Publisher Summary
Alphaviruses are enveloped positive-strand RNA viruses transmitted to vertebrate hosts by mosquitoes. Several alphaviruses are pathogenic to humans or domestic animals, causing serious central nervous system infections or milder infections, for example, arthritis, rash, and fever. The structure and replication of Semliki Forest virus (SFV) and Sindbis virus (SIN) have been studied extensively during the past 30 years. Alphaviruses have been important probes in cell biology to study the translation, glycosylation, folding, and transport of membrane glycoproteins, as well as endocytosis and membrane fusion mechanisms. A new organelle, the intermediate compartment, operating between the endoplasmic retieulum and the Golgi complex has been found by the aid of SFV. During the past 10 years, alphavirus replicons have been increasingly used as expression vectors for basic research, for the generation of vaccines, and for the production of recombinant proteins in industrial scale. The main approaches of laboratories in the recent years have been twofold. On one hand, they have discovered and characterized the enzymatic activities of the individual replicase proteins and on the other hand, they have studied the localization, membrane association, and other cell biological aspects of the replication complex.
References
- 1.Johnston R.E, Peters C.J. In: Alphaviruses. 3rd ed. Fields B.N, Knipe D.M, Howley P.M, editors. Lippincott-Raven; Philadelphia: 1996. pp. 843–898. (Fields Virology). [Google Scholar]
- 2.Kääriäinen L, Söderlund H. Structure and replication of alphaviruses. Curr Top. Microbiol. Immunol. 1978;82:15–69. doi: 10.1007/978-3-642-46388-4_2. [DOI] [PubMed] [Google Scholar]
- 3.Helenius A. Alphavirus and flavivirus glycoproteins: Structures and functions. Cell. 1995;81:651–653. doi: 10.1016/0092-8674(95)90523-5. [DOI] [PubMed] [Google Scholar]
- 4.Saraste J, Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984;38:535–543. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
- 5.Berglund P, Tubulekas I, Liljeström P. Alphaviruses as vectors for gene delivery. Trends Biotechnol. 1996;14:130–134. doi: 10.1016/0167-7799(96)10019-6. [DOI] [PubMed] [Google Scholar]
- 6.Schlesinger S, Dubensky T.W. Alphavirus vectors for gene expression and vaccines. Curr. Opin. Biotechnol. 1999;10:434–439. doi: 10.1016/s0958-1669(99)00006-3. [DOI] [PubMed] [Google Scholar]
- 7.Mancini E.J, Clarke M, Gowen B.E, Rutten T, Fuller S.D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol. Cell. 2000;5:255–266. doi: 10.1016/s1097-2765(00)80421-9. [DOI] [PubMed] [Google Scholar]
- 8.Marsh M, Helenius A. Virus entry into animal cells. Adv. Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Singh I, Helenius A. Role of ribosomes in Semliki Forest virus nucleocapsid uncoating. J. Virol. 1992;66:7049–7058. doi: 10.1128/jvi.66.12.7049-7058.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Ulmanen I, Soderlund H, Kääriäinen L. Role of protein synthesis in the assembly of Semliki forest virus nucleocapsid. Virology. 1979;99:265–276. doi: 10.1016/0042-6822(79)90006-0. [DOI] [PubMed] [Google Scholar]
- 11.Soderlund H, Kadridinen L, von Bonsdorff C.H. Properties of Semliki Forest virus nucleocapsid. Med. Biol. 1975;53:412–417. [PubMed] [Google Scholar]
- 12.Ulmanen I. Assembly of Semliki Forest virus nucleocapsid: Detection of a precursor in infected cells. J. Gen. Virol. 1978;41:353–365. doi: 10.1099/0022-1317-41-2-353. [DOI] [PubMed] [Google Scholar]
- 13.Coombs K.M, Brown D.T. Form-determining functions in Sindbis virus nucleocapsids: Nucleosomelike organization of the nucleocapsid. J. Virol. 1989;63:883–891. doi: 10.1128/jvi.63.2.883-891.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Pesonen M, Renkonen O. Serum glycoprotein-type sequence of monosaccharides in membrane glycoproteins of Semliki Forest virus. Biochim. Biophys. Acta. 1976;455:510–525. doi: 10.1016/0005-2736(76)90321-7. [DOI] [PubMed] [Google Scholar]
- 15.Pesonen M. Sequence analysis of lactosamine type glycans of individual membrane proteins of Semliki Forest virus. J. Gen. Virol. 1979;45:479–487. doi: 10.1099/0022-1317-45-2-479. [DOI] [PubMed] [Google Scholar]
- 16.Koonin E.V, Dolja V.V. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 1993;28:375–430. doi: 10.3109/10409239309078440. [DOI] [PubMed] [Google Scholar]
- 17.Rozanov M.N, Koonin E.V, Gorbalenya A.E. Conservation of the putative methyltransferase domain: a hallmark of the “Sindbis-like” supergroup of positive-strand RNA viruses. J. Gen. Virol. 1992;73:2129–2134. doi: 10.1099/0022-1317-73-8-2129. [DOI] [PubMed] [Google Scholar]
