Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Apr 14;39:245–301. doi: 10.1016/S0070-2153(08)60458-5

8 The Development of the Kidney

Jamie A Davies 1, Jonathan BL Bard 1
PMCID: PMC7133187  PMID: 9476003

Abstract

This chapter describes the earlier stages of development of the vertebrate metanephric kidney. It focuses on the mouse and descriptive morphology is used for considering both molecular mechanisms, underpinning kidney morphogenesis and differentiation, and the ways in which these processes can go awry and lead to congenital kidney disorders—particularly in humans. The mature kidney is a fairly complex organ attached to an arterial input vessel and two output vessels, the vein and the ureter. Inside, the artery and vein are connected by a complex network of capillaries that invade a large number of glomeruli, the proximal entrance to nephrons, which are filtration units that link to an arborized collecting-duct system that drains into the ureter. The ability of the kidney and isolated metanephrogenic mesenchyme, to develop in culture means that the developing tissues can be subjected to a wide variety of experimental procedures designed to investigate their molecular and cellular properties and to test hypotheses about developmental mechanisms.

References

  1. Alfred J.B., Ranee K., Taylor B.A., Phillips S.J., Abbott C.M., Jackson I.J. Mapping in the region of Danforth's short tail and the localization of tail length modifiers. Genome Res. 1997;7:108–117. doi: 10.1101/gr.7.2.108. [DOI] [PubMed] [Google Scholar]
  2. Armstrong J.E., Pritchard-Jones K., Bickmore W.A., Hastie N.D., Bard J.B.L. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Dev. 1992;40:85–97. doi: 10.1016/0925-4773(93)90090-k. [DOI] [PubMed] [Google Scholar]
  3. Aufderheide E., Chiquet-Ehrissman R., Ekblom P. Epithelial-mesenchymal interactions in the developing kidney lead to expression of tenascin in the mesenchyme. J. Cell Biol. 1987;105:599–608. doi: 10.1083/jcb.105.1.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bachmann S., Kriz W., Kuhn C., Franke W.W. Differentiation of cell types in the mammalian kidney by immunofluorescence microscopy using antibodies to intermediate filament proteins and desmoplakins. Histochemistry. 1983;77:365–394. doi: 10.1007/BF00490899. [DOI] [PubMed] [Google Scholar]
  5. Baldwin H.S., Shen H.M., Van H.C., Delisser H.M., Chung A., Mickanin C., Trask T., Kirschbaum N.E., Newman P.J., Albelda S.M., Buck C.A. Platelet endothelial-cell adhesion molecule-1 (PECAM-1 CD31)—Alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development (Cambridge, UK) 1994;120:2539–2553. doi: 10.1242/dev.120.9.2539. [DOI] [PubMed] [Google Scholar]
  6. Barasch J., Pressler L., Connor J., Malik A. A ureteric bud cell line induces neph-rogenesis in two steps by two distinct signals. Am. J. Physiol.-Renal Fluid Electrolyte Physiol. 1996;271:F50–F61. doi: 10.1152/ajprenal.1996.271.1.F50. [DOI] [PubMed] [Google Scholar]
  7. Bard J.B.L. Traction and the formation of mesenchymal condensations in vivo. BioEssays. 1990;12:389–395. doi: 10.1002/bies.950120809. [DOI] [PubMed] [Google Scholar]
  8. Bard J.B.L. “Morphogenesis: The Cellular and Molecular Process of Developmental Anatomy.”. Cambridge University Press; Cambridge, UK: 1992. [Google Scholar]
  9. Bard J.B.L., Ross A.S.A. The blocking of mouse nephron development in vitro by DIA/LIF, the ES-cell differentiation inhibitor. Development (Cambridge, UK) 1991;113:193–198. [Google Scholar]
  10. Benito M., Porras A., Santos E. Establishment of permanent brown adipocyte cell lines achieved by transfection with SV40 large T antigen and ras genes. Exp. Cell Res. 1993;209:248–254. doi: 10.1006/excr.1993.1308. [DOI] [PubMed] [Google Scholar]
  11. Bernstein J., Cheng E., Roszka J. Glomerular differentiation in metanephric culture. Lab. Invest. 1981;45:183–190. [PubMed] [Google Scholar]
  12. Boivin G.P., Otoole B.A., Orisby I.E., Diebold R.J., Eis M.J., Doetschman T., Kier A.B. Onset and progression of pathological lesions in transforming growth factor beta 1 deficient mice. Am. J. Pathol. 1995;146:276–288. [PMC free article] [PubMed] [Google Scholar]
  13. Breier G., Albrecht U., Sterrer S., Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development (Cambridge, UK) 1992;114:521–532. doi: 10.1242/dev.114.2.521. [DOI] [PubMed] [Google Scholar]
  14. Burrow C.R., Wilson P.D. Renal progenitor cells: Problems of definition, isolation and characterisation. Exp. Nephrol. 1994;2:1–12. [PubMed] [Google Scholar]
  15. Camp V., Martin P. Programmed cell death and its clearance in the developing kidney. Exp. Nephrol. 1996;4:105–111. [PubMed] [Google Scholar]
  16. Coles H.S.R., Burne J.F., Raff M.C. Large scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. Development (Cambridge, UK) 1993;118:777–784. doi: 10.1242/dev.118.3.777. [DOI] [PubMed] [Google Scholar]
  17. Cook D.M., Hinkes M.T., Bernfield M., Rauscher F.J., III Transcriptional activation of the syndecan-1 promoter by the Wilms' tumor protein WT1. Oncogene. 1996;13:1789–1990. [PubMed] [Google Scholar]
  18. Coppes M.I., Williams B.R. The molecular genetics of Wilms' tumor. Cancer Invest. 1994;12:57–65. doi: 10.3109/07357909409021393. [DOI] [PubMed] [Google Scholar]
  19. Cremer H., Lange R., Christoph A., Plomann M., Vopper G., Roes J., Brown R., Baldwin S., Kearmer P., Scheff S., Batthels D., Rajnewsky K., Wille W. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and defects in spatial learning. Nature (London) 1994;367:455–458. doi: 10.1038/367455a0. [DOI] [PubMed] [Google Scholar]
  20. Daoust M.C., Reynolds D.M., Bichet D.G., Somlo S. Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. Genomics. 1995;25:733–736. doi: 10.1016/0888-7543(95)80020-m. [DOI] [PubMed] [Google Scholar]
  21. Davies J.A. Control of Calbindin-D-28K expression in developing mouse kidney. Dev. Dynam. 1994;199:45–51. doi: 10.1002/aja.1001990105. [DOI] [PubMed] [Google Scholar]; Davies J.A. Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Acta Anat. 1996;156:187–201. doi: 10.1159/000147846. [DOI] [PubMed] [Google Scholar]
  22. J.A. Davies and A. Brandli 1997 The Kidney Development Database. World Wide Web URL: http://mbisg2.sbc.man.ac.uk/kidbase/kidhome.html.
