Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Nov 22;80(3):348–358. doi: 10.1016/0091-6749(87)90041-8

Mucosal immunity: The immunology of breast milk

Herbert B Slade 1,, Stanley A Schwartz 1
PMCID: PMC7133196  PMID: 3305665

Abstract

The mammary glands represent one part of the mucosal immune system, a definable, subunit of humoral and cellular immune functions in man that appears to have developed particular qualities well suited to guard our interface with the environment. As our understanding of secretory immunoglobulins and lymphocyte migration patterns continues to develop, the immunologic components found in breast milk appear increasingly likely to play a specific immunologic role in the protection of the nursing infant. The biologic basis for the observed protective effect of breast-feeding is reviewed with an emphasis on the mechanisms involved in the development and maintenance of mucosal immunity in general.

Abbreviations: PP, Peyer's patches; BALT, Bronchus-associated lymphoid tissue; GALT, Gut-associated lymphoid tissue; SIgA, Secretory IgA; SIgM, Secretory IgM; sIgA, Surface IgA; SC, Secretory component; HEV, High endothelial venules; PLN, Peripheral lymph nodes; BM, Breast milk; PBL, Peripheral blood lymphocytes; MLN, Mesenteric lymph nodes; Mab, Monoclonal antibody; FcR, Fc receptor

References

  • 1.Istre GR, Conner JS, Broome CV, Hightower A, Hopkins RS. Risk factors for primary Haemophilus influenzae disease. J Pediatr. 1985;106:190. doi: 10.1016/s0022-3476(85)80285-7. [DOI] [PubMed] [Google Scholar]
  • 2.Cunningham AS, Marchant CD, Shurin PA. Otitis and breast feeding. J Pediatr. 1984;105:854. doi: 10.1016/s0022-3476(84)80338-8. [DOI] [PubMed] [Google Scholar]
  • 3.Mito K, Chiba Y, Suga K, Nakao T. Cellular immune response to infection with respiratory syncytial virus and influence of breast feeding on the response. J Med Virol. 1984;14:323. doi: 10.1002/jmv.1890140405. [DOI] [PubMed] [Google Scholar]
  • 4.Cunningham AS. Breast-feeding and morbidity in industrialized countries: an update. In: Jelliffe DB, Jelliffe EFP, editors. Advances in international maternal and child health. Oxford University Press; Oxford: 1981. pp. 128–168. [Google Scholar]
  • 5.Koopman JS, Turkish VJ, Monto AS. Infant formulas and gastrointestinal illness. Am J Public Health. 1985;75:477. doi: 10.2105/ajph.75.5.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Myers MG, Fomon SJ, Koontz FP, McGuinness GA, Lachenbruch PA, Hollingshead R. Respiratory and gastrointestinal illnesses in breast- and formula-fed infants. Am J Dis Child. 1984;138:629. doi: 10.1001/archpedi.1984.02140450011003. [DOI] [PubMed] [Google Scholar]
  • 7.Paine R, Coble RJ. Breast-feeding and infant health in a rural U. S. community. Am J Dis Child. 1982;136:36. doi: 10.1001/archpedi.1982.03970370038009. [DOI] [PubMed] [Google Scholar]
  • 8.Gallin JJ, Fauci AS, editors. Advances in host defense mechanisms. vol. 4. Raven Press; New York: 1985. (Mucosal Immunity). [Google Scholar]
  • 9.Kumar SN, Seelig LL, Head JR. Migration of radiolabeled, adoptively transferred T-lymphocytes into the mammary gland and milk of lactating rats. J Reprod Immunol. 1985;8:235. doi: 10.1016/0165-0378(85)90043-9. [DOI] [PubMed] [Google Scholar]
  • 10.Bienenstock J, McDermott M, Befus D, O'Neill M. A common mucosal immunologic system involving the bronchus, breast, and bowel. Adv Exp Med Biol. 1978;107:53. doi: 10.1007/978-1-4684-3369-2_7. [DOI] [PubMed] [Google Scholar]
  • 11.McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol. 1979;122:1892. [PubMed] [Google Scholar]
  • 12.Weisz-Carrington P, Roux ME, McWilliams M, Phillips-Quagliata JM, Lamm ME. Organ and isotype distribution of plasma cells producing specific antibody after oral immunization: evidence for a generalized secretory immune system. J Immunol. 1979;123:1705. [PubMed] [Google Scholar]