- 18.Ahola T, Laakkonen P, Vihinen H, Kääriäinen L. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J. Virol. 1997;71:392–397. doi: 10.1128/jvi.71.1.392-397.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Buck K.W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv. Virus Res. 1996;47:159–251. doi: 10.1016/S0065-3527(08)60736-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Friedman R.M, Levy H.B, Carter W.B. Vol. 56. 1966. Replication of Semliki Forest virus: Three forms of viral RNA produced during infection; pp. 440–446. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Sonnabend J.A, Martin E.M, Mecs E. Viral specific RNAs in infected cells. Nature. 1967;213:365–367. doi: 10.1038/213365a0. [DOI] [PubMed] [Google Scholar]
- 22.Kääriäinen L, Gomatos P.J. A kinetic analysis of the synthesis in BHK 21 cells of RNAs specific for Semliki Forest virus. J. Gen. Virol. 1969;5:251–265. doi: 10.1099/0022-1317-5-2-251. [DOI] [PubMed] [Google Scholar]
- 23.Simmons D.T, Strauss J.H. Replication of Sindbis virus: I. Relative size and genetic content of 26S and 49S RNA. J. Mol. Biol. 1972;71:599–613. [PubMed] [Google Scholar]
- 24.Simmons D.T, Strauss J.H. Replication of Sindbis virus: II. Multiple forms of doublestranded RNA isolated from infected cells. J. Mol. Biol. 1972;71:615–631. doi: 10.1016/s0022-2836(72)80027-5. [DOI] [PubMed] [Google Scholar]
- 25.Friedman R.M, Berezesky I.K. Cytoplasmic fractions associated with Semliki Forest virus ribonucleic acid replication. J. Virol. 1967;1:374–383. doi: 10.1128/jvi.1.2.374-383.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Ranki M, Kääriäinen L. Solubilized RNA replication complex from Semliki Forest virusinfected cells. Virology. 1979;98:298–307. doi: 10.1016/0042-6822(79)90553-1. [DOI] [PubMed] [Google Scholar]
- 27.Gomatos P.J, Käädäinen L, Keränen S, Ranki M, Sawicki D.L. Semliki Forest virus replication complex capable of synthesizing 42S and 26S nascent RNA chains. J. Gen. Virol. 1980;49:61–69. doi: 10.1099/0022-1317-49-1-61. [DOI] [PubMed] [Google Scholar]
- 28.Garoff H, Simons K, Dobberstein B. Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J. Mol. Biol. 1978;124:587–600. doi: 10.1016/0022-2836(78)90173-0. [DOI] [PubMed] [Google Scholar]
- 29.Glanville N, Ranki M, Morser J, Kääriäinen L, Smith A.E. Vol. 73. 1976. Initiation of translation directed by 42S and 26S RNAs from Semliki Forest virus in vitro; pp. 3059–3063. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Glanville N, Lachmi B.-E, Smith A.E, Kääriäinen L. Tryptic peptide mapping of the nonstructural proteins of Semliki Forest virus and their precursors. Biochim. Biophys. Acta. 1978;518:497–506. doi: 10.1016/0005-2787(78)90167-3. [DOI] [PubMed] [Google Scholar]
- 31.Lehtovaara P, Ulmanen I, Kääriäinen L, Keränen S, Philipson L. Synthesis and processing of Semliki Forest virus-specific nonstructural proteins in vivo and in vitro. Eur. J. Biochem. 1980;112:461–468. doi: 10.1111/j.1432-1033.1980.tb06108.x. [DOI] [PubMed] [Google Scholar]
- 32.Takkinen K. Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus. Nucleic Acids Res. 1986;14:5667–5682. doi: 10.1093/nar/14.14.5667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Strauss E.G, Rice C.M, Strauss J.H. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. 1984;133:92–110. doi: 10.1016/0042-6822(84)90428-8. [DOI] [PubMed] [Google Scholar]
- 34.Strauss J.H, Strauss E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 1994;58:491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Frolova E, Frolov I, Schlesinger S. Packaging signals in alphaviruses. J. Virol. 1997;71:248–258. doi: 10.1128/jvi.71.1.248-258.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.White C.L, Thomson M, Dimmock N.J. Deletion analysis of a defective interfering Semliki Forest virus RNA genome defines a region in the nsP2 sequence that is required for efficient packaging of the genome into virus particles. J. Virol. 1998;72:4320–4326. doi: 10.1128/jvi.72.5.4320-4326.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Lehtovaara P, Söderlund H, Keränen S, Pettersson R.F, Kääriäinen L. Vol. 78. 1981. 18S defective interfering RNA of Semliki Forest virus contains a triplicated linear repeat; pp. 5353–5357. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Lehtovaara P, Söderlund H, Keränen S, Pettersson R.F, Kääriäinen L. Extreme ends of the genome are conserved and rearranged in the defective interfering RNAs of Semliki Forest virus. J. Mol. Biol. 1982;156:731–748. doi: 10.1016/0022-2836(82)90139-5. [DOI] [PubMed] [Google Scholar]
- 39.Monroe S.S, Schlesinger S. Common and distinct regions of defective-interfering RNAs of Sindbis virus. J. Virol. 1984;49:865–872. doi: 10.1128/jvi.49.3.865-872.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Thomson M, Dimmock N.J. Common sequence elements in structurally unrelated genomes of defective interfering Semliki Forest virus. Virology. 1994;199:354–365. doi: 10.1006/viro.1994.1133. [DOI] [PubMed] [Google Scholar]