  23. Davies J.A., Garrod D.R. Induction of early stages of kidney tubule differentiation by lithium ions. Dev. Biol. 1995;167:50–60. doi: 10.1006/dbio.1995.1006. [DOI] [PubMed] [Google Scholar]
  24. Davies J.A., Lyon M., Gallagher J., Garrod D.R. Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development (Cambridge, UK) 1995;121:1507–1517. doi: 10.1242/dev.121.5.1507. [DOI] [PubMed] [Google Scholar]
  25. Dedera D.A., Urashima M., Chauhan D., LeBrun D.P., Bronsson R.T., Anderson K.C. Interleukin-6 is required for pristane-mduced plasma cell hyperpiasia in mice. Br, J. Haematol. 1996;94:53–61. doi: 10.1046/j.1365-2141.1996.6282074.x. [DOI] [PubMed] [Google Scholar]
  26. Dehbi M., Pelletier J. PAX8-mediated activation of the WT1 tumor suppressor gene. EMBO J. 1996;15:4297–4306. [PMC free article] [PubMed] [Google Scholar]
  27. Dehbi M., Ghahremani M., Lechner M., Dressier G., Pelletier J. The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1) Oncogene. 1996;13:447–453. [PubMed] [Google Scholar]
  28. Deucher E.M. “Cellular Interactions in Animal Development.”. Chapman & Hall; London: 1975. [Google Scholar]
  29. Dono R., Zeller R. Cell-type-specific nuclear translocation of fibroblast growth factor-2 isoforms during chicken kidney and limb morphogenesis. Dev. Biol. 1994;163:316–330. doi: 10.1006/dbio.1994.1151. [DOI] [PubMed] [Google Scholar]
  30. Dorup J., Maunsbach A.B. The ultrastructural development of distal nephron segments in the human fetal kidney. Anat. Embryal. 1982;164:19–41. doi: 10.1007/BF00301876. [DOI] [PubMed] [Google Scholar]
  31. Dressier G.R., Rothenpieler U.W., Patterson L.T., Williams-Simons L., Westphal H. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature. 1992;363:65–67. doi: 10.1038/362065a0. [DOI] [PubMed] [Google Scholar]
  32. Dressier G.R., Douglass E.C. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms' tumor. Proc. Natl. Acad. Sci. USA. 1992;89:1179–1183. doi: 10.1073/pnas.89.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Dudley A.T., Lyons K.M., Robertson E.J. A requirement for bone morphogenetic protein 7 during development of the mammalian kidney and eye. Genes Dev. 1995;9:2795–2807. doi: 10.1101/gad.9.22.2795. [DOI] [PubMed] [Google Scholar]
  34. Eccles M.R., Grubb G., Ogawa O., Szeto J., Reeve A.E. Cloning of novel Wilms' tumor gene (WT1) cDNAs; evidence for antisense transcription of WT1. Oncogene. 1994;9:2059–2063. [PubMed] [Google Scholar]
  35. Ede D.A. “Developmental Biology.”. Blackie; UK: 1978. [Google Scholar]
  36. Ekblom P. Formation of basement membranes in the embryonic kidney: An immu-nohistological study. J. Cell Biol. 1981;91:1–10. doi: 10.1083/jcb.91.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ekblom P. Renal development. In: Seldin D.W., Giebisch G., editors. “The Kidney: Physiology and Pathophysiology”. 2nd ed. Raven Press; New York: 1992. pp. 475–501. [Google Scholar]
  38. Ekblom P., Lehtonen E., SaxSn L., Timpl R. Shift in collagen types as an early response to induction of metanephric mesenchyme. J. Cell Biol. 1981;89:276–283. doi: 10.1083/jcb.89.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ekblom P., Klein G., Ekblom M., Sorokin L. Laminin isoforms and their receptors in the developing kidney. Am. J. Kidney Dis. 1990;17:603–605. doi: 10.1016/s0272-6386(12)80329-5. [DOI] [PubMed] [Google Scholar]
  40. Farley J.R., Nakayama G., Cryns D., Sagel I.H. Adenosine triphosphate sul-phurylase from Penicillium chrysogenicum: Equilibrium binding, substrate hydrolysis and isotope exchange studies. Arch. Biochem. Biophys. 1978;185:376–390. doi: 10.1016/0003-9861(78)90180-7. [DOI] [PubMed] [Google Scholar]
  41. Fawcett D.W., Raviola E. “Bloom and Fawcett: A Textbook of Histology,”. 12th ed. Chapman & Hall; New York: 1994. [Google Scholar]
  42. Garrod D.R., Fleming S. Early expression of desmosomal components during kidney tubule morphogenesis in human and murine embryos. Development. 1990;108:313–321. doi: 10.1242/dev.108.2.313. [DOI] [PubMed] [Google Scholar]
  43. Gavin B.J., McMahon J.A., McMahon A.P. Expression of multiple novel Wnt-l/int-1-related genes during fetal and adult mouse development. Genes Dev. 1990;4:2319–2332. doi: 10.1101/gad.4.12b.2319. [DOI] [PubMed] [Google Scholar]
  44. Georges-Labouesse E., Messaddeq N., Yehia G., Cadalbert L., Dierich A., Le Meur M. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nat. Genet. 1996;13:370–373. doi: 10.1038/ng0796-370. [DOI] [PubMed] [Google Scholar]
  45. Gessler M., Bruns G.A. Sequence of the WT1 upstream region including the Wit-1 gene. Genomics. 1993;17:499–501. doi: 10.1006/geno.1993.1355. [DOI] [PubMed] [Google Scholar]
  46. Giordano M., Takashima H., Herranz A., Poltorak M., Geller H.M., Marone M., Freed W.J. Immortalised GABAergic cell lines derived from rat striatum using a temperature-sensitive allele of the SV40 large T antigen. Exp. Neural. 1993;124:395–400. doi: 10.1006/exnr.1993.1213. [DOI] [PubMed] [Google Scholar]