  • 13.Clancy RL, Cripps AW, Husband AJ, Buckley D. Specific immune response in the respiratory tract after administration of an oral polyvalent bacterial vaccine. Infect Immun. 1983;39:491. doi: 10.1128/iai.39.2.491-496.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Brandtzaeg P, Valnes K, Scott H, Rognum TO, Bjerke K, Baklien K. The human gastrointestinal secretory immune system in health and disease. Scand J Gastroenterol. 1985;20(suppl 114):17. doi: 10.3109/00365528509093765. [DOI] [PubMed] [Google Scholar]
  • 15.Hanson LA. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int Arch Allergy. 1961;18:241. doi: 10.1159/000229177. [DOI] [PubMed] [Google Scholar]
  • 16.Tomasi TB, Tan EM, Solomon A, Prendergast RA. Characteristics of an immune system common to certain external secretions. J Exp Med. 1965;121:101. doi: 10.1084/jem.121.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Paniagua R, Regadera J, Alba J, Nistal M. Quantitative distribution of Ig-containing cells in the normal human intestinal mucosa. Anat Anz. 1985;160:333. [PubMed] [Google Scholar]
  • 18.Koshland ME. The coming of age of J chain. Ann Rev Immunol. 1985;3:425. doi: 10.1146/annurev.iy.03.040185.002233. [DOI] [PubMed] [Google Scholar]
  • 19.Tomasi TB, Plaut AG. Humoral aspects of mucosal immunity. In: Gallin JI, Fauci AS, editors. Vol. 4. Raven Press; New York: 1985. p. 31. (Advances in host defense mechanisms). [Google Scholar]
  • 20.Kuhn LC, Kraehenbuhl J. The membrane receptor for polymeric immunoglobulin is structurally related to secretory component. J Biol Chem. 1981;256:12490. [PubMed] [Google Scholar]
  • 21.Dahlgren U, Ahlstedt S, Hedman L, Wadsworth C, Hanson LA. Dimeric IgA in the rat is transferred from serum to bile but not into milk. Scand J Immunol. 1981;14:95. doi: 10.1111/j.1365-3083.1981.tb00188.x. [DOI] [PubMed] [Google Scholar]
  • 22.Sullivan DA, Allansmith MR. Source of IgA in tears of rats. Immunology. 1984;53:791. [PMC free article] [PubMed] [Google Scholar]
  • 23.Craig SW, Cebra JJ. Peyer's patches: an enriched source of precursors for IgA producing immunoglobulin in the rabbit. J Exp Med. 1971;134:188. doi: 10.1084/jem.134.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.McWilliams M, Phillips-Quagliata JM, Lamm ME. Mesenteric lymph node B lymphoblasts which home to the small intestine are precommitted to IgA synthesis. J Exp Med. 1977;145:866. doi: 10.1084/jem.145.4.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Delacroix DL, Dive C, Rambaud JC, Vaerman JP. IgA subclasses in various secretions and in serum. Immunology. 1982;47:383. [PMC free article] [PubMed] [Google Scholar]
  • 26.Kett K, Brandtzaeg P, Radl J, Haaijman JJ. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J Immunol. 1986;136:3631. [PubMed] [Google Scholar]
  • 27.Ament ME. Immunodeficiency syndromes and the gut. Scand J Gastroenterol. 1985;20(suppl 114):127. doi: 10.3109/00365528509093773. [DOI] [PubMed] [Google Scholar]
  • 28.Mellander L, Bjorkander J, Carlsson B, Hanson LA. Secretory antibodies in IgA-deficient and immunosuppressed individuals. J Clin Immunol. 1986;6:284. doi: 10.1007/BF00917328. [DOI] [PubMed] [Google Scholar]
  • 29.Weicker J, Underdown BJ. A study of the association of human secretory component with IgA and IgM proteins. J Immunol. 1975;114:1337. [PubMed] [Google Scholar]
  • 30.Mosmann TR, Gravel Y, Williamson AR, Baumal R. Modification and fate of J-chain in myeloma cells in the presence and absence of polymeric immunoglobulin. Eur J Immunol. 1978;8:94. doi: 10.1002/eji.1830080205. [DOI] [PubMed] [Google Scholar]
  • 31.McDermott RM, Befus AD, Bienenstock J. The structural basis for immunity in the respiratory tract. Int Rev Exp Pathol. 1982;23:47. [PubMed] [Google Scholar]
  • 32.Shen L, Fanger MW. Secretory IgA antibodies synergize with IgG in promoting ADCC by human polymorphonuclear cells, monocytes, and lymphocytes. Cell Immunol. 1981;59:75. doi: 10.1016/0008-8749(81)90435-4. [DOI] [PubMed] [Google Scholar]