- 41.Pettersson R.F. Vol. 78. 1981. 5′-Terminal nucleotide sequence of Semliki forest virus 18S defective interfering RNA is heterogeneous and different from the genomic 42S RNA; pp. 115–119. (Proc. Natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Monroe S.S, Schlesinger S. Vol. 80. 1983. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′ ends; pp. 3279–3283. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Niesters H.G.M, Strauss J.H. Defined mutations in the 5′ nontranslated sequence of Sindbis virus RNA. J. Virol. 1990;64:4162–4168. doi: 10.1128/jvi.64.9.4162-4168.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Niesters H.G.M, Strauss J.H. Mutagenesis of the conserved 51-nucleotide region of Sindbis virus. J. Virol. 1990;64:1639–1647. doi: 10.1128/jvi.64.4.1639-1647.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Sawicki D.L, Sawicki S.G. Short-lived minus-strand polymerase for Semliki Forest virus. J. Virol. 1980;34:108–118. doi: 10.1128/jvi.34.1.108-118.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Hahn Y.S, Strauss E.G, Strauss J.H. Mapping of RNA- temperature-sensitive mutants of Sindbis virus: Assignment of complementation groups A, B, and G to nonstructural proteins. J. Virol. 1989;63:3142–3150. doi: 10.1128/jvi.63.7.3142-3150.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Sawicki D.L, Sawicki S.G, Keränen S, Kääriäinen L. Specific Sindbis virus-coded function for minus-strand RNA synthesis. J. Virol. 1981;39:348–358. doi: 10.1128/jvi.39.2.348-358.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Wang Y.-F, Sawicki S.G, Sawicki D.L. Sindbis virus nsP1 functions in negative-strand RNA synthesis. J. Virol. 1991;65:985–988. doi: 10.1128/jvi.65.2.985-988.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Wang Y.-F, Sawicki S.G, Sawicki D.L. Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J. Virol. 1994;68:6466–6475. doi: 10.1128/jvi.68.10.6466-6475.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Lemm J.A, Rice C.M. Assembly of functional Sindbis virus RNA replication complexes: Requirement for coexpression of P123 and P34. J. Virol. 1993;67:1905–1915. doi: 10.1128/jvi.67.4.1905-1915.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Lemm J.A, Rice C.M. Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription. J. Virol. 1993;67:1916–1926. doi: 10.1128/jvi.67.4.1916-1926.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Lemm J.A, Rümenapf T, Strauss E.G, Strauss J.H, Rice C.M. Polypeptide requirements for assembly of functional Sindbis virus replication complexes: A model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J. 1994;13:2925–2934. doi: 10.1002/j.1460-2075.1994.tb06587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Shirako Y, Strauss J.H. Regulation of Sindbis virus RNA replication: Uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J. Virol. 1994;68:1874–1885. doi: 10.1128/jvi.68.3.1874-1885.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Lemm J.A, Bergqvist A, Read C.M, Rice C.M. Template-dependent initiation of Sindbis virus RNA replication in vitro. J. Virol. 1998;72:6546–6553. doi: 10.1128/jvi.72.8.6546-6553.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Sawicki S.G, Sawicki D.L, Kääriäinen L, Keränen S. A Sindbis virus mutant temperature-sensitive in the regulation of minus-strand RNA synthesis. Virology. 1981;115:161–172. doi: 10.1016/0042-6822(81)90098-2. [DOI] [PubMed] [Google Scholar]
- 56.Sawicki S.G, Sawicki D.L. The effect of loss regulation of minus-strand RNA synthesis on Sindbis virus replication. Virology. 1986;151:339–349. doi: 10.1016/0042-6822(86)90054-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Sawicki D.L, Barkhimer D.B, Sawicki S.G, Rice C.M, Schlesinger S. Temperature sensitive shut-off of alphavirus minus strand RNA synthesis maps to a nonstructural protein, nsP4. Virology. 1990;174:43–52. doi: 10.1016/0042-6822(90)90052-s. [DOI] [PubMed] [Google Scholar]
- 58.Sawicki D.L, Sawicki S.G. A second nonstructural protein functions in the regulation of alphavirus negative-strand RNA synthesis. J. Virol. 1993;67:3605–3610. doi: 10.1128/jvi.67.6.3605-3610.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Suopanki J, Sawicki D.L, Sawicki S.G, Kääriäinen L. Regulation of alphavirus 26S mRNA transcription by replicase component nsP2. J. Gen. Virol. 1998;79:309–319. doi: 10.1099/0022-1317-79-2-309. [DOI] [PubMed] [Google Scholar]
- 60.Tuomi K, Kääriäinen L, Söderlund H. Quantitation of Semliki Forest virus RNAs in infected cells using 32P equilibrium labelling. Nucleic Acids Res. 1975;2:555–565. doi: 10.1093/nar/2.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Wengler G, Wengler Gi. Studies on the synthesis of viral RNA-polymerase-template complexes in BHK 21 cells infected with Semliki Forest virus. Virology. 1975;66:322–326. doi: 10.1016/0042-6822(75)90202-0. [DOI] [PubMed] [Google Scholar]