  47. Giordano M., Takashima H., Poltorak M., Geller H.M., Freed W.J. Constitutive expression of glutamic acid decarboxylase (GAD) by striatal cell lines immortalized using the tsA58 allele of the SV40 large T antigen. Cell Transplant. 1996;5:563–575. doi: 10.1177/096368979600500506. [DOI] [PubMed] [Google Scholar]
  48. Gluecksohn-Schoenheimer S. Genetics. 1943;28:341–348. doi: 10.1093/genetics/28.4.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Godley L.A., Kopp J.B., Eckhaus M., Paglino J.J., Owens J., Varmus H.E. Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev. 1996;10:836–850. doi: 10.1101/gad.10.7.836. [DOI] [PubMed] [Google Scholar]
  50. Goodyear P., Dehbi M., Torban E., Bruening W., Pelletier J. Repression of the reti-noic acid receptor-alpha gene by the Wilms' tumor suppressor gene product, WT1. Oncogene. 1995;10:1125–1129. [PubMed] [Google Scholar]
  51. Grobstein C. Inductive interactions in the development of the mouse metanephros. J. Exp. Zool. 1955;130:319–340. doi: 10.1002/jez.1401690105. [DOI] [PubMed] [Google Scholar]
  52. Hall B.K., Miyake T. Divide, accumulate, differentiate-Cell condensation in skeletal development revisited. Int. J. Dev. Biol. 1995;39:881–893. [PubMed] [Google Scholar]
  53. Harris A.K., Stopak D., Warner P. Generation of spatially periodic patterns by a mechanical stability; a mechanical alternative to the Turing model. J. Embryol. Exp. Morphol. 1984;80:1–20. [PubMed] [Google Scholar]
  54. Hatada I., Ohashi H., Fukushima Y., Kaneko Y., Inoue M., Komoto Y., Okada A., Ohishi S., Nabetani A., Morisaki H., Nakayama M., Niikawa N., Mukai T. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat. Genet. 1996;14:171–173. doi: 10.1038/ng1096-171. [DOI] [PubMed] [Google Scholar]
  55. Hatini V., Huh S.O., Herzlinger D., Scares V.C., Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996;10:1467–1478. doi: 10.1101/gad.10.12.1467. [DOI] [PubMed] [Google Scholar]
  56. Herzlinger D., Abramson R., Cohen D. Phenotypic conversions in renal development. J. Cell Sci. 1993;106(517):61–64. doi: 10.1242/jcs.1993.supplement_17.9. [DOI] [PubMed] [Google Scholar]
  57. Herzlinger D., Qiao J., Cohen D., Ramakrishna N., Brown A.M.C. Induction of kidney epithelial morphogenesis by cells expressing Wntl. Dev. Biol. 1994;166:815–818. doi: 10.1006/dbio.1994.1360. [DOI] [PubMed] [Google Scholar]
  58. Herzlinger D., Qiao J., Cohen D., Ramakrishna N., Brown A.P. Induction of kidney epithelial morphogenesis by fibroblasts expressing exogenous Wnt-1. Dev. Biol. 1995;166:815–818. doi: 10.1006/dbio.1994.1360. [DOI] [PubMed] [Google Scholar]
  59. Hewitt J.A., Kessler P.M., Campbell C.E., Williams B.R. Tissue-specific regulation of the WT1 locus. Med. Pediatr. Oncol. 1996;27:456–461. doi: 10.1002/(SICI)1096-911X(199611)27:5<456::AID-MPO12>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  60. Hewitt S.M., Hamada S., McDonnell T.J., Rauscher F.J., 3rd, Saunders G.F. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms' tumor suppressor gene WT1. Cancer Res. 1995;55:5386–5389. [PubMed] [Google Scholar]
  61. Hildebrandt F., Cybulla M., Strahm B., Bothwang H.G., Sinsawhney I., Berz K., Nicklin M., Reiner O., Brandis M. Physical mapping of the gene for juvenile nep-hronophthisis (NPH1) by construction of a complete YAC contig of 7MB on chromosome 2ql3. Cylogenet. Cell Genet. 1996;73:235–239. doi: 10.1159/000134346. [DOI] [PubMed] [Google Scholar]
  62. Hofmann W., Royer H.D., Drechsler M., Schneider S., Royer-Pokora B. Characterisation of the transcriptional regulatory region of the human WT1 gene. Oncogene. 1993;8:3123–3132. [PubMed] [Google Scholar]
  63. Holthöfer H., Miettinen A., Lehto V.P., Lehtonen E., Virtanen I. Expression of vi-mentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab. Inv. 1984;50:552–559. [PubMed] [Google Scholar]
  64. Hosoyamada M., Obinata M., Suzuki M., Endou H. Cisplatin-induced toxicity in immortalized renal cell lines established from transgenic mice harboring temperature sensitive SV40 large T-antigen gene. Arch. Toxicol. 1996;70:284–292. doi: 10.1007/s002040050275. [DOI] [PubMed] [Google Scholar]
  65. Hoyer J.R., Resnick J.S., Michael A.D., Vernier R.L. Ontogeny of Tamm-Horsfall urinary glycoprotein. Lab. Invest. 1974;30:757–761. [PubMed] [Google Scholar]
  66. Jat P.S., Noble M.D., Ataliotis P., Tanaka Y., Yannoutsos N., Larsen L., Kjoussis D. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Nail. Acad. Sci. U.SA. 1991;88:5096–5100. doi: 10.1073/pnas.88.12.5096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Jena N., Martin-Seisdedos C., McCue P., Croce C.M. BMP7 null mutation in mice: Developmental defect in skeleton, kidney and eye. Genes Dev. 1997 doi: 10.1006/excr.1996.3411. [DOI] [PubMed] [Google Scholar]
  68. Jones C.A., Sigmund C.D., McGowan R.A., KaneHaas C.M., Gross K.W. Expression of urine renin genes during fetal development. Mot. Endocrinol. 1990;4:375–383. doi: 10.1210/mend-4-3-375. [DOI] [PubMed] [Google Scholar]
