc. 1977;36:19–23. [PubMed] [Google Scholar]
  86. Lindahl V., Höök M. Annu. Rev. Biochem. 1978;47:385–417. doi: 10.1146/annurev.bi.47.070178.002125. [DOI] [PubMed] [Google Scholar]
  87. Lohmander L., De Luca S., Hascall V., Caputo C., Kimura J., Heinegard D. J. Biol. Chem. 1980;255:6084–6091. [PubMed] [Google Scholar]
  88. De Luca S., Lohmander L., Nilsson B., Hascall V., Caplan A. J. Biol. Chem. 1980;255:6077–6078. [PubMed] [Google Scholar]
  89. Madoff D., Lenard J. Cell. 1982;28:821–829. doi: 10.1016/0092-8674(82)90061-7. [DOI] [PubMed] [Google Scholar]
  90. Mason R., d'Annille L., Kimura J., Hascall V. Biochem. J. 1982;207:445–457. doi: 10.1042/bj2070445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Melchers F. Biochem, J. 1970;119:765–772. doi: 10.1042/bj1190765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Miller-Podraza H., Fishman P. Biochemistry. 1982;21:3265–3270. doi: 10.1021/bi00257a003. [DOI] [PubMed] [Google Scholar]
  93. Mitchell D., Hardingham T. Biochem. J. 1981;196:521–529. doi: 10.1042/bj1960521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Mitchell D., Hardingham T. Biochem. J. 1982;202:249–254. doi: 10.1042/bj2020249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Morré D., Ovtracht L. Int. Rev. Cytol. Suppl. 1977;5:61–188. [PubMed] [Google Scholar]
  96. Neufeld E., Ashwell G. Plenum Press; New York: 1980. pp. 242–266. (Biochemistry of Glycoproteins and Proteoglycans). [Google Scholar]
  97. Neutra M., Leblond C. J. Cell Biol. 1966;30:137–150. doi: 10.1083/jcb.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Niemann H., Boscher B., Evans D., Rosing M., Tamura T., Klenk H.-D. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Nilsson B., Nakazawa K., Hassell J., Newsome D., Hascall V. J. Biol. Chem. 1983;258:6056–6063. [PubMed] [Google Scholar]
  100. Nishimoto S., Kajiwara T., Ledger P., Tanzer M. J. Biol. Chem. 1982;257:11712–11716. [PubMed] [Google Scholar]
  101. Nishimoto S., Kajiwara T., Tanzer M. J. Biol. Chem. 1982;257:10558–10561. [PubMed] [Google Scholar]
  102. Oda K., Ikehara Y., Kato K. Biochem. Biophys. Res. Commun. 1978;536:97–105. [Google Scholar]
  103. Oda K., Kato Y. Biochem. Biophys. Res. Commun. 1982;105:766–772. doi: 10.1016/0006-291x(82)91500-5. [DOI] [PubMed] [Google Scholar]
  104. Oda K., Ikehara Y. Biochem. Biophys. Acta. 1982;107:561–567. doi: 10.1016/0006-291x(82)91528-5. [DOI] [PubMed] [Google Scholar]
  105. Ohkubo I., Ishibashi T., Taniguchi N., Makita A. Eur. J. Biochem. 1980;112:111–118. doi: 10.1111/j.1432-1033.1980.tb04992.x. [DOI] [PubMed] [Google Scholar]
  106. Pacuszka T., Duffard R., Nishimura R., Brady R., Fishman P. J. Biol. Chem. 1978;253:5839–5846. [PubMed] [Google Scholar]
  107. Parkhouse R., Melchers F. Biochem. J. 1971;125:235–240. doi: 10.1042/bj1250235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Pesonen M., Kääriainen L. J. Mol. Biol. 1982;158:213–230. doi: 10.1016/0022-2836(82)90430-2. [DOI] [PubMed] [Google Scholar]
  109. Pestalozzi D., Hess M., Berger E. J. Histochem. Cytochem. 1982;30:1146–1152. doi: 10.1177/30.11.6815262. [DOI] [PubMed] [Google Scholar]
  110. Pohlmann R., Waheed A., Hasilik A., von Figura K. J. Biol. Chem. 1982;257:5323–5325. [PubMed] [Google Scholar]
  111. Pohlmann R. Druger S. Hasilik A. von Figura K. (1983). In press. [DOI] [PMC free article] [PubMed]