  • 33.Tagliabue A, Nencioni L, Villa L, Keren DF, Lowell GH, Boraschi D. Antibody-dependent cell-mediated antibacterial activity of intestinal lymphocytes with secretory IgA. Nature. 1983;306:184. doi: 10.1038/306184a0. [DOI] [PubMed] [Google Scholar]
  • 34.Abraham SN, Beachey EH. Host defenses against adhesion of bacteria to mucosal surfaces. In: Gallin JI, Fauci AS, editors. Vol. 4. Raven Press; New York: 1985. p. 63. (Advances in host defense mechanisms). [Google Scholar]
  • 35.Stamper HB, Jr, Woodruff JJ. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high endothelial venules. J Exp Med. 1976;144:828. doi: 10.1084/jem.144.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Smith ME, Martin AF, Ford WL. Migration of lymphoblasts in the rat: preferential localization of DNA-synthesizing lymphocytes in particular lymph nodes and other sites. Monogr Allergy. 1980;16:203. [PubMed] [Google Scholar]
  • 37.Stevens SK, Weissman IL, Butcher EC. Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J Immunol. 1982;128:844. [PubMed] [Google Scholar]
  • 38.Kraal G, Weissman IL, Butcher EC. Differences in in vivo distribution and homing of T cell subsets to mucosal vs non-mucosal lymphoid organs. J Immunol. 1983;130:1097. [PubMed] [Google Scholar]
  • 39.McDermott MR, Horsewood P, Clark DA, Bienenstock J. T lymphocytes in the intestinal epithelium and lamina propria of mice. Immunology. 1986;57:213. [PMC free article] [PubMed] [Google Scholar]
  • 40.Strober W, Jacobs D. Cellular differentiation, migration, and function in the mucosal immune system. In: Gallin JI, Fauci AS, editors. Vol. 4. Raven Press; New York: 1985. pp. 1–30. (Advances in host defense mechanisms). [Google Scholar]
  • 41.St. John TP, Gallatin WM, Siegelman M, Fried V, Smith H, Weissman IL. Expression-linked cloning of a putative lymph node homing receptor cDNA: ubiquitin is the reactive species. Science. 1986;231:845–850. doi: 10.1126/science.3003914. [DOI] [PubMed] [Google Scholar]
  • 42.Gallatin WM, St. John TP, Siegelman M, Reichert R, Butcher EC, Weissman IL. Lymphocyte homing receptors. Cell. 1986;44:673. doi: 10.1016/0092-8674(86)90832-9. [DOI] [PubMed] [Google Scholar]
  • 43.Stoolman LM, Yednock TA, Burton M, Rosen SD. Human lymphoid cells express a membrane lectin which is functionally equivalent to an adhesive site implicated in the recirculation of rodent lymphoid cells [Abstract] J Cell Biol. 1985;101:233a. [Google Scholar]
  • 44.Gallatin WM, Weissman IL, Butcher EC. A cell surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983;304:30. doi: 10.1038/304030a0. [DOI] [PubMed] [Google Scholar]
  • 45.Chin Y-H, Rasmussen RA, Woodruff JJ, Easton TG. A monoclonal anti-HEBFpp antibody with specificity for lymphocyte surface molecules mediating adhesion to Peyer's patch high endothelium of the rat. J Immunol. 1986;136:2556. [PubMed] [Google Scholar]
  • 46.Reichert RA, Jerabek L, Gallatin WM, Butcher JEC, Weissman IL. Ontogeny of lymphocyte homing receptor expression in the mouse thymus. J Immunol. 1986;136:3535. [PubMed] [Google Scholar]
  • 47.Pabst R, Reynolds JD. Evidence of extensive lymphocyte death in sheep Peyer's patches. II. The number and fate of newly formed lymphocytes that emigrate from Peyer's patches. J Immunol. 1986;136:2011. [PubMed] [Google Scholar]
  • 48.Gearhart PJ, Sigal NH, Klinman NR. Vol. 72. 1975. Production of antibodies of identical idiotype but diverse immunoglobulin classes by cells derived from a single stimulated B cell; p. 1707. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Strober S, Dilley J. Maturation of B lymphocytes in the rat. I. Migration pattern, tissue distribution, and turnover rate of unprimed and primed B lymphocytes involved in the anti-dinitrophenyl response. J Exp Med. 1973;138:1331. doi: 10.1084/jem.138.6.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Dailey MO, Gallatin WM, Weissman IL. The in vivo behavior of T cell clones: altered migration due to loss of the lymphocyte surface homing receptor. J Mol Cell Immunol. 1985;2:27. [PubMed] [Google Scholar]