  69. Karavanov A., Sainio K., Palgi J., Saarma M., Saxén L., Sariola H. Neuro-trophin-3 rescues neuronal precursors from apoptosis and promotes neuronal differentiation in the embryonic metanephric kidney. Proc. Nat. Acad. Sci. USA. 1995;92:11279–11283. doi: 10.1073/pnas.92.24.11279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Karavanova I.D., Dove L.F., Resau J.H., Perantoni A.O. Conditioned medium from a rat ureteric bud cell line in combination with bFGF induces complete differentiation of isolated metanephric mesenchyme. Development (Cambridge, UK) 1996;122:4159–4167. doi: 10.1242/dev.122.12.4159. [DOI] [PubMed] [Google Scholar]
  71. Kent J., Coriat A.M., Sharpe P.T., Hastie N.D., van Heyningen V. The evolution of WT1 sequence and expression pattern in the vertebrates. Oncogene. 1995;11:1781–1792. [PubMed] [Google Scholar]
  72. Kessler P.M., Vasavada S.P., Rackley R.R., Stackhouse T., Duh F.M., Latif F., Lerman M.I., Zbar B., Williams B.R.G. Expression of the von Hippel Lindau tumor suppressor gene, VHL, in human fetal kidney and during mouse embryogenesis. Mol. Med. 1995;1:457–466. [PMC free article] [PubMed] [Google Scholar]
  73. Klein G., Langegger M., Timpl R., Ekblom P. Role of laminin A chain in the development of epithelial cell polarity. Cell (Cambridge, Mass) 1988;55:331–341. doi: 10.1016/0092-8674(88)90056-6. [DOI] [PubMed] [Google Scholar]
  74. Klein G., Ekblom M., Fecher L., Timpl R., Ekblom P. Differential expression of laminin A and B chains during development of embryonic mouse organs. Development (Cambridge, UK) 1990;110:823–837. doi: 10.1242/dev.110.3.823. [DOI] [PubMed] [Google Scholar]
  75. Klein P.S., Melton D.A. A molecular mechanism for the effect of lithium on development. Proc. Nat. Acad. Sci. U.SA. 1996;93:8455–8459. doi: 10.1073/pnas.93.16.8455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Korhonen M., Ylanne J., Laitinen L., Virtanen I. The al-a6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J. Cell Biol. 1990;III:1245–1254. doi: 10.1083/jcb.111.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Korhonen M., Laitenen L., Ylanne J., Gould V.S., Virtanen I. Integrins in developing, normal and pathological human kidney. Kidney Int. 1992;41:641–644. doi: 10.1038/ki.1992.98. [DOI] [PubMed] [Google Scholar]
  78. Koseki C., Herzlinger D., al-Awqati Q. Apoptosis in metanephric development. J. Cell Biol. 1992;119:1327–1333. doi: 10.1083/jcb.119.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kreidberg J.A., Sariola H., Loring J.M., Maeda M., Pelletier J., Housman D., Jaenisch R. WT-1 is required for early kidney development. Cell (Cambridge, Mass.) 1993;74:679–691. doi: 10.1016/0092-8674(93)90515-r. [DOI] [PubMed] [Google Scholar]
  80. Lai E., Clark K.L., Burlery S.K., Darnell J.E. Hepatocyte factor 3/fork head or “winged helix” proteins: A family of transcription factors of diverse biological function. Proc. Natl. Acad. Sci. U.SA. 1993;90:10421–10423. doi: 10.1073/pnas.90.22.10421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Laitinen L., Vartio T., Virtanen I. Cellular fibronectins are differentially expressed in human fetal and adult kidney. Lab. Invest. 1991;64:492–498. [PubMed] [Google Scholar]
  82. Landels E., Proschel C., Noble M.D., Jat P.S., Fine L.G., Woolf A.S. Receptor tyrosine kinases expressed in early nephrogenesis. J. Am. Soc. Nephrol. 1994;5:245. (abstr.). [Google Scholar]
  83. Larsson S.H., Charlieu J.P., Miyagawa K., Engelkamp D., Rassoulzadegan M., Ross A., Cuzin F., van Heyningen V., Hastie N.D. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell (Cambridge, Mass.) 1995;81:391–401. doi: 10.1016/0092-8674(95)90392-5. [DOI] [PubMed] [Google Scholar]
  84. Le Douarin N., Barq G. Sur l'utilisation des cellules de la caille japonaise comme ‘marquers biologiques’ en embryologie experimentale. C.R. Acad. Sci. Paris. 1969;269:1443–1446. [PubMed] [Google Scholar]
  85. Le Douarin N., Teillet M.-A. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neuroectodermal derivatives, using a biological cell marking technique. Dev. Biol. 1974;41:162–184. doi: 10.1016/0012-1606(74)90291-7. [DOI] [PubMed] [Google Scholar]
  86. Lee M.P., Hu R.J., Johnson L.A., Feinberg A.P. Beckwith—Wiedemann syndrome chromosomal rearrangements. Nat. Genet. 1997;15:181–185. doi: 10.1038/ng0297-181. [DOI] [PubMed] [Google Scholar]
  87. Lee K.F., Li E., Huber L.J., Landis S.C., Sharpe A.H., Chao M.V., Jaenisch R. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell. 1992;69:737–749. doi: 10.1016/0092-8674(92)90286-l. [DOI] [PubMed] [Google Scholar]
  88. Leveen P., Pekny M., Gebre-Medhim S., Swolin B., Larsson E., Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8:1875–1887. doi: 10.1101/gad.8.16.1875. [DOI] [PubMed] [Google Scholar]
  89. Little M., Holmes G., Bickmore W., van Heyningen V., Hastie N., Wainwright B. DNA binding capacity of the WT1 protein is abolished by Denys-Drash syndrome WT1 point mutations. Hum. Mol. Genet. 1995;4:351–358. doi: 10.1093/hmg/4.3.351. [DOI] [PubMed] [Google Scholar]
  90. Long C.A. Leonardo da Vinci's rule and fractal complexity in dichotomous trees. J. The-or. Biol. 1994;167:107–113. [Google Scholar]