  112. Quinn P., Griffiths G., Warren G. J. Cell Biol. 1983;96:851–856. doi: 10.1083/jcb.96.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Redman C., Banerjee D., Manning C., Huang C., Green K. J. Cell Biol. 1978;77:400–416. doi: 10.1083/jcb.77.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Redman C., Banerjee S., Yu S. Methods Cell Biol. 1981;23:231–245. doi: 10.1016/s0091-679x(08)61501-0. [DOI] [PubMed] [Google Scholar]
  115. Reggio H., Palade G. J. Cell Biol. 1978;77:288–314. doi: 10.1083/jcb.77.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Regoeczi E., Chindemi P., Debanne M., Charlwood P. Proc. Natl. Acad. Sci. U.S.A. 1982;79:2226–2230. doi: 10.1073/pnas.79.7.2226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Reitman M., Kornfeld S. J. Biol. Chem. 1981;256:11977–11980. [PubMed] [Google Scholar]
  118. Rodén L. Plenumm; New York: 1980. pp. 267–371. (Biochemistry of Glycoproteins and Proteoglvcans). [Google Scholar]
  119. Rogers G., Gruenebaum J., Boime I. J. Biol. Chem. 1982;257:4179–4186. [PubMed] [Google Scholar]
  120. Roth, J. (personal communication).
  121. Roth J., Berger E. J. Cell Biol. 1982;93:223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Rothman J. Science. 1981;213:1212. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
  123. Rothman J., Fries E. J. Cell Biol. 1981;89:162–168. doi: 10.1083/jcb.89.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Schachter H., Narasimhan S., Gleeson P., Vella G., Brockhausen I. Phil. Trans. R. Soc. London. 1982;B300:145–159. doi: 10.1098/rstb.1982.0162. [DOI] [PubMed] [Google Scholar]
  125. Schachter H., Roseman S. Plenum; New York: 1980. pp. 85–160. (Biochemistry of Glycoproteins and Proteoglycans). [Google Scholar]
  126. Schachter H., Williams D. In: Chantler E., Edler J., Elstein M., editors. II. Plenum; New York: 1982. pp. 3–28. (Mucus in Health and Disease). [Google Scholar]
  127. Schauer R. Proc. Int. Symp. Glycoconj. 4th. 1979;II:597–612. [Google Scholar]
  128. Schlesinger M. Annu. Rev. Biochem. 1981;50:193–206. doi: 10.1146/annurev.bi.50.070181.001205. [DOI] [PubMed] [Google Scholar]
  129. Schmidt M. Curr. Topics Microbiol. Immunol. 1983;102:101–130. doi: 10.1007/978-3-642-68906-2_3. [DOI] [PubMed] [Google Scholar]
  130. Schmidt M., Schlesinger M. J. Biol. Chem. 1980;255:3334–3339. [PubMed] [Google Scholar]
  131. Schwaiger H., Hasilik A., von Figura K., Wiemken A., Tanner W. Biochem. Biophys. Res. Commun. 1982;104:950–956. doi: 10.1016/0006-291x(82)91341-9. [DOI] [PubMed] [Google Scholar]
  132. Schwartz N. FEBS Lett. 1975;49:342–345. doi: 10.1016/0014-5793(75)80781-2. [DOI] [PubMed] [Google Scholar]
  133. Scott J., Orford C., Hughes E. Biochem. J. 1981;195:573–581. doi: 10.1042/bj1950573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Schur B. Bichim. Biophys. Acta. 1975;415:473–512. doi: 10.1016/0304-4157(75)90007-6. [DOI] [PubMed] [Google Scholar]
  135. Silbert J., Freilich L. Biochem. J. 1980;190:307–313. doi: 10.1042/bj1900307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Sly W., Fischer H., Gonzalez-Noriega A., Grubb J., Natowicz M. Methods Cell Biol. 1981;23:191–219. doi: 10.1016/s0091-679x(08)61499-5. [DOI] [PubMed] [Google Scholar]
  137. Smith C. J. Histochem. Cytochem. 1981;29:822–836. doi: 10.1177/29.7.6267127. [DOI] [PubMed] [Google Scholar]
  138. Snider M., Huffaker T., Vouto J., Robbins P. Phil. Trans. R. Soc. London. 1982;B300:207–223. doi: 10.1098/rstb.1982.0167. [DOI] [PubMed] [Google Scholar]