  • 51.Cahill RN, Frost H, Trnka Z. The effects of antigen on the migration of recirculating lymphocytes through single lymph nodes. J Exp Med. 1976;143:870. doi: 10.1084/jem.143.4.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Pierce NF, Cray WC., Jr Determinants in the localization, magnitude, and duration of a specific mucosal IgA plasma cell response in enterically immunized rats. J Immunol. 1972;128:1311. [PubMed] [Google Scholar]
  • 53.Bienenstock J, Befus AD, McDermott M, Mirski S, Rosenthal K, Tagliabue A. The mucosal immunological network: compartmentalization of lymphocytes, natural killer cells, and mast cells. Ann NY Acad Sci. 1983;409:164. doi: 10.1111/j.1749-6632.1983.tb26866.x. [DOI] [PubMed] [Google Scholar]
  • 54.Klein JR, Kagnoff MF. Proceedings of the sixth International Congress of Immunology. National Research Council Canada; Ottawa: 1986. A monoclonal antibody which identifies a unique surface antigen expressed on murine intestinal intraepithelial lymphocytes [Abstract] p. 42. [Google Scholar]
  • 55.Carman PS, Ernst PB, Rosenthal KL, Clark DA, Befus AD, Bienenstock J. Intraepithelial leukocytes contain a unique subpopulation of NK-like cytotoxic cells active in the defense of gut epithelium to enteric murine coronavirus. J Immunol. 1986;136:1548. [PubMed] [Google Scholar]
  • 56.Ernst PB, Clark DA, Rosenthal KL, Befus AD, Bienenstock J. Detection and characterization of cytotoxic T lymphocyte precursors in the murine intestinal intraepithelial leukocyte population. J Immunol. 1986;136:2121. [PubMed] [Google Scholar]
  • 57.Elson CO. Induction and control of the gastrointestinal immune system. Scand J Gastroenterol. 1985;114:1. doi: 10.3109/00365528509093764. [DOI] [PubMed] [Google Scholar]
  • 58.Greenwood JH, Austin LL, Dobbins WO., III In vitro characterization of human intestinal intraepithelial lymphocytes. Gastroenterology. 1983;85:1023. [PubMed] [Google Scholar]
  • 59.Mowet AMcI, MacKenzie S, Baca ME, Felstein V, Parrott DMV. Proceedings of the sixth International Congress of Immunology. National Research Council Canada; Ottawa: 1986. T lymphocyte functions of intraepithelial lymphocytes from mouse small intestine [Abstract] p. 45. [Google Scholar]
  • 60.Elson CO, Ealding W. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol. 1984;133:2892. [PubMed] [Google Scholar]
  • 61.Wolf JL, Rubin DH, Finberg R. Intestinal M-cells: a pathway for entry of reovirus into the host. Science. 1981;212:471. doi: 10.1126/science.6259737. [DOI] [PubMed] [Google Scholar]
  • 62.Clements LT, Tedder TF, Gartland GL. Antibodies reactive with class II antigens encoded for by the major histocompatibility complex inhibit human B cell activation. J Immunol. 1986;136:2375. [PubMed] [Google Scholar]
  • 63.Spencer J, Finn T, Isaacson PG. Expression of HLA-DR antigens on epithelium associated with lymphoid tissue in the human gastrointestinal tract. Gut. 1986;27:153. doi: 10.1136/gut.27.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Richman LK, Graeff AS, Strober W. Antigen presentation by macrophage enriched cells from the mouse Peyer's patch. Cell Immunol. 1981;62:110. doi: 10.1016/0008-8749(81)90304-x. [DOI] [PubMed] [Google Scholar]
  • 65.Berman MA, Rafieri S, Gutman GA. Association of T cells with proliferating cells in lymphoid follicles. Transplantation. 1981;32:426. doi: 10.1097/00007890-198111000-00018. [DOI] [PubMed] [Google Scholar]
  • 66.Selby WS, Janossy G, Bofill M, Jewell DP. Intestinal lymphocyte subpopulations in inflammatory bowel disease: an analysis by immunohistological and cell isolation techniques. Gut. 1984;25:32. doi: 10.1136/gut.25.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Craig SW, Cebra JJ. Peyer's patches: an enriched source of precursors for IgA producing immunocytes in the rabbit. J Exp Med. 1981;134:188. doi: 10.1084/jem.134.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Cebra JJ, Fuhrman JA, Gearhart PJ, Horwitz JL, Shahin RD. B lymphocyte differentiation leading to a commitment to IgA expression may depend on cell division and may occur during antigen-stimulated clonal expansion. In: Strober W, Hanson LA, Sell KW, editors. Recent advances in mueosal immunity. Raven Press; New York: 1982. pp. 155–171. [Google Scholar]