  91. Loughna S., Landels E., Woolf A.S. Growth factor control of developing kidney endothelial cells. Exp. Nephrol. 1996;4:112–118. [PubMed] [Google Scholar]
  92. Luo G., Hofmann C., Brunckens A.L.J.J., Sohochi M., Bradley A., Karsenty G. BMP7 is an inducer of nephrogenesis and is also required for eye development and skeletal patterning. Genes Dev. 1995;9:2808–2820. doi: 10.1101/gad.9.22.2808. [DOI] [PubMed] [Google Scholar]
  93. Lyon M., Deakin J., Mizuno K., Nakamura T., Gallagher J.T. Interaction of hepa-tocyte growth factor with heparan sulphate. J. Biol. Chem. 1994;269:11216–11223. [PubMed] [Google Scholar]
  94. Maas R., Elfering S., Glaser T., Jepeal L. Deficient outgrowth of the ureteric bud underlies the renal agenesis phenotype in mice manifesting the limb deformity (Id) mutation. Dev. Dyn. 1994;199:214–228. doi: 10.1002/aja.1001990306. [DOI] [PubMed] [Google Scholar]
  95. Maheswaran S., Park S., Bernard A., Morris J.F., Rauscher F.J., 3rd, Hill D.E., Haber D.A. Physical and functional interaction between WT1 and p53 proteins. Proc. Natl. Acad. Sci. U.SA. 1993;90:5100. doi: 10.1073/pnas.90.11.5100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Masu Y., Wolf E., Holtmann B., Sendtner M., Brem G., Thoenen H. Disruption of the CNTF gene results in motor neuron degeneration. Nature. 1993;165:27–32. doi: 10.1038/365027a0. [DOI] [PubMed] [Google Scholar]
  97. Matsell D.G., Delhanty P.J.D., Stepaniuk O., Han V.K.M. J. Am. Soc. Nephrol. 1993;4:471. (abstr.). [Google Scholar]
  98. Matsuoka S., Thompson J.S., Edwards M.C., Bartletta J.M., Grundy P., Kalikin L.M., Harper J.W., Elledge S.J., Feinberg A.P. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 1 Ipl5. Proc. Natl. Acad. Sci. USA. 1996;93:3026–3030. doi: 10.1073/pnas.93.7.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Miettinen A. Nephritogenic antibodies against kidney brush border glycoproteins in rabbits injected with Freund's adjuvant. Lab. Invest. 1986;4:67–75. [PubMed] [Google Scholar]
  100. Millauer B., Wizigmann-Voos S., Schnurch H., Martinez R., Moller N.P.H., Risau W., Ullrich A. High affinity VEGF binding and developmental expression suggest ftk-1 is a major regulator of angiogenesis and vasculogenesis. Cell (Cambridge, Mass.) 1992;72:835–846. doi: 10.1016/0092-8674(93)90573-9. [DOI] [PubMed] [Google Scholar]
  101. Miller C., Rulfs J., Jaspers S.R., Buckholt M., Miller T.B., Jr. Transformation of adult ventricular myocytes with the temperature sensitive A58 (tsA58) mutant of the SV40 large T antigen. Mol. Cell. Biochem. 1994;136:29–34. doi: 10.1007/BF00931601. [DOI] [PubMed] [Google Scholar]
  102. Miura M., Wanaka A., Tokyama M., Tanaka K. MFH-1, a new member of the fork head domain family, is expressed in developing mesenchyme. FEBS Lett. 1993;326:171–176. doi: 10.1016/0014-5793(93)81785-x. [DOI] [PubMed] [Google Scholar]
  103. Mochizuki T., Lemmink H.H., Mariyama M., Antignac C., Gubler M.C., Pirson Y., Verellen-dumoulin C., Chan B., Schroder C.H., Smeets H.J., Reeders S.T. Identification of mutations in the α-3 (IV) and a-4 (IV) collagen genes in autosomal recessive Alport syndrome. Nat. Genet. 1994;8:77–82. doi: 10.1038/ng0994-77. [DOI] [PubMed] [Google Scholar]
  104. Mochizuki T., Wu G.Q., Hayashi T., Xenophontas S.L., Veldhuisen B., Saris J.J., Reynolds D.M., Cai Y.Q., Gabow P.A., Kimberling W.J., Breuing M.H., Deltas C.C., Peters D.J.M., Somlo S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272:1339–1342. doi: 10.1126/science.272.5266.1339. [DOI] [PubMed] [Google Scholar]
  105. Moll R., Hage C., Thoenes W. Expression of intermediate filament proteins in fetal and adult human kidney: Modulations of intermediate filament patterns during development and in damaged tissue. Lab. Invest. 1991;65:74–86. [PubMed] [Google Scholar]
  106. Montesano R., Matsumoto K., Nakamura T., Orci L. Identification of a fibroblast-derived morphogen as hepatocyte growth factor. Cell (Cambridge, Mass.) 1991;67:901–908. doi: 10.1016/0092-8674(91)90363-4. [DOI] [PubMed] [Google Scholar]
  107. Moore M.W., Klein R.D., Farinas I., Sauer H., Armanini M., Phillips H., Reichardt L.F., Ryan A.M., Carver-Moore K., Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature (London) 1996;382:76–79. doi: 10.1038/382076a0. [DOI] [PubMed] [Google Scholar]
  108. Moyer J.H., Lee-Tischler M.J., Kwon H.Y., Schrick J.J., Avner E.D., Sweeney W.E., Godfrey V.L., Cacheiro N.L., Wilkinson J.E., Woychik R.P. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science. 1994;264:1329–1333. doi: 10.1126/science.8191288. [DOI] [PubMed] [Google Scholar]
  109. Mugrauer G., Ekblom P. Contrasting expression patterns of three members of the myc family of protooncogenes in the developing and adult mouse kidney. Development. 1991;112:13–25. doi: 10.1083/jcb.112.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Nagata M., Nakauchi H., Nakayama K.I., Nakayama K., Loh D., Watanabe T. Apoptosis during an early stage of nephrogenesis induces renal hypoplasia in bcl-2-deficient mice. Am. J. Path. 1996;148:1601–1611. [PMC free article] [PubMed] [Google Scholar]