- 62.Sawicki S.G, Sawicki D.L. The effect of overproduction of nonstructural proteins on alphavirus plus-strand and minus-strand RNA synthesis. Virology. 1986;152:507–512. doi: 10.1016/0042-6822(86)90157-1. [DOI] [PubMed] [Google Scholar]
- 63.Grimley P.M, Berezesky I.K, Friedman R.M. Cytoplasmic structures associated with an arbovirus infection: Loci of viral ribonucleic acid synthesis. J. Virol. 1968;2:1326–1338. doi: 10.1128/jvi.2.11.1326-1338.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Froshauer S, Kartenbeck J, Helenius A. Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J. Cell Biol. 1988;107:2075–2086. doi: 10.1083/jcb.107.6.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Peränen J, Kääriäinen L. Biogenesis of type I cytopathic vacuoles in Semliki Forest virusinfected BHK cells. J. Virol. 1991;65:1623–1627. doi: 10.1128/jvi.65.3.1623-1627.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Kujala P, Ikäheimonen A, Ehsani N, Vihinen H, Auvinen P, Kääriäinen L. Biogenesis of the Semliki Forest virus RNA replication complex. J. Virol. 2001;75:3873–3884. doi: 10.1128/JVI.75.8.3873-3884.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Grimley P.M, Levin J.G, Berezesky I.K, Friedman R.M. Specific membranous structures associated with the replication of group A arboviruses. J. Virol. 1972;10:492–503. doi: 10.1128/jvi.10.3.492-503.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Lachmi B.-E, Kääriäinen L. Control of protein synthesis in Semliki Forest virus infected cells. J. Virol. 1977;22:142–149. doi: 10.1128/jvi.22.1.142-149.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Magliano D, Marshall J.A, Bowden D.S, Vardaxis N, Meanger J, Lee J.-Y. Rubella virus replication complexes are virus-modified lysosomes. Virology. 1998;240:57–63. doi: 10.1006/viro.1997.8906. [DOI] [PubMed] [Google Scholar]
- 70.Kujala P, Ahola T, Ehsani N, Auvinen P, Vihinen H, Kääriäinen L. Intracellular distribution of rubella virus nonstructural protein P150. J. Virol. 1999;73:7805–7811. doi: 10.1128/jvi.73.9.7805-7811.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Barton D.J, Sawicki S.G, Sawicki D.L. Demonstration in vitro of temperature-sensitive elongation of RNA in Sindbis virus mutant ts6. J. Virol. 1988;62:3597–3602. doi: 10.1128/jvi.62.10.3597-3602.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Barton D.J, Sawicki S.G, Sawicki D.L. Solubilization and immunoprecipitation of alphavirus replication complexes. J. Virol. 1991;65:1496–1506. doi: 10.1128/jvi.65.3.1496-1506.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Scheele C.M, Pfefferkorn E.R. Inhibition of interjacent ribonucleic acid (26S) synthesis in cells infected by Sindbis virus. J. Virol. 1969;4:117–122. doi: 10.1128/jvi.4.2.117-122.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Keränen S, Kääriäinen L. Isolation and basic characterization of temperature-sensitive mutants from Semliki Forest virus. Acta Pathol. Microbiol. Scand. B. 1974;82:810–820. doi: 10.1111/j.1699-0463.1974.tb02378.x. [DOI] [PubMed] [Google Scholar]
- 75.Strauss E.G, Lenches E.M, Strauss J.H. Mutants of Sindbis virus. I. Isolation and partial characterization of 89 new temperature-sensitive mutants. Virology. 1976;74:154–168. doi: 10.1016/0042-6822(76)90137-9. [DOI] [PubMed] [Google Scholar]
- 76.Keränen S, Kääriäinen L. Functional defects of RNA-negative temperature-sensitive mutants of Sindbis and Semliki Forest viruses. J. Virol. 1979;32:19–29. doi: 10.1128/jvi.32.1.19-29.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Sawicki D.L, Sawicki S.G. Functional analysis of the A complementation group mutants of Sindbis HR virus. Virology. 1985;144:20–34. doi: 10.1016/0042-6822(85)90301-0. [DOI] [PubMed] [Google Scholar]
- 78.Saraste J, Kääriäinen L, Söderlund H, Keränen S. RNA synthesis directed by a temperature-sensitive mutant of Semliki Forest virus. J. Gen. Virol. 1977;37:399–406. doi: 10.1099/0022-1317-37-2-399. [DOI] [PubMed] [Google Scholar]