  139. Sommers L., Hirschberg C. J. Biol. Chem. 1982;257:10811–10817. [PubMed] [Google Scholar]
  140. Spiro R., Spiro M. Phil. Trans. R. Soc. London. 1982;B300:9–20. [Google Scholar]
  141. Srinivas R., Melsen L., Compans R. J. Virol. 1982;42:1067–1075. doi: 10.1128/jvi.42.3.1067-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Stein O., Stein Y. J. Cell Biol. 1967;33:319–339. doi: 10.1083/jcb.33.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Steiner A., Rome L. Arch. Biol. Biophys. 1982;214:681–687. doi: 10.1016/0003-9861(82)90074-1. [DOI] [PubMed] [Google Scholar]
  144. Steiner D., Kemmler W., Tager H., Petesson J. Fed. Proc. 1974;33:2105–2115. [PubMed] [Google Scholar]
  145. Stevens T., Esmon B., Schekman R. Cell. 1982;30:439–448. doi: 10.1016/0092-8674(82)90241-0. [DOI] [PubMed] [Google Scholar]
  146. Strous G., Berger E. J. Biol. Chem. 1982;257:7623–7628. [PubMed] [Google Scholar]
  147. Strous G., Lodish H. Cell. 1980;22:709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
  148. Tartakoff A. Int. Rev. Exp. Pathol. 1980;22:227–251. [PubMed] [Google Scholar]
  149. Tartakoff A. Phil. Trans. R. Soc. London. 1982;B300:173–184. doi: 10.1098/rstb.1982.0164. [DOI] [PubMed] [Google Scholar]
  150. Tartakoff A. Cell. 1983;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  151. Tartakoff A. Methods Enzymol. 1983:98. doi: 10.1016/0076-6879(83)98138-7. in press. [DOI] [PubMed] [Google Scholar]
  152. Tartakoff A. J. Cell Biol. 1983 in press. [Google Scholar]
  153. Tartakoff A., Vassalli P. J. Cell Biol. 1979;83:284–299. doi: 10.1083/jcb.83.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Telser A., Robinson H., Dorfman A. Proc. Natl. Acad. Sci. U.S.A. 1965;54:912–919. doi: 10.1073/pnas.54.3.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Thonar E., Lohmander S., Kimura J., Fellini S., Yanagashita M., Hascall V. J. Biol. Chem. 1983 in press. [PubMed] [Google Scholar]
  156. Uvnäs B., Aborg C.-H. Acta Physiol. Scand. 1977;99:476–483. doi: 10.1111/j.1748-1716.1977.tb10401.x. [DOI] [PubMed] [Google Scholar]
  157. Vertel B., Dorfman A. Proc. Natl. Acad. Sci. U.S.A. 1979;76:1261–1264. doi: 10.1073/pnas.76.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Vladutiu G., Rattazzi M. Biochem. Biophys. Res. Commun. 1975;67:956–964. doi: 10.1016/0006-291x(75)90768-8. [DOI] [PubMed] [Google Scholar]
  159. Vladutiu G., Rattazzi M. Biochem. J. 1980;192:813–820. doi: 10.1042/bj1920813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Waheed A., Hasilik A., von Figura K. J. Biol. Chem. 1982;257:12322–12331. [PubMed] [Google Scholar]
  161. Wibo M., Thinès-Sempoux D., Amar-Costesec A., Beaufay H., Godelaine D. J. Cell Biol. 1981;89:456–474. doi: 10.1083/jcb.89.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Yamakawa T., Nagai Y. Trends Biochem. Sci. 1978;3:128–131. [Google Scholar]
  163. Young R. J. Cell Biol. 1973;57:175–189. doi: 10.1083/jcb.57.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Zanini A., Giannattasio G., Nussdorfer G., Margolis R., Margolis R., Meldolesi J. J. Cell Biol. 1980;86:260–279. doi: 10.1083/jcb.86.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Ziemiecki A., Garoff H., Simons K. J. Gen. Virol. 1980;50:111–123. doi: 10.1099/0022-1317-50-1-111. [DOI] [PubMed] [Google Scholar]

Articles from International Review of Cytology are provided here courtesy of Elsevier

RESOURCES