  111. Nakanishi Y., Ishii T. Epithelial shape change in mouse embryonic submandibular gland: Modulation by extracellular matrix components. BioEssays. 1989;11:163–167. doi: 10.1002/bies.950110602. [DOI] [PubMed] [Google Scholar]
  112. Nelson T.R., West B.J., Goldberger A.L. The fractal lung: Universal and species-related scaling patterns. Experientia. 1990;46:251–254. doi: 10.1007/BF01951755. [DOI] [PubMed] [Google Scholar]
  113. Nordling S., Ekblom P., Lehtonen E., Wartiovaara J., Saxén L. Metabolic inhibitors and kidney tubule induction. Med. Biol. S. 1978:372–379. [PubMed] [Google Scholar]
  114. Ogawa O., Eccles M.R., Szeto J., McNoe L.A., Yun K., Maw M.A., Smith P.J., Reeve A.E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature (London) 1993;362:749–751. doi: 10.1038/362749a0. [DOI] [PubMed] [Google Scholar]
  115. Paavola P., Salonen R., Weissenbach J., Peltonen L. The locus for Meckel syndrome with multiple congenital anomalies maps to chromosome 17q21–q24. Nat. Genet. 1995;2:213–215. doi: 10.1038/ng1095-213. [DOI] [PubMed] [Google Scholar]
  116. Palsson R., Sharma C.P., Kim K., McLaughlin M., Brown D., Arnaout M.A. Characterisation and cell distribution of polycystin, the product of autosomal dominant poly-cystic kidney disease gene 1. Mol. Med. 1996;2:702–711. [PMC free article] [PubMed] [Google Scholar]
  117. Pasdar M., Li Z., Krzeminski K.A. Desmosome assembly in MDCK epithelial cells does not require the presence of functional microtubules. Cell Motil. Cytoskel. 1992;23:201–212. doi: 10.1002/cm.970230304. [DOI] [PubMed] [Google Scholar]
  118. Perantoni A.O., Dove L.E., Karavanova I. Basic fibroblast growth factor can mediate the early inductive events in renal development Proc. Natl. Acad. Sci. U.S.A. 1995;92:4696–4700. doi: 10.1073/pnas.92.10.4696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Pichel J.G., Shen L., Sheng H.Z., Granholm A.-C., Drago J., Grinberg A., Lee E.I., Huang S.P., Saarma M., Hoffer B.J., Sariola H., Westphal H. Defects in enteric inner-vation and kidney development in mice lacking GDNF. Nature (London) 1996;382:73–76. doi: 10.1038/382073a0. [DOI] [PubMed] [Google Scholar]
  120. Piedagnel R., Prie D., Cassingena R., Ronco P.M., Lelong B. SV40 large-T on-cogene inhibits transcription of perlecan-related proteoglycans but stimulates hyaluronan synthesis in a temperature-sensitive renal-tubule principal cell line. J. Biol. Chem. 1994;269:17469–17476. [PubMed] [Google Scholar]
  121. Poleev A., Fickenscher H., Mundlos S., Winterpacht A., Zabel B., Fidler A., Gruss P., Plachov D. Pax 8, a human paired box gene: Isolation and expression in developing thyroid, kidney and Wilrns' tumours. Development (Cambridge, UK) 1992;116:611–623. doi: 10.1242/dev.116.3.611. [DOI] [PubMed] [Google Scholar]
  122. Pritchard-Jones K., Fleming S., Davidson D., Bickmore W., Porteous D., Gosden C., Bard J., Buckler A., Pelletier J., Housman D., van Heyningen V., Hastie N. The candidate Wilms' tumour gene is involved in genitourinary development. Nature (London) 1990;346:194–197. doi: 10.1038/346194a0. [DOI] [PubMed] [Google Scholar]
  123. Qiao J., Cohen D., Herzlinger D. The metanephric blastema differentiates into collecting system and nephron epithelia in vitro. Development (Cambridge, UK) 1995;121:3207–3214. doi: 10.1242/dev.121.10.3207. [DOI] [PubMed] [Google Scholar]
  124. Raff M.C. Social controls on cell survival and cell death. Nature (London) 1992;356:397–400. doi: 10.1038/356397a0. [DOI] [PubMed] [Google Scholar]
  125. Rapraeger A.C., Krufka A., Olwin B.B. Requirement of heparin sulphate for bFGF-mediated mouse fibroblast growth and myoblast differentiation. Science. 1991;252:1705–1708. doi: 10.1126/science.1646484. [DOI] [PubMed] [Google Scholar]
  126. Richards F.M., Schofield P.M., Fleming S., Maher E.R. Expression of the von Hippel Landau disease tumor suppressor gene during human embryogenesis. Hum. Mol. Genet. 1996;5:639–644. doi: 10.1093/hmg/5.5.639. [DOI] [PubMed] [Google Scholar]
  127. Rothenpieler U.W., Dressier G.R. Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development (Cambridge, UK) 1993;119:711–720. doi: 10.1242/dev.119.3.711. [DOI] [PubMed] [Google Scholar]
  128. Rupprecht H.D., Drummond I.A., Madden S.L., Rauscher F.I., 3rd, Sukhatme V.P. The Wilms' tumor suppressor gene WT1 is negatively autoregulated. J. Biol. Chem. 1994;269:6198–6206. [PubMed] [Google Scholar]
  129. Sainio K., Nonclercq D., Saarma M., Palgi J., Saxén L., Sariola H. Neuronal characteristics in embryonic renal stroma. Int. J. Dev. Biol. 1994;38:77–84. [PubMed] [Google Scholar]
  130. Sainio K., Suvanto P., Davies J.A., Wartiovaara J., Wartiovaara K., Saarma M., Arumae U., Meng X., Lindahl M., Pachnis V., Sariola H. Glial cell-line derived neuro-trophic factor is required for bud initiation from ureteric epithelium. Development. 1997;124:4077–4087. doi: 10.1242/dev.124.20.4077. [DOI] [PubMed] [Google Scholar]
  131. Sanchez M.P., Silos-Santiago I., Frisen J., He B., Lira S.A., Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature (London) 1996;382:70–73. doi: 10.1038/382070a0. [DOI] [PubMed] [Google Scholar]