- 79.Sawicki D.L, Kääriäinen L, Lambek C, Gomatos P.J. Mechanism for control of synthesis of Semliki Forest virus 26S and 42S RNA. J. Viral. 1978;25:19–27. doi: 10.1128/jvi.25.1.19-27.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Levis R, Schlesinger S, Huang H.V. Promoter for Sindbis virus RNA-depedent subgenomic RNA transcription. J. Virol. 1990;64:1726–1733. doi: 10.1128/jvi.64.4.1726-1733.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Raju R, Huang H.V. Analysis of Sindbis virus promoter recognition in vivo, using novel vectors with two subgenomic mRNA promoters. J. Virol. 1991;65:2501–2510. doi: 10.1128/jvi.65.5.2501-2510.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Wielgosz M.M, Raju R, Huang H.V. Sequence requirements for Sindbis virus subgenomic mRNA promoter function in cultured cells. J. Virol. 2001;75:3509–3519. doi: 10.1128/JVI.75.8.3509-3519.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Lachmi B.-E, Kääriäinen L. Vol. 73. 1976. Sequential translation of nonstructural proteins in cells infected with a Semliki Forest virus mutant; pp. 1936–1940. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Kääriäinen L, Sawicki D.L, Gomatos P.J. Cleavage defect in the non-structural polyprotein of Sembld Forest virus has two separate effects on virus RNA synthesis. J. Gen. Viral. 1978;39:463–473. doi: 10.1099/0022-1317-39-3-463. [DOI] [PubMed] [Google Scholar]
- 85.Keränen S, Ruohonen L. Nonstructural proteins of Semliki Forest virus: Synthesis, processing, and stability in infected cells. J. Virol. 1983;47:505–551. doi: 10.1128/jvi.47.3.505-515.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Hardy W.R, Strauss J.H. Processing the nonstructural polyproteins of Sindbis virus: Study of the kinetics in vivo by using monospecific antibodies. J. Virol. 1988;62:998–1007. doi: 10.1128/jvi.62.3.998-1007.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Ding M, Schlesinger M.J. Evidence that Sindbis virus nsP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology. 1989;171:280–284. doi: 10.1016/0042-6822(89)90539-4. [DOI] [PubMed] [Google Scholar]
- 88.Hardy W.R, Strauss J.H. Processing the nonstructural polyproteins of Sindbis virus: Nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J. Virol. 1989;63:4653–4664. doi: 10.1128/jvi.63.11.4653-4664.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Shirako Y, Strauss J.H. Cleavage between nsP1 and nsP2 initiates the processing pathway of Sindbis virus nonstructural polyprotein P123. Virology. 1990;177:54–64. doi: 10.1016/0042-6822(90)90459-5. [DOI] [PubMed] [Google Scholar]
- 90.Strauss E.G, deGroot R.J, Levinson R, Strauss J.H. Identification of the active site residues in the nsP2 proteinase of Sindbis virus. Virology. 1992;191:932–940. doi: 10.1016/0042-6822(92)90268-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.ten Dam E, Flint M, Ryan M.D. Virus-coded proteinases of the Togaviridae. J. Gen. Virol. 1999;80:1879–1888. doi: 10.1099/0022-1317-80-8-1879. [DOI] [PubMed] [Google Scholar]
- 92.Merits A, Vasiljeva L, Ahola T, Kääriäinen L, Auvinen P. Proteolytic processing of Semliki Forest virus-specific non-structural polyprotein by nsP2 protease. J. Gen. Virol. 2001;82:765–773. doi: 10.1099/0022-1317-82-4-765. [DOI] [PubMed] [Google Scholar]
- 93.Mi S, Stollar V. Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli. Virology. 1991;184:423–427. doi: 10.1016/0042-6822(91)90862-6. [DOI] [PubMed] [Google Scholar]
- 94.Laakkonen P, Hyvönen M, Peränen J, Kääriäinen L. Expression of Semliki Forest virus nsP1-specific methyltransferase in insect cells and in Escherichia coli. J. Virol. 1994;68:7418–7425. doi: 10.1128/jvi.68.11.7418-7425.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Ahola T, Kääriäinen L. Vol. 92. 1995. Reaction in alphavirus mRNA capping: Formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP; pp. 507–511. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Lampio A, Ahola T, Darzynkiewicz E, Stepinski J, Jankowska-Anyszka M, Kääriäinen L. Guanosine nucleotide analogs as inhibitors of alphavirus mRNA capping enzyme. Antiviral Res. 1999;42:35–46. doi: 10.1016/s0166-3542(99)00011-x. [DOI] [PubMed] [Google Scholar]
- 97.Furuichi Y, Shatkin A.J. Viral and cellular mRNA capping: Past and prospects. Adv. Virus Res. 2000;55:135–184. doi: 10.1016/S0065-3527(00)55003-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Shuman S. Structure, mechanism, and evolution of the mRNA capping apparatus. Prog. Nucleic Acid Res. Mol. Biol. 2000;66:1–40. doi: 10.1016/s0079-6603(00)66025-7. [DOI] [PubMed] [Google Scholar]
- 99.Merits A, Kettunen R, Mäkinen K, Lampio A, Auvinen P, Kääriäinen L, Ahola T. Virus-specific capping of tobacco mosaic virus RNA: Methylation of GTP prior to formation of covalent complex p126-m7GMP. FEBS Lett. 1999;455:45–48. doi: 10.1016/s0014-5793(99)00856-x. [DOI] [PubMed] [Google Scholar]
- 100.Ahola T, Ahlquist P. Putative RNA capping activities encoded by brome mosaic virus: Methylation and covalent binding of guanylate by rephcase protein la. J. Virol. 1999;73:10,061–10,069. doi: 10.1128/jvi.73.12.10061-10069.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Kong F, Sivakumaran K, Kao C. The N-terminal half of the brome mosaic virus la protein has RNA capping-associated activities: Specificity for GTP and S-adenosylmethionine. Virology. 1999;259:200–210. doi: 10.1006/viro.1999.9763. [DOI] [PubMed] [Google Scholar]