  • 69.Flanagan JG, Rabbitts TH. Arrangement of human immunoglobulin heavy-chain constant region genes implies evolutionary duplication of a segment containing (gamma, epsilon, and alpha) genes. Nature. 1982;300:709. doi: 10.1038/300709a0. [DOI] [PubMed] [Google Scholar]
  • 70.Elson CC, Heck JA, Strober W. T-cell regulation of murine IgA synthesis. J Exp Med. 1979;149:632. doi: 10.1084/jem.149.3.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kawanishi H, Saltzman L, Strober W. Mechanisms regulating IgA class-specific immunoglobulin production in marine gut-associated lymphoid tissues. II. Terminal differentiation of post-switch sIgA-bearing Peyer's patch B cells. J Exp Med. 1983;158:649. doi: 10.1084/jem.158.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Mayer L, Posnett DN, Kunkel HG. Human malignant T cells capable of inducing an immunoglobulin class switch. J Exp Med. 1985;161:134. doi: 10.1084/jem.161.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Kiyono H, Cooper MD, Kearney JF, Mosteller LM, Michalek SM, Koopman WJ, McGhee JR. Isotype specificity of helper T cell clones. J Exp Med. 1984;159:798. doi: 10.1084/jem.159.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Maver L, Fu SM, Kunkel HG. Human T cell hybridomas secreting factors for IgA-specific help, polyclonal B cell activation, and B cell proliferation. J Exp Med. 1982;156:1860. doi: 10.1084/jem.156.6.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Schwartz SA. Heavy-chain specific suppression of immunoglobulin synthesis and secretion by lymphocytes with selective IgA deficiency. J Immunol. 1980;124:2034. [PubMed] [Google Scholar]
  • 76.Noro N, Adachi M, Yasuda K, Masud T, Yodoi DJ. Murine IgA binding factors (IgA-BF) suppressing IgA production: characterization and target specificity of IgA-BF. J Immunol. 1986;136:2910. [PubMed] [Google Scholar]
  • 77.Morgan EL, Weigle WO. The requirement for adherent cells in the Fc fragment-induced proliferative response of murine spleen cells. J Exp Med. 1979;150:256. doi: 10.1084/jem.150.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Slade HB, Schwartz SA. IgA feedback enhancement of IgA synthesis by breast milk lymphocytes [Abstract] J Allergy Clin Immunol. 1986;77:174. [Google Scholar]
  • 79.May JT. Antimicrobial properties and microbial contamiants of breast milk—an update. Aust Paediatr J. 1984;20:265. doi: 10.1111/j.1440-1754.1984.tb00091.x. [DOI] [PubMed] [Google Scholar]
  • 80.Anderson B, Porras O, Hanson LA, Eden CS, Leffler H. Nonantibody-containing fractions of breast milk inhibit epithelial attachment of Streptococcus pneumoniae and Haemophilus influenzae. Lancet. 1985;1:643. doi: 10.1016/s0140-6736(85)92184-1. [DOI] [PubMed] [Google Scholar]
  • 81.Gillin FD, Reiner DS, Wang CS. Human milk kills parasitic intestinal protozoa. Science. 1983;221:1290. doi: 10.1126/science.6310751. [DOI] [PubMed] [Google Scholar]
  • 82.Peri BA, Theodore CM, Losonsky GA, Fishaut JM, Rothberg RM, Ogra PL. Antibody content of rabbit milk and serum following inhalation or ingestion of respiratory syncytial virus and bovine serum albumin. Clin Exp Immunol. 1982;48:91. [PMC free article] [PubMed] [Google Scholar]
  • 83.Goldblum RM, Ahlstedt S, Carlsson B, Hanson LA, Lidin-Janson G, Sohl-Akerlund A. Antibody forming cells in human colostrum after oral immunisation. Nature. 1975;257:797. doi: 10.1038/257797a0. [DOI] [PubMed] [Google Scholar]
  • 84.Halstead TE, Hall JG. The homing of lymph-born immunoblasts to the small gut in neonatal rats. Transplantation. 1972;14:339. doi: 10.1097/00007890-197209000-00009. [DOI] [PubMed] [Google Scholar]
  • 85.Parrott DMV, Ferguson A. Selective migration of lymphocytes within the mouse small intestine. Immunology. 1974;26:571. [PMC free article] [PubMed] [Google Scholar]