  132. Sariola H., Ekblom P., Lehtonen E., Saxén L. Differentiation and vascularisation of the metanephric kidney grafted on the chorioallantoic membrane. Dev. Biol. 1983;96:427–435. doi: 10.1016/0012-1606(83)90180-x. [DOI] [PubMed] [Google Scholar]
  133. Sariola H., Saarma M., Sainio K., Arumäe U., Palgi J., Vaahtokari A., Thesleff I., Ka-ravanov A. Dependence of kidney morphogenesis on the expression of nerve growth factor receptor. Science. 1991;254:571–573. doi: 10.1126/science.1658930. [DOI] [PubMed] [Google Scholar]
  134. L. Saxén (1980). Mechanism of morphogenetic tissue interactions: The message of transfilter experiments. [DOI] [PubMed]
  135. Saxén L. “Organogenesis of the Kidney.”. Cambridge University Press; Cambridge, UK: 1987. [Google Scholar]
  136. Saxén L., Lehtonen E. Transfilter induction of kidney tubules as a function of the extent and duration of intercellular contacts. J. Embryol. Exp. Morphol. 1978;47:97–109. [PubMed] [Google Scholar]
  137. Saxén L., Lehtonen E., Karkinen-Jääskelainen M., Nordling A., Wartiovaara J. Are morphogenetic tissue interactions mediated by transmissible signal substances of through cell contacts? Nature. 1976;259:662–663. doi: 10.1038/259662a0. [DOI] [PubMed] [Google Scholar]
  138. Saxén L., Saksela E. Transmission and spread of embryonic induction II. Exclusion of an assimilatory transmission mechanism in kidney tubule induction. Exp. Cell Res. 1971;66:369–377. doi: 10.1016/0014-4827(71)90690-2. [DOI] [PubMed] [Google Scholar]
  139. Saxén L., Salonen J., Ekblom P., Nordling S. DNA synthesis and cell generation cycle during determination and differentiation of the metanephric mesenchyme. Dev. Biol. 1983;98:130–138. doi: 10.1016/0012-1606(83)90341-x. [DOI] [PubMed] [Google Scholar]
  140. Schmidt C., Bladt F., Goedecke S., Brinkmann V., Zschieche W., Sharpe M., Gherardi E., Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature (London) 1995;373:699–702. doi: 10.1038/373699a0. [DOI] [PubMed] [Google Scholar]
  141. Schuchardt A., Dagati V., Larsson-Blornberg L., Costantini F., Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature (London) 1994;367:380–384. doi: 10.1038/367380a0. [DOI] [PubMed] [Google Scholar]
  142. Schuchardt A., Dagati V., Pachnis V., Costantini F. Renal agenesis and hypo-dysplasia in ret−/− mutant mice result from defects in ureteric bud development. Development (Cambridge, UK) 1996;122:1919–1929. doi: 10.1242/dev.122.6.1919. [DOI] [PubMed] [Google Scholar]
  143. Schultze B., Zimmer G., Herder G. Virus entry into a polarised epithelial cell line (MDCK): Similarities and dissimilarities between influenza C virus and bovine coronavirus. J. Gen. Vtrol. 1996;77:2507–2514. doi: 10.1099/0022-1317-77-10-2507. [DOI] [PubMed] [Google Scholar]
  144. Simon M., Grone H.-J., Johren O., Kullmer J., Plate H.K., Risau W., Fuchs E. Expression of vascular endothelial growth factor and its receptors in renal ontogenesis and in adult kidney. Am. J. Physiol. 1995;268:F240–F250. doi: 10.1152/ajprenal.1995.268.2.F240. [DOI] [PubMed] [Google Scholar]
  145. Simpson P., Bourouis M., Heitcler P., Rule L., Haenlin M., Ramain P. Delta, notch and shaggy: elements of a lateral signalling pathway in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 1992;57:391–400. doi: 10.1101/sqb.1992.057.01.044. [DOI] [PubMed] [Google Scholar]
  146. Slack J.M. Embryonic induction. Mech. Dev. 1993;41:91–107. doi: 10.1016/0925-4773(93)90040-5. [DOI] [PubMed] [Google Scholar]
  147. Sonnenberg E., Meyer D., Weidner K.M., Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J. Cell Biol. 1993;123:223–235. doi: 10.1083/jcb.123.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant. Genes Dev. 1994;8:1888–1896. doi: 10.1101/gad.8.16.1888. [DOI] [PubMed] [Google Scholar]
  149. Sorokin L., Sonnenberg A., Aumailley M., Timpl R., Ekblom P. Recognition of the laminin E8 cell-binding site by an integrin possessing the α subunit is essential for epithelial polarisation in developing kidney tubules. J. Cell Biol. 1990;111:1265–1273. doi: 10.1083/jcb.111.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Stark K., Vaino S., Vassileva G., McMahon A.P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994;372:679–683. doi: 10.1038/372679a0. [DOI] [PubMed] [Google Scholar]
  151. Svennilson J., Durbeej M., Celsi G., Laestadius A., Da Cruz E., Silva E.E., Ekblom P., Aperia A. Evidence for a role of protein phosphatases 1 and 2a during early nephrogenesis. Kidney Int. 1995;48:103–110. doi: 10.1038/ki.1995.273. [DOI] [PubMed] [Google Scholar]
  152. Tay J.S. Molecular genetics of Wilms' tumour. Pediatr. Child Health. 1995;31:379–383. doi: 10.1111/j.1440-1754.1995.tb00841.x. [DOI] [PubMed] [Google Scholar]
  153. Theiler Gluecksohn-Waelsch K. Mat. Rec. 1956;125:83–104. doi: 10.1002/ar.1091250107. [DOI] [PubMed] [Google Scholar]
  154. Timbs M.M., Spring K.R. Hydraulic properties of MDCK cell epithelium. J. Membr. Biol. 1996;153:1–11. doi: 10.1007/s002329900104. [DOI] [PubMed] [Google Scholar]
