Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;96:795–801. doi: 10.1016/S0076-6879(83)96067-6

[63] Fatty acid acylation of eukaryotic cell proteins

Milton J Schlesinger
PMCID: PMC7133178  PMID: 6656653

Publisher Summary

This chapter presents an overview of fatty acid acylation of eukaryotic cell proteins. The chapter describes the distribution of fatty acid acylated proteins, distribution of fatty acid acylated proteins, analysis of the fatty acid, and site and mechanism of fatty acid acylation. Many of the data pertaining to fatty acid acylation of eukaryotic cell membrane proteins come from studies with those glycoproteins that form the external spikes on enveloped RNA animal viruses. The procedures for detecting and identifying protein-bound fatty acids rely primarily on incorporating high specific radioactive labeled fatty acids into growing tissue culture cells and analyzing proteins from these cells by electrophoresis in sodium dodecyl sulfate (SDS)-polyacrylamide gels. The function of fatty acid in membrane proteins is unknown, and it is believed that fatty acid acylation might be important for proper intracellular transport of proteins destined to be localized to the plasma membrane.

References

  • 1.Inouye M. Biomembranes. 1979;10:141. doi: 10.1007/978-1-4615-6564-2_4. [DOI] [PubMed] [Google Scholar]
  • 2.Schlesinger M.J. Annu. Rev. Biochem. 1981;50:193. doi: 10.1146/annurev.bi.50.070181.001205. [DOI] [PubMed] [Google Scholar]
  • 3.Lodish H.F., Braell W.A., Schwartz A.L., Strous G.J.A.M., Zilberstein A. Int. Rev. Cytol., Suppl. 1981;12:247. doi: 10.1016/b978-0-12-364373-5.50016-0. [DOI] [PubMed] [Google Scholar]
  • 4.Schmidt M.F.G., Bracha M., Schlesinger M.J. Vol. 76. 1979. p. 1687. (Proc. Natl. Acad. Sci. U.S.A.). [Google Scholar]
  • 5.Schmidt M.F.G. Virology. 1982;116:327. doi: 10.1016/0042-6822(82)90424-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Schmidt M.F.G., Schlesinger M.J. Cell. 1980;17:813. doi: 10.1016/0092-8674(79)90321-0. [DOI] [PubMed] [Google Scholar]
  • 7.Sherman G., Folch-Pi J. Biochem. Biophys. Res. Commun. 1971;44:157. doi: 10.1016/s0006-291x(71)80172-9. [DOI] [PubMed] [Google Scholar]
  • 8.Omary M.B., Trowbridge I.S. J. Biol. Chem. 1981;256:4715. [PubMed] [Google Scholar]
  • 9.Ploegh H.L., Orr H.T., Strominger J.L. Cell. 1981;24:287. doi: 10.1016/0092-8674(81)90318-4. [DOI] [PubMed] [Google Scholar]
  • 10.Schlesinger M.J., Magee A.I., Schmidt M.F.G. J. Biol. Chem. 1980;255:10021. [PubMed] [Google Scholar]
  • 11.Folch-Pi J., Lees M.B. J. Biol. Chem. 1951;191:807. [PubMed] [Google Scholar]
  • 12.Jolles J., Nussbaum J.L., Schoentgen F., Mandel P., Jollès P. FEBS Lett. 1977;74:190. doi: 10.1016/0014-5793(77)80844-2. [DOI] [PubMed] [Google Scholar]
  • 13.Reid M.S., Bieleski R. Anal. Biochem. 1968;22:374. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
  • 14.Laemmli U.K. Nature (London) 1970;227:680. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 15.Bonner W.M., Laskey R.A. Eur. J. Biochem. 1974;46:83. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  • 16.Cullen S.E., Schwartz B.D. J. Immunol. 1976;117:136. [PubMed] [Google Scholar]
  • 17.Schlesinger M.J., Magee A.I., Schmidt M.F.G. In: The Replication of Negative Strand Viruses. Bishop D.L., Compans R.W., editors. Elsevier; Amsterdam: 1981. p. 673. [Google Scholar]
  • 18.Petrie W.A., Jr., Wagner R.R. Virology. 1980;107:543. doi: 10.1016/0042-6822(80)90323-2. [DOI] [PubMed] [Google Scholar]
  • 19.Capone J., Toneguzzo F., Ghosh H.P. J. Biol. Chem. 1982;257:16. [PubMed] [Google Scholar]
  • 20.Rice C.M., Bell J.R., Hunkapiller M.W., Strauss E.G., Strauss J.H. J. Mol. Biol. 1982;154:355. doi: 10.1016/0022-2836(82)90069-9. [DOI] [PubMed] [Google Scholar]
  • 21.Schmidt M.F.G., Schlesinger M.J. J. Biol. Chem. 1980;255:3334. [PubMed] [Google Scholar]
  • 22.Dunphy W.G., Fries E., Urgani L.J., Rothman J. Vol. 78. 1981. p. 7453. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Omary M.B., Trowbridge I.S. J. Biol. Chem. 1981;256:12888. [PubMed] [Google Scholar]
  • 24.Schlesinger M.J., Malfer C. J. Biol. Chem. 1982;257:9887. [PubMed] [Google Scholar]
  • 25.Gallione C.J., Rose J.K. J. Virol. 1983;46:162. doi: 10.1128/jvi.46.1.162-169.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.S. A. Carr, K. Biemann, S. Shoji, D. C. Parmelee, and K. Titani, Proc. Natl. Acad. Sci. U.S.A.79, 6128. [DOI] [PMC free article] [PubMed]
  • 27.L. E. Henderson, H. C. Krutzsch, and S. Oroszlan, Proc. Natl. Acad. Sci. U.S.A.80, 339.
  • 28.Sefton B.M., Trowbridge I.S., Cooper J.A., Scolnick E.M. Cell. 1982;31:465. doi: 10.1016/0092-8674(82)90139-8. [DOI] [PubMed] [Google Scholar]
  • 29.Keenan T.W., Heid H.W., Stadler J., Jarasch E.D., Franke W.W. Eur. J. Cell Biol. 1982;26:270. [PubMed] [Google Scholar]
  • 30.Marinetti G.V., Cattieu K. Biochim. Biophys. Acta. 1982;685:109. doi: 10.1016/0005-2736(82)90086-4. [DOI] [PubMed] [Google Scholar]

Articles from Methods in Enzymology are provided here courtesy of Elsevier

RESOURCES