  • 86.Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME. Origin of IgA-secreting plasma cells in the mammary gland. J Exp Med. 1977;146:1311. doi: 10.1084/jem.146.5.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Czinn SJ, Lamm ME. Selective chemotaxis of subsets of B lymphocytes from gut-associated lymphoid tissue and its implications for the recruitment of mucosal plasma cells. J Immunol. 1986;136:3607. [PubMed] [Google Scholar]
  • 88.McNabb PC, Tomasi TB. Host defense mechanisms at mucosal surfaces. Annu Rev Microbiol. 1981;138:976. doi: 10.1146/annurev.mi.35.100181.002401. [DOI] [PubMed] [Google Scholar]
  • 89.Gilbert JV, Plaut AG, Longmaid B. Inhibition of bacterial IgA proteases by human secretory IgA and serum. Ann NY Acad Sci. 1983;409:625. doi: 10.1111/j.1749-6632.1983.tb26904.x. [DOI] [PubMed] [Google Scholar]
  • 90.Kilian M, Thomsen B, Peterson TE, Bleeg HS. Occurrence and nature of bacterial IgA proteases. Ann NY Acad Sci. 1981;409:612. doi: 10.1111/j.1749-6632.1983.tb26903.x. [DOI] [PubMed] [Google Scholar]
  • 91.Smith CW, Goldman AS. The cells of human colostrum. I. In vitro studies of morphology and functions. Pediatr Res. 1968;2:103. doi: 10.1203/00006450-196803000-00005. [DOI] [PubMed] [Google Scholar]
  • 92.Bush JF, Beer AE. Analysis of complement receptors on B-lymphocytes in human milk. Am J Obstet Gynecol. 1979;133:708. doi: 10.1016/0002-9378(79)90023-1. [DOI] [PubMed] [Google Scholar]
  • 93.Diaz-Jouanen E, Williams RC., Jr T and B lymphocytes in human colostrum. Clin Immunol Immunopathol. 1974;3:248. doi: 10.1016/0090-1229(74)90011-7. [DOI] [PubMed] [Google Scholar]
  • 94.Head JR, Beer AE, Billingham RE. Significance of the cellular component of the maternal immunologic endowment in milk. Transplant Proc. 1977;9:1465. [PubMed] [Google Scholar]
  • 95.Crago SS, Prince SJ, Pretlow TG, McGhee JR, Mestecky J. Human colostral cells. I. Separation and characterization. Clin Exp Immunol. 1979;38:585. [PMC free article] [PubMed] [Google Scholar]
  • 96.Schwartz SA, Slade HB. IgA production by breast milk lymphocytes in response to inactivated polio virus [Abstract] J Allergy Clin Immunol. 1986;77:174. [Google Scholar]
  • 97.Richie ER, Bass R, Meistrich M, Dennison DK. Distribution of T lymphocytes subsets in human colostrum. J Immunol. 1982;129:1116. [PubMed] [Google Scholar]
  • 98.Ogra SS, Ogra PL. Immunologic aspects of human colostrum and milk. II. Characteristics of lymphocyte reactivity and distribution of E-rosette forming cells at different times after the onset of lactation. J Pediatr. 1978;92:550. doi: 10.1016/s0022-3476(78)80286-8. [DOI] [PubMed] [Google Scholar]
  • 99.Parmely MJ, Beer AE, Billingham RE. In vitro studies on the T-lymphocyte population of human milk. J Exp Med. 1976;144:358. doi: 10.1084/jem.144.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Keller M, Kidd R, Reisinger D, Stewart D. PPD-induced monocyte chemotactic factor production by human milk cells. Acta Paediatr Scand. 1984;73:465. doi: 10.1111/j.1651-2227.1984.tb09956.x. [DOI] [PubMed] [Google Scholar]
  • 101.Nair MPN, Schwartz SA, Slade HB, Johnson MZ, Quebbeman JF, Beer AE. Comparison of the cellular cytotoxic activities of colostral lymphocytes and maternal peripheral blood lymphocytes. J Reprod Immunol. 1985;7:199. doi: 10.1016/0165-0378(85)90051-8. [DOI] [PubMed] [Google Scholar]
  • 102.Ogra SS, Ogra PL. Components of immunologic reactivity in human colostrum and milk. In: Ogra PL, Dayton D, editors. Immunology of breast milk. Raven Press; New York: 1979. p. 185. [Google Scholar]
  • 103.Svennerholm AM, Hanson LA, Holmgren J, Jalil F, Lindblad BS, Khan SR, Nilsson A, Svennerholm B. Antibody responses to live and killed poliovirus vaccines in the milk of Pakistani anad Swedish women. J Infect Dis. 1981;143:707. doi: 10.1093/infdis/143.5.707. [DOI] [PubMed] [Google Scholar]