- 102.Li Y.I, Chen Y.J, Hsu Y.H, Meng M. Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus rephcase. J. Virol. 2001;75:782–788. doi: 10.1128/JVI.75.2.782-788.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Magden J, Takeda N, Li T, Auvinen P, Ahola T, Miyamura T, Merits A, Kääriäinen L. Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J. Virol. 2001;75:6249–6255. doi: 10.1128/JVI.75.14.6249-6255.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Wang H.-L, O'Rear J, Stollar V. Mutagenesis of the Sindbis virus nsPl protein: Effects on methyltransferase activity and viral infectivity. Virology. 1996;217:527–531. doi: 10.1006/viro.1996.0147. [DOI] [PubMed] [Google Scholar]
- 105.Ahola T, den Boon J.A, Ahlquist P. Helicase and capping enzyme active site mutations in brome mosaic virus protein la cause defects in template recruitment, negative-strand RNA synthesis, and viral RNA capping. J. Virol. 2000;74:8803–8811. doi: 10.1128/jvi.74.19.8803-8811.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Ahola T, Lampio A, Auvinen P, Kääriäinen L. Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO J. 1999;18:3164–3172. doi: 10.1093/emboj/18.11.3164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Mi S, Durbin R.K, Huang H.V, Rice C.M, Stollar V. Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology. 1989;170:385–391. doi: 10.1016/0042-6822(89)90429-7. [DOI] [PubMed] [Google Scholar]
- 108.Scheidel L.M, Durbin R.K, Stollar V. SVLM21, a Sindbis virus mutant resistant to methionine deprivation, encodes an altered methyltransferase. Virology. 1989;173:408–414. doi: 10.1016/0042-6822(89)90553-9. [DOI] [PubMed] [Google Scholar]
- 109.Scheidel L.M, Durbin R.K, Stollar V. Sindbis virus mutants resistant to mycophenolic acid and ribavirin. Virology. 1987;158:1–7. doi: 10.1016/0042-6822(87)90230-3. [DOI] [PubMed] [Google Scholar]
- 110.Scheidel L.M, Stollar V. Mutations that confer resistance to mycophenolic acid and ribavirin on Sindbis virus map to the nonstructural protein nsP1. Virology. 1991;181:490–499. doi: 10.1016/0042-6822(91)90881-b. [DOI] [PubMed] [Google Scholar]
- 111.Rosenblum C.I, Scheidel L.M, Stollar V. Mutations in the nsPl coding sequence of Sindbis virus which restrict viral replication in secondary cultures of chick embryo fibroblasts prepared from aged primary cultures. Virology. 1994;198:100–108. doi: 10.1006/viro.1994.1012. [DOI] [PubMed] [Google Scholar]
- 112.Peränen J, Laakkonen P, Hyvönen M, Kääriäinen L. The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology. 1995;208:610–620. doi: 10.1006/viro.1995.1192. [DOI] [PubMed] [Google Scholar]
- 113.Ahola T, Kujala P, Tuittila M, Blom T, Laakkonen P, Hinkkanen A, Auvinen P. Effects of palmitoylation of replicase protein nsPl on alphavirus infection. J. Virol. 2000;74:6725–6733. doi: 10.1128/jvi.74.15.6725-6733.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Laakkonen P, Ahola T, Kääriäinen L. The effects of palmitoylation on membrane association of Semliki Forest virus RNA capping enzyme. J. Biol. Chem. 1996;271:28,567–28,571. doi: 10.1074/jbc.271.45.28567. [DOI] [PubMed] [Google Scholar]
- 115.Lampio A, Kilpeläinen I, Pesonen S, Karhi K, Auvinen P, Somerharju P, Kääriäinen L. Membrane binding mechanism of an RNA virus-capping enzyme. J. Biol. Chem. 2000;275:37,853–37,859. doi: 10.1074/jbc.M004865200. [DOI] [PubMed] [Google Scholar]
- 116.Johnson J.E, Cornell R.B. Amphitropic proteins: Regulation by reversible membrane interactions. Mol. Membr. Biol. 1999;16:217–235. doi: 10.1080/096876899294544. [DOI] [PubMed] [Google Scholar]
- 117.Laakkonen P, Auvinen P, Kujala P, Kääriäinen L. Alphavirus replicase protein Nspl induces filopodia and rearrangement of actin filaments. J. Virol. 1998;72:10,265–10,269. doi: 10.1128/jvi.72.12.10265-10269.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Shirako Y, Strauss E.G, Strauss J.H. Suppressor mutations that allow Sindbis virus RNA polymerase to function with nonaromatic amino acids at the N-terminus: Evidence for interaction between nsP1 and nsP4 in minus-strand RNA synthesis. Virology. 2000;276:148–160. doi: 10.1006/viro.2000.0544. [DOI] [PubMed] [Google Scholar]
- 119.Dé I, Sawicki S.G, Sawicki D.L. Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: Role of the nsP2 protein. J. Virol. 1996;70:2706–2719. doi: 10.1128/jvi.70.5.2706-2719.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Gorbalenya A.E, Koonin E.V, Lai M.-C. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphtovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 1991;288:201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Gorbalenya A.E, Koonin E.V. Helicases: Amino acid sequence comparisons and structurefunction relationships. Curr Opin. Cell Biol. 1993;3:419–429. [Google Scholar]
