Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 7;43(3):929–937. doi: 10.1016/0091-3057(92)90427-H

Distinguishing effects of cocaine IV and SC on mesoaccumbens dopamine and serotonin release with chloral hydrate anesthesia

Patricia A Broderick a,b,1
PMCID: PMC7133184  PMID: 1448488

Abstract

The effect of IV cocaine (0.5 and 1.0 mg/kg) was studied on synaptic concentrations of dopamine (DA) and serotonin [5-hydroxytryptamine (5-HT)] in the mesoaccumbens nerve terminal, the nucleus accumbens (NAcc), in chloral hydrate-anesthetized, male Sprague-Dawley rats (Rattus norvegicus) with in vivo electrochemistry (voltammetry). In further in vivo voltammetric studies, the effects of SC cocaine on synaptic concentrations of DA and 5-HT were studied in the chloral hydrate-anesthetized paradigm in two neuroanatomic substrates, NAcc and mesoaccumbens somatodendrites, the ventral tegmental area (VTA-A10), in a dose-response fashion (10, 20 and 40 mg/kg) in six separate studies. Moreover, in two additional in vivo voltammetric studies, again using the chloral hydrate-anesthetized paradigm, the impulse flow blocker, γ-butyrolactone (γ-BL) (750 mg/kg, IP), was studied alone and in combination with SC cocaine (20 mg/kg) to determine whether or not cocaine can act by presynaptic releasing mechanisms for DA and 5-HT. The results show that IV cocaine concurrently and significantly increased DA and 5-HT release in the NAcc (p < 0.001, p < 0.0005, respectively) at both doses tested. Moreover, IV cocaine effects on DA and 5-HT release were significantly and positively correlated (p < 0.01). On the other hand, SC cocaine concurrently and significantly decreased DA and 5-HT release in NAcc (p < 0.0001) and VTA (p < 0.0001) at each separate dose tested. SC cocaine effects on DA and 5-HT release were significantly and positively correlated across dose and neuroanatomic substrate (p < 0.01). Furthermore, the γ-BL studies indicate that cocaine's action includes a presynaptic release mechanism for the biogenic amines. Summarily, the data show that a consideration of the route of cocaine administration is crucial in determining the underlying neurochemical basis for cocaine.

Keywords: Cocaine, Dopamine, Serotonin, Ventrolateral nucleus accumbens, In vivo electrochemistry (voltammetry), Chloral hydrate anesthesia, Ventral tegmental area