  • 104.Moro I, Crago S, Mestecky J. Localization of IgA and IgM in human colostral elements using immunoelectron microscopy. J Clin Immunol. 1983;3:382. doi: 10.1007/BF00915800. [DOI] [PubMed] [Google Scholar]
  • 105.Crago SS, Mestecky J. Human colostral cells. II. Response to mitogens. Cell Immunol. 1984;86:222. doi: 10.1016/0008-8749(84)90374-5. [DOI] [PubMed] [Google Scholar]
  • 106.Ahlstedt S, Carlsson B, Hanson LA, Goldblum RM. Antibody production by human colostral cells. Scand J Immunol. 1975;4:535. doi: 10.1111/j.1365-3083.1975.tb02659.x. [DOI] [PubMed] [Google Scholar]
  • 107.Avital A, Tamir S, Steinitz M. Continuous in vitro production of IgA by a human colostral immortalized cell line. Immunol Lett. 1985;9:23. doi: 10.1016/0165-2478(85)90089-6. [DOI] [PubMed] [Google Scholar]
  • 108.Goldblum RM, VanBavel J. Immunoglobulin A production by human colostral cells: quantitative aspects. In: McGhee JR, Mestecky J, Babb JL, editors. Secretory immunity and infection. Plenum Press; New York: 1977. pp. 87–94. [Google Scholar]
  • 109.Murillo GJ, Goldman AS. The cells of human colostrum II. Synthesis of IgA and beta-1-c. Pediatr Res. 1970;4:71. doi: 10.1203/00006450-197001000-00008. [DOI] [PubMed] [Google Scholar]
  • 110.Atherton DJ. Breast feeding and atopic eczema. Br Med J. 1983;287:775. doi: 10.1136/bmj.287.6395.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Bjorksten B. Does breast feeding prevent the development of allergy? Immunol Today. 1983;4:215. doi: 10.1016/0167-5699(83)90029-4. [DOI] [PubMed] [Google Scholar]
  • 112.Soothill JF. Prevention of food allergic disease. Ann Allergy. 1984;53:689. [PubMed] [Google Scholar]
  • 113.Cant AJ. Diet and the prevention of childhood allergic disease. Hum Nutr Appl Nutr. 1984;38A:455. [PubMed] [Google Scholar]
  • 114.Taylor B, Wadsworth J, Golding J, Butler N. Breast feeding, eczema, asthma, and hay fever. J Epidemiol Community Health. 1983;37:95. doi: 10.1136/jech.37.2.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Van Asperen PP, Kemp AS, Mellis CM. Relationship of diet in the development of atopy in infancy. Clin Allergy. 1984;14:525. doi: 10.1111/j.1365-2222.1984.tb02239.x. [DOI] [PubMed] [Google Scholar]
  • 116.Taylor B, Wadsworth M, Wadsworth J, Peckham C. Changes in the reported prevalence of childhood eczema since the 1939–1945 war. Lancet. 1984;2:1255. doi: 10.1016/s0140-6736(84)92805-8. [DOI] [PubMed] [Google Scholar]
  • 117.Hanifin JM. Atopic dermatitis. J Allergy Clin Immunol. 1984;73:211. doi: 10.1016/s0091-6749(84)80008-1. [DOI] [PubMed] [Google Scholar]
  • 118.Anderson JA, Sogn DD. U.S. Government Printing Office; Washington, D.C: 1984. Adverse reactions to foods. American Academy of Allergy and Immunology Committee on Adverse Reactions to Foods and National Institute of Allergy and Infectious Diseases. (NIH publication no. (PHS)84-2442). [Google Scholar]
  • 119.Yoshioka H, Iseki K, Fujita K. Development and difference of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatr. 1983;72:317. [PubMed] [Google Scholar]
  • 120.Lundequist B, Nord CE, Winberg J. The composition of the faecal microflora in breastfed and bottle fed infants from birth to eight weeks. Acta Paediatr Scand. 1985;74:45. doi: 10.1111/j.1651-2227.1985.tb10919.x. [DOI] [PubMed] [Google Scholar]
  • 121.Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottlefed infants. Microbiol Immunol. 1984;28:975. doi: 10.1111/j.1348-0421.1984.tb00754.x. [DOI] [PubMed] [Google Scholar]
  • 122.Burgio GR, Lanzavecchia A, Plebani A, Jayakar S, Ugazio AG. Ontogeny of secretory immunity: levels of secretory IgA and natural antibodies in saliva. Pediatr Res. 1980;14:1111. doi: 10.1203/00006450-198010000-00004. [DOI] [PubMed] [Google Scholar]
  • 123.Nagaoki T, Mitawaki T, Ciorbaru R, Yachie A, Uwadana N, Moriya N, Taniguchi N. Maturation of B cell differentiation ability and T cell regulatory function during child growth assessed in a Nocardia water-soluble mitogen-drive system. J Immunol. 1981;126:2015. [PubMed] [Google Scholar]