- 122.Rikkonen M, Peränen J, Kääriäinen L. ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J. Virol. 1994;68:5804–5810. doi: 10.1128/jvi.68.9.5804-5810.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Rikkonen M. Functional significance of the nuclear-targeting and NTP-binding motifs of Semlild Forest virus nonstructural protein nsP2. Virology. 1996;218:352–361. doi: 10.1006/viro.1996.0204. [DOI] [PubMed] [Google Scholar]
- 124.Gomez de Cedrón M, Ehsani N, Mikkola M.L, Garcia J.A, Kääriäinen L. RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett. 1999;448:19–22. doi: 10.1016/s0014-5793(99)00321-x. [DOI] [PubMed] [Google Scholar]
- 125.Bird L.E, Subramanya H.S, Wigley D.B. Helicases: A unifying structural theme? Curr. Opin. Struct. Biol. 1998;8:14–18. doi: 10.1016/s0959-440x(98)80004-3. [DOI] [PubMed] [Google Scholar]
- 126.Kroner P.A, Young B.M, Ahlquist P. Analysis of the role of brome mosaic virus la protein domains in RNA replication, using linkerinsertion mutagenesis. J. Viral. 1990;64:6110–6120. doi: 10.1128/jvi.64.12.6110-6120.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Vasiljeva L, Merits A, Auvinen P, Kääriäinen L. Identification of a novel function of the Alphavirus capping apparatus. RNA 5′ triphosphatase activity of Nsp2. J. Biol. Chem. 2000;275:17,281–17,287. doi: 10.1074/jbc.M910340199. [DOI] [PubMed] [Google Scholar]
- 128.Myette J.R, Niles E.G. Characterization of the vaccinia virus RNA 5′-triphosphatase and nucleoside triphosphate phosphohydrolase activities. Demonstration that both activities are carried out at the same active site. J. Biol. Chem. 1996;271:11,945–11,952. doi: 10.1074/jbc.271.20.11945. [DOI] [PubMed] [Google Scholar]
- 129.Ho C.K, Pei Y, Shuman S. Yeast and viral RNA 5′ triphosphatases comprise a new nucleoside triphosphatase family. J. Biol. Chem. 1998;273:34,151–34,156. doi: 10.1074/jbc.273.51.34151. [DOI] [PubMed] [Google Scholar]
- 130.Wengler G, Wengler Gi. The NS3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology. 1993;197:265–273. doi: 10.1006/viro.1993.1587. [DOI] [PubMed] [Google Scholar]
- 131.Vasiljeva L, Valmu L, Kääriäinen L, Merits A. Site-specific protease activity of the carboxyl-terminal domain of Semliki Forest virus replicase protein nsP2. J. Biol. Chem. 2001;276:30,782–30,793. doi: 10.1074/jbc.M104786200. [DOI] [PubMed] [Google Scholar]
- 132.Kalkkinen N, Laaksonen M, Söderlund H, Jömvall H. Radio-sequence analysis of in vivo multilabeled nonstructural protein ns86 of Semliki Forest virus. Virology. 1981;113:188–195. doi: 10.1016/0042-6822(81)90147-1. [DOI] [PubMed] [Google Scholar]
- 133.Kalkkinen N. Radio-sequence analysis: An ultra-sensitive method to align protein and nucleotide sequences. In: Wittmann-Liebold B, Salnikow J, Erdmann V.A, editors. Advanced Methods in Protein Microsequence Analysis. Springer-Verlag; Berlin: 1986. pp. 194–206. [Google Scholar]
- 134.Peränen J, Rikkonen M, Ldjeström P, Kääriäinen L. Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J. Virol. 1990;64:1888–1896. doi: 10.1128/jvi.64.5.1888-1896.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Rikkonen M, Peränen J, Kääriäinen L. Nuclear and nucleolar targeting signals of Semliki Forest virus nonstructural protein nsP2. Virology. 1992;189:462–473. doi: 10.1016/0042-6822(92)90570-f. [DOI] [PubMed] [Google Scholar]
- 136.Russo P, Laakkonen P, Ahola T, Kääriäinen L. Synthesis of Semliki Forest virus RNA polymerase components nsP1 through nsP4 in Saccharomyces cerevisiae by expression of cDNA encoding the nonstructural polyprotein. J. Viral. 1996;70:4086–4089. doi: 10.1128/jvi.70.6.4086-4089.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Kääriäinen L, Ranki M. Inhibition of cell functions by RNA-virus infections. Annu. Rev. Microbiol. 1984;38:91–109. doi: 10.1146/annurev.mi.38.100184.000515. [DOI] [PubMed] [Google Scholar]
- Fazakerley J.K, Boyd A, Mikkola M.L, Kääriäinen L. A single amino acid change in the nuclear localization sequence of the nsP2 protein affects the neurovirulence of Semliki Forest virus. J. Virol. 2002;76:392–396. doi: 10.1128/JVI.76.1.392-396.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Vihinen H, Ahola T, Tuittila M, Merits A, Kääriäinen L. Elimination of phosphorylation sites of Semliki Forest virus replicase protein nsP3. J. Biol. Chem. 2001;276:5745–5752. doi: 10.1074/jbc.M006077200. [DOI] [PubMed] [Google Scholar]
- 139.Pehrson J.R, Fuji R.N. Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res. 1998;26:2837–2842. doi: 10.1093/nar/26.12.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Aguiar R.C, Yakushijin Y, Kharbanda S, Salgia R, Fletcher J.A, Shipp M.A. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood. 2000;96:4328–4334. [PubMed] [Google Scholar]
- 141.Martzen M.R, McCraith S.M, Spinelli S.L, Torres F.M, Fields S, Grayhack E.J, Phizicky E.M. A biochemical genomics approach for identifying genes by the activity of their products. Science. 1999;286:1153–1155. doi: 10.1126/science.286.5442.1153. [DOI] [PubMed] [Google Scholar]