References

  • 1.Azmitia E.C., Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 1978;179:641–667. doi: 10.1002/cne.901790311. [DOI] [PubMed] [Google Scholar]
  • 2.Blaha C.D., Jung M.E. Electrochemical evaluation of stearate-modified graphite paste electrodes: Selective detection of dopamine is maintained after exposure to brain tissue. J. Electroanal. Chem. 1991;310:317–334. [Google Scholar]
  • 3.Bradberry C.W., Roth R.H. Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo microanalysis. Neurosci. Lett. 1989;103:97–102. doi: 10.1016/0304-3940(89)90492-8. [DOI] [PubMed] [Google Scholar]
  • 4.Broderick P.A. Striatal neurochemistry of dynorphin-(1–13): In vivo electrochemical semidifferential analyses. Neuropeptides. 1987;10:369–386. doi: 10.1016/s0143-4179(87)90128-4. [DOI] [PubMed] [Google Scholar]
  • 5.Broderick P.A. Characterizing stearate probes in vitro for the electrochemical detection of dopamine and serotonin. Brain Res. 1989;495:115–121. doi: 10.1016/0006-8993(89)91224-9. [DOI] [PubMed] [Google Scholar]
  • 6.Broderick P.A. State-of-the-art microelectrodes for in vivo voltammetry. Electroanalysis. 1990;2(3):241–251. [Google Scholar]
  • 7.Broderick P.A. Cocaine-on-line analysis of an accumbens amine neuronal basis for psychomotor behavior. Pharmacol. Biochem. Behav. 1991;40:959–968. doi: 10.1016/0091-3057(91)90112-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Broderick P.A. In vivo voltammetric studies on release mechanisms for cocaine with γ-butyrolactone. Pharmacol. Biochem. Behav. 1991;40:969–975. doi: 10.1016/0091-3057(91)90113-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Broderick P.A. Cocaine's colocalized effects on synaptic serotonin and dopamine in ventral tegmentum in a reinforcement paradigm. Pharmacol. Biochem. Behav. 1992;42:889–898. doi: 10.1016/0091-3057(92)90045-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Broderick P.A., Phelan F.T. An in vivo voltammetric analysis of dopamine release in nucleus accumbens: I. Morphine effects. II. Cocaine effects. Adv. Biosci. 1989;75:209–212. [Google Scholar]
  • 11.Brown E.E., Finlay J.M., Wong J.T.F., Damsma G., Fibiger H.C. Behavioral and neurochemical interactions between cocaine and buprenorphine: Implications for the pharmacotherapy of cocaine abuse. J. Pharmacol Exp. Ther. 1991;256:119–126. [PubMed] [Google Scholar]
  • 12.Carboni E., Imperato A., Perezzani L., DiChiara G. Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience. 1989;28:653–661. doi: 10.1016/0306-4522(89)90012-2. [DOI] [PubMed] [Google Scholar]
  • 13.Cunningham K.A., Lakoski J.M. Electrophysiological effects of cocaine and procaine on dorsal raphe serotonin neurons. Eur. J. Pharmacol. 1988;148:457–462. doi: 10.1016/0014-2999(88)90128-8. [DOI] [PubMed] [Google Scholar]
  • 14.Dahlstrom A., Fuxe K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 1964;62(suppl. 232):1–55. [PubMed] [Google Scholar]
  • 15.deWit H., Wise R.A. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can. J. Psychol. 1977;31:195–203. doi: 10.1037/h0081662. [DOI] [PubMed] [Google Scholar]
  • 16.Einhorn L.C., Johansen P.A., White F.J. Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Studies in the ventral tegmental area. J. Neurosci. 1988;8:100–112. doi: 10.1523/JNEUROSCI.08-01-00100.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Elliott H.W. Effects of street drugs on anesthesia. Int. J. Clin. Pharmacol. 1975;12:134–140. [PubMed] [Google Scholar]
  • 18.Freeman A.S., Bunney B.S. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: Further characterization and effects of apomorphine and cholecystokinin. Brain Res. 1987;405:46–55. doi: 10.1016/0006-8993(87)90988-7. [DOI] [PubMed] [Google Scholar]
  • 19.Galloway M.P. Regulation of dopamine and serotonin synthesis by acute administration of cocaine. Synapse. 1990;6:63–72. doi: 10.1002/syn.890060108. [DOI] [PubMed] [Google Scholar]
  • 20.Gawin F.H., Allen D., Humblestone B. Outpatient treatment of “crack” cocaine smoking with flupenthixol decanoate. A preliminary report. Arch. Gen. Psychiatry. 1989;46:322–325. doi: 10.1001/archpsyc.1989.01810040028005. [DOI] [PubMed] [Google Scholar]
  • 21.Gelbert M.B., Curran D.J. Alternating current voltammetry of dopamine and ascorbic acid at carbon paste and stearic acid modified carbon paste electrodes. Anal. Chem. 1986;58:1028–1032. doi: 10.1021/ac00297a602. [DOI] [PubMed] [Google Scholar]
  • 22.Heikkila R.E., Orlansky H., Cohen G. Studies on the distinction between uptake inhibition and release of [3H]dopamine in rat brain tissue slices. Biochem. Pharmacol. 1975;24:847–852. doi: 10.1016/0006-2952(75)90152-5. [DOI] [PubMed] [Google Scholar]
  • 23.Herve D., Pickel V.M., Joh T.H., Beaudet A. Serotonin axon terminals in the ventral tegmental area of the rat: Fine structure and synaptic input to dopaminergic neurons. Brain Res. 1987;435:71–83. doi: 10.1016/0006-8993(87)91588-5. [DOI] [PubMed] [Google Scholar]
  • 24.Hurd Y.L., Kehr J., Ungerstedt U. In vivo microdialysis as a technique to monitor drug transport; correlation of extracellular cocaine levels and dopamine overflow in the rat brain. J. Neurochem. 1988;51:1314–1316. doi: 10.1111/j.1471-4159.1988.tb03103.x. [DOI] [PubMed] [Google Scholar]
  • 25.Johanson C.E., Fischman M.W. The pharmacology of cocaine related to its abuse. Pharmacol. Rev. 1989;41:3–52. [PubMed] [Google Scholar]
  • 26.Jones L.F., Tackett R.L. Chronic cocaine treatment enhances the responsiveness of the left anterior descending coronary artery and the femoral artery to vasoactive substances. J. Pharmacol. Exp. Ther. 1990;255:1366–1370. [PubMed] [Google Scholar]
  • 27.Kalivas P.W., Duffy P. Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse. 1990;5:48–58. doi: 10.1002/syn.890050104. [DOI] [PubMed] [Google Scholar]
  • 28.Kelland M.D., Freeman A.S., Chiodo L.A. Chloral hydrate anesthesia alters the responsiveness of identified midbrain dopamine neurons to dopamine agonist administration. Synapse. 1989;3:30–37. doi: 10.1002/syn.890030105. [DOI] [PubMed] [Google Scholar]
  • 29.King C.E., Joyner C., Lee T., Kuhn C., Ellinwood E.H., Jr. Intermittent and continuous cocaine administration: Residual behavioral states during withdrawal states during withdrawal. Pharmacol. Biochem. Behav. 1992;43:243–248. doi: 10.1016/0091-3057(92)90664-2. [DOI] [PubMed] [Google Scholar]
  • 30.Kosten T.R. Pharmacotherapeutic interventions for cocaine abuse. Matching patients to treatments. J. Nerv. Ment. Dis. 1989;177:379–389. doi: 10.1097/00005053-198907000-00001. [DOI] [PubMed] [Google Scholar]
  • 31.Lau C.E., Imam A., Ma F., Falk J.L. Acute effects of cocaine on spontaneous and discriminative motor functions: Relation to route of administration and pharmacolinetics. J. Pharmacol. Exp. Ther. 1991;257:444–456. [PubMed] [Google Scholar]
  • 32.Loh E.A., Roberts D.C. Break-points on a progressive ratio schedule reinforced by intravenous cocaine increase following depletion of forebrain serotonin. Psychopharmacology (Berl.) 1990;101:262–266. doi: 10.1007/BF02244137. [DOI] [PubMed] [Google Scholar]
  • 33.Madden J.A., Powers R.H. Effect of cocaine and cocaine metabolites on cerebral arteries in vitro. Life Sci. 1990;47:1109–1114. doi: 10.1016/0024-3205(90)90169-r. [DOI] [PubMed] [Google Scholar]
  • 34.May L.J., Wightman R.M. Effects of D2 antagonists on frequency-dependent stimulated dopamine overflow in nucleus accumbens and caudate-putamen. J. Neurochem. 1989;53:898–906. doi: 10.1111/j.1471-4159.1989.tb11789.x. [DOI] [PubMed] [Google Scholar]
  • 35.Moghaddam B., Bunney B.S. Differential effect of cocaine on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens: Comparison to amphetamine. Synapse. 1989;4:156–161. doi: 10.1002/syn.890040209. [DOI] [PubMed] [Google Scholar]
  • 36.Nayak P.K., Misra A.L., Mule S.J. Physiological disposition and biotransformation of [3H]cocaine in acutely and chronically treated rats. J. Pharmacol. Exp. Ther. 1976;196:556–569. [PubMed] [Google Scholar]
  • 37.Pan H.T., Menacherry S., Justice J.B., Jr. Differences in the pharmacokinetics of cocaine in the naive and cocaine experienced rat. J. Neurochem. 1991;56:1299–1306. doi: 10.1111/j.1471-4159.1991.tb11425.x. [DOI] [PubMed] [Google Scholar]
  • 38.Parent A., Descarries L., Beaudet A. Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience. 1981;6:115–138. doi: 10.1016/0306-4522(81)90050-6. [DOI] [PubMed] [Google Scholar]
  • 39.Pelligrino L.J., Cushman A.J. Appleton-Century-Crofts; New York: 1967. A stereotaxic atlas of the rat brain. [Google Scholar]
  • 40.Pettit H.O., Justice J.B., Jr. Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol. Biochem. Behav. 1989;34:899–904. doi: 10.1016/0091-3057(89)90291-8. [DOI] [PubMed] [Google Scholar]
  • 41.Ritchie J.M., Greene N.M. Local anesthetics. In: Gilman A.A., Rall T.W., Nies A.S., Taylor P., editors. The pharmacological basis of therapeutics. 8th ed. Pergamon Press; Elmsford, NY: 1990. pp. 311–331. [Google Scholar]
  • 42.Ritz M.C., Lamb R.J., Goldberg S.R., Kuhar M.J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science. 1987;237:1219–1223. doi: 10.1126/science.2820058. [DOI] [PubMed] [Google Scholar]
  • 43.Roberts D.C.S., Koob G.F. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 1982;17:901–904. doi: 10.1016/0091-3057(82)90469-5. [DOI] [PubMed] [Google Scholar]
  • 44.Roberts D.C.S., Koob G.F., Klonoff P., Fibiger H.C. Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 1980;12:781–787. doi: 10.1016/0091-3057(80)90166-5. [DOI] [PubMed] [Google Scholar]
  • 45.Ross S.B., Renyi A.L. Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol. 1969;7:270–277. doi: 10.1016/0014-2999(69)90091-0. [DOI] [PubMed] [Google Scholar]
  • 46.Spealman R.D., Madras B.K., Bergman J. Effects of cocaine and related drugs in nonhuman primates. II. Stimulant effects on schedule-controlled behavior. J. Pharmacol. Exp. Ther. 1989;251:142–149. [PubMed] [Google Scholar]
  • 47.Steinbusch H.W.M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6:557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
  • 48.Taber Pierce E., Foote W.E., Hobson J.A. The efferent connection of the nucleus raphe dorsalis. Brain Res. 1976;107:137–144. doi: 10.1016/0006-8993(76)90102-5. [DOI] [PubMed] [Google Scholar]
  • 49.Walters J.R., Roth R.H. Dopaminergic neurons: Drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J. Pharmacol. Exp. Ther. 1974;191:82–91. [PubMed] [Google Scholar]
  • 50.Winters W.D., Spooner C.E. Various seizure activities following gamma-hydroxybutyrate. Int. J. Neuropharmacol. 1965;4:197–200. doi: 10.1016/0028-3908(65)90034-1. [DOI] [PubMed] [Google Scholar]

Articles from Pharmacology, Biochemistry, and Behavior are provided here courtesy of Elsevier

RESOURCES