  155. Toole B. Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton. Dev. Biol. 1972;29:321–329. doi: 10.1016/0012-1606(72)90071-1. [DOI] [PubMed] [Google Scholar]
  156. Torres M., Gomez-Pardo E., Dressier G.R., Grass P. Pax 2 controls multiple steps of urogenital development. Development (Cambridge, UK) 1995;121:4057–4065. doi: 10.1242/dev.121.12.4057. [DOI] [PubMed] [Google Scholar]
  157. Trupp M., Ryden M., Jornvall H., Funakoshi H., Timmusk T., Arenas E., Ibanez C.F. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J. Cell Biol. 1995;130:137–148. doi: 10.1083/jcb.130.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Uehara Y., Minow O., Mori C., Shiot K., Juno J., Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature (London) 1995;373:702–705. doi: 10.1038/373702a0. [DOI] [PubMed] [Google Scholar]
  159. Vainio S., Jalkanen M., Bernfield M., Saxén L. Transient expression of syndecan in mesenchymal cell aggregates of the embryonic kidney. Dev. Biol. 1992;152:221–232. doi: 10.1016/0012-1606(92)90130-9. [DOI] [PubMed] [Google Scholar]
  160. Veis D.J., Sorenson C.M., Shutter J.R., Korsmeyer S.J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis and abnormal kidney development in bcl/-2-deficient mice. Am. J. Physiol. 1993;268:F73–F81. [Google Scholar]
  161. Vestweber D., Kemler R., Ekblom P. Cell adhesion molecule uvomorulin during kidney development. Dev. Biol. 1985;112:213–221. doi: 10.1016/0012-1606(85)90135-6. [DOI] [PubMed] [Google Scholar]
  162. Vize P.D., Seufert D.W., Carroll T.J., Wallingford J.B. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev. Biol. 1997;188:189–204. doi: 10.1006/dbio.1997.8629. [DOI] [PubMed] [Google Scholar]
  163. Vukicevic S., Kopp J.B., Luyten F.P., Sampath T.K. Induction of nephrogenic mesenchyme by osteogenic protein 1 (bone morphogenetic protein 7) Proc. Natl. Acad. Sci. USA. 1996;93:9021–9026. doi: 10.1073/pnas.93.17.9021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Wang A.Z., Wang J.C., Ojakian G.K., Nelson W.J. Determinants of apical membrane formation and distribution in multicellular epithelial MDCK cysts. Am. J. Physiol.-Cell Physiol. 1994;267:C473–C481. doi: 10.1152/ajpcell.1994.267.2.C473. [DOI] [PubMed] [Google Scholar]
  165. Ward A. Beckwith-Wiedemann syndrome and Wilms' tumour. Mol. Hum. Reprod. 1997;3:157–168. doi: 10.1093/molehr/3.2.157. [DOI] [PubMed] [Google Scholar]
  166. Ware C.B., Horowitz M.C., Renshaw B.R., Hunt J.S., Liggitt D., Koblar S.A., Gliniak B.C., McKenna H.J., Papayannopoulou T., Thoma B., Cheng L., Donovan P.J., Peschon J.J., Bartlett P.F., Willis C.R., Wright B.D., Carpenter M.K., Davidson B.L., Gearing D.P. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development. 1995;121:1283–1299. doi: 10.1242/dev.121.5.1283. [DOI] [PubMed] [Google Scholar]
  167. Weston J.A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 1963;6:279–310. doi: 10.1016/0012-1606(63)90016-2. [DOI] [PubMed] [Google Scholar]
  168. Wienecke R., Maize J.C., Jr., Reed J.A., De Gunzburg J., Yeung R.S., DeClue J.E. Expression of the TSC2 product tuberin and its target Rapl in normal human tissues. Am. J. Pathol. 1997;150:43–50. [PMC free article] [PubMed] [Google Scholar]
  169. Wilkinson D.G., Bailes J.A., McMahon A.P. Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell. 1987;50:79–88. doi: 10.1016/0092-8674(87)90664-7. [DOI] [PubMed] [Google Scholar]
  170. Woolf A.S., Kotalsi-Joannou M., Hardman P., Andermacher E., Moorby C., Fine L.G., Jat P.S., Noble M.D., Gherardi E. Roles of hepatocyte growth factor/scatter factor and the Met receptor in the early development of the metanephros. J. Cell Biol. 1995;128:171–184. doi: 10.1083/jcb.128.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Xiang Y.-Y., Tanaka M., Suzuki M., Igaroshi H., Kiyokama E., Naito Y., Ohtawara Y., Shan Q., Sugumina H., Kino I. Isolation of complementary DNA encoding K-cadherin, a novel rat cadherin preferentially expressed in foetal kidney and kidney carcinoma. Cancer Res. 1994;54:3034–3041. [PubMed] [Google Scholar]
  172. Xiao G.H., Shoarinejad E., Jin E., Golemis E.A., Yeung R.S. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating en-docytosis. J. Biol. Chem. 1997;272:6097–6100. doi: 10.1074/jbc.272.10.6097. [DOI] [PubMed] [Google Scholar]
  173. Zerres K., Mucher G., Bachner L., Deschennes G., Eggermann T., Kaariainen H., Knapp M., Lennert T., Misselwitz J., von Muhlendahl K.E., Neumann H.P.H., Pirson Y., Rudnik-Schoneborn S., Steinbicker V., Wirth B., Scharer K. Mapping of the gene for auto-somal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nat. Genet. 1994;7:429–432. doi: 10.1038/ng0794-429. [DOI] [PubMed] [Google Scholar]
  174. Zhou J., Barker D.E., Hostikka S.L., Gregory M.C., Atkin C.L., Truggvason K. Single base mutation in α-5 (IV) collagen chain gene converting a conserver cysteine to serine in Alport syndrome. Gene. 1991;9:10–18. doi: 10.1016/0888-7543(91)90215-z. [DOI] [PubMed] [Google Scholar]

Articles from Current Topics in Developmental Biology are provided here courtesy of Elsevier

RESOURCES