- 142.Peranen J, Takkinen K, Kalkldnen N, Kääriäinen L. Semliki Forest virus-specific nonstructural protein nsP3 is a phosphoprotein. J. Gen. Virol. 1988;69:2165–2178. doi: 10.1099/0022-1317-69-9-2165. [DOI] [PubMed] [Google Scholar]
- 143.Li G, LaStarza M.W, Hardy W.R, Strauss J.H, Rice C.M. Phosphorylation of Sindbis virus nsP3 in vivo and in vitro. Virology. 1990;179:416–427. doi: 10.1016/0042-6822(90)90310-n. [DOI] [PubMed] [Google Scholar]
- 144.LaStarza M.W, Grakoui A, Rice C.M. Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: Effects on phoshorylation and on virus replication in vertebrate and invertebrate cells. Virology. 1994;202:224–232. doi: 10.1006/viro.1994.1338. [DOI] [PubMed] [Google Scholar]
- 145.Vihinen H, Saarinen J. Phosphorylation site analysis of Semliki Forest virus nonstructural protein 3. J. Biol. Chem. 2000;275:27,775–27,783. doi: 10.1074/jbc.M002195200. [DOI] [PubMed] [Google Scholar]
- 146.Tuittila M.T, Santagati M.G, Röytta M, Määttä J.A, Hinkkanen A.E. Replicase complex genes of Semliki Forest virus confer lethal neurovirulence. J. Virol. 2000;74:4579–4589. doi: 10.1128/jvi.74.10.4579-4589.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.LaStarza M.W, Lemm J.A, Rice C.M. Genetic analysis of the nsP3 region of Sindbis virus: Evidence for roles in minus-strand and subgenomic RNA synthesis. J. Virol. 1994;68:5781–5791. doi: 10.1128/jvi.68.9.5781-5791.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.O'Reilly E.K, Kao C.C. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology. 1998;252:287–303. doi: 10.1006/viro.1998.9463. [DOI] [PubMed] [Google Scholar]
- 149.Hahn Y.S, Grakoui A, Rice C.M, Strauss E.G, Strauss J.H. Mapping of RNAtemperature-sensitive mutants of Sindbis virus: Complementation group F mutants have lesions in nsP4. J. Virol. 1989;63:1194–1202. doi: 10.1128/jvi.63.3.1194-1202.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Lin Y.H, Yadav P, Ravatn R, Stollar V. A mutant of Sindbis virus that is resistant to pyrazofurin encodes an altered RNA polymerase. Virology. 2000;272:61–71. doi: 10.1006/viro.2000.0329. [DOI] [PubMed] [Google Scholar]
- 151.Shirako Y, Strauss J.H. Requirement for an aromatic amino acid or histidine at the N terminus of Sindbis virus RNA polymerase. J. Virol. 1998;72:2310–2315. doi: 10.1128/jvi.72.3.2310-2315.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Li G, Rice C.M. Mutagenesis of the in-frame opal termination codon preceding nsP4 of Sindbis virus: Studies of translational readthrough and its effect on virus replication. J. Virol. 1989;63:1326–1337. doi: 10.1128/jvi.63.3.1326-1337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Takldnen K, Peränen J, Kääriäinen L. Proteolytic processing of Semliki Forest virusspecific non-structural polyprotein. J. Gen. Virol. 1991;72:1627–1633. doi: 10.1099/0022-1317-72-7-1627. [DOI] [PubMed] [Google Scholar]
- 154.deGroot R.J, Rümenapf T, Kuhn R.J, Strauss E.G, Strauss J.H. Vol. 88. 1991. Sindbis virus RNA polymerase is degraded by the N-end rule pathway; pp. 8967–8971. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Cheng P.-Y. Purification, size, and morphology of a mosquito-borne animal virus, Semliki Forest virus. Virology. 1961;14:124–131. doi: 10.1016/0042-6822(61)90139-8. [DOI] [PubMed] [Google Scholar]
- 156.Wengler G, Wengler Gi, Gross H.J. Replicative form of Semliki Forest virus RNA contains an unpaired guanosine. Nature. 1979;282:754–756. doi: 10.1038/282754a0. [DOI] [PubMed] [Google Scholar]
- 157.Wengler G, Wengler Gi, Gross H.J. Terminal sequences of Sindbis virus-specific nucleic acids: Identity in molecules synthesized in vertebrate and insect cells and characteristic properties of the replicative form RNA. Virology. 1982;123:273–283. doi: 10.1016/0042-6822(82)90261-6. [DOI] [PubMed] [Google Scholar]
- 158.Wu G, Kaper J.M. Requirement of 3′-terminal guanosine in (-)-stranded RNA for in vitro replication of cucumber mosaic virus satellite RNA by viral RNA-dependent RNA polymerase. J. Mol. Biol. 1994;238:655–657. doi: 10.1006/jmbi.1994.1326. [DOI] [PubMed] [Google Scholar]
- 159.Sawicki D.L, Gomatos P.J. Replication of Semliki Forest virus: Polyadenylate in plus-strand RNA and polyuridylate in minus-strand RNA. J. Virol. 1976;20:446–464. doi: 10.1128/jvi.20.2.446-464.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Hill K.R, Hajjou M, Hu J.Y, Raju R. RNA-RNA recombination in Sindbis virus: Roles of the 3′ conserved motif, poly(A) tail, and nonviral sequences of template RNAs in polymerase recognition and template switching. J. Virol. 1997;71:2693–2704. doi: 10.1128/jvi.71.4.2693-2704.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