  • 124.Krakauer R, Zinneman HH, Hong R. Deficiency of secretory IgA and intestinal malabsorption. Am J Gastroenterol. 1975;64:319. [PubMed] [Google Scholar]
  • 125.Stephens S, Kennedy CR, Lakhani PK, Brenner MK. In vivo immune responses of breast- and bottle-fed infants to tetanus toxoid antigen and to normal gut flora. Acta Paediatr Scand. 1984;73:426. doi: 10.1111/j.1651-2227.1984.tb09950.x. [DOI] [PubMed] [Google Scholar]
  • 126.Vukavic T. Timing of the gut closure. J Peadiatr Gastroenterol Nutr. 1984;3:700. doi: 10.1097/00005176-198411000-00011. [DOI] [PubMed] [Google Scholar]
  • 127.Mackenzie N. Fc receptor-mediated transport of immunoglobulin across the intestinal epithelium of the neonatal rodent. Immunol Today. 1984;5:364. doi: 10.1016/0167-5699(84)90080-X. [DOI] [PubMed] [Google Scholar]
  • 128.Jatsyk GV, Kuvaeva IB, Gribakin SG. Immunological protection of the neonatal gastrointestinal tract: the importance of breast feeding. Acta Paediatr Scand. 1985;74:246. doi: 10.1111/j.1651-2227.1985.tb10958.x. [DOI] [PubMed] [Google Scholar]
  • 129.Pitt J, Barlow B, Heird WC. Protection against experimental necrotizing enterocolitis by maternal milk. I. Role of milk leukocytes. Pediatr Res. 1977;11:906. doi: 10.1203/00006450-197708000-00011. [DOI] [PubMed] [Google Scholar]
  • 130.Barlow B, Santulli TV, Heird WC, Pitt J, Blanc WA, Schullinger JN. An experimental study of acute neonatal enterocolitis—the importance of breast milk. J Pediatr Surg. 1974;9:587. doi: 10.1016/0022-3468(74)90093-1. [DOI] [PubMed] [Google Scholar]
  • 131.Pitt J, Barlow B, Heird WC. Protection against experimental necrotizing enterocolitis by maternal milk. II. Role of milk leukocytes. Pediatr Res. 1977;11:909. doi: 10.1203/00006450-197708000-00011. [DOI] [PubMed] [Google Scholar]
  • 132.Moriarty RR, Finer NN, Cox SF, Phillips HJ, Theman H, Stewart AR, Ulan OA. Necrotizing enterocolitis and human milk. J Pediatr. 1979;94:295. doi: 10.1016/s0022-3476(79)80848-3. [DOI] [PubMed] [Google Scholar]
  • 133.Reisner SH, Garty B. Necrotising enterocolitis despite breast feeding. Lancet. 1977;2:507. doi: 10.1016/s0140-6736(77)91631-2. [DOI] [PubMed] [Google Scholar]
  • 134.Stoll BJ, Kanto WP, Jr, Glass RI, Nahmias AJ, Brann AW., Jr Epidemiology of necrotizing enterocolitis: a case control study. J Pediatr. 1980;96:447. doi: 10.1016/s0022-3476(80)80696-2. [DOI] [PubMed] [Google Scholar]
  • 135.Kliegman RM, Pittard WB, Fanaroff AA. Necrotizing enterocolitis in neonates fed human milk. J Pediatr. 1979;95:450. doi: 10.1016/s0022-3476(79)80534-x. [DOI] [PubMed] [Google Scholar]
  • 136.Pickering LK, Cleary TG, Carpioli RM. Inhibition of human polymorphonuclear leukocyte function by components of human colostrum and mature milk. Infect Immun. 1983;40:8. doi: 10.1128/iai.40.1.8-15.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Ho PC, Lawton JWM. Human colostral cells: phagocytosis and killing of E. coli and C. albicans. J Pediatr. 1978;93:910. doi: 10.1016/s0022-3476(78)81210-4. [DOI] [PubMed] [Google Scholar]
  • 138.Weaver EA, Rudloff HE, Goldblum RM, Davis CP, Goldman AS. Secretion of immunoglobulin A by human milk leukocytes initiated by surface membrane stimuli. J Immunol. 1984;132:684. [PubMed] [Google Scholar]
  • 139.Blau H, Passwell JH, Levanon M, Davidson J, Kohen F, Ramot B. Studies on human milk macrophages: effect of activation on phagocytosis and secretion of prostaglandin E2 and lysozyme. Pediatr Res. 1983;17:241. doi: 10.1203/00006450-198304000-00001. [DOI] [PubMed] [Google Scholar]
  • 140.Weaver EA, Tsuda H, Goldblum RM, Goldman AS, Davis CP. Relationship between phagocytosis and immunoglobulin A release from human colostral macrophages. Infect Immun. 1982;38:1073. doi: 10.1128/iai.38.3.1073-1077.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.McCaughan GW, Adams E, Basten A. Human antigen-specific IgA responses in blood and secondary lymphoid tissue: an analysis of help and suppression. J Immunol. 1984;132:1190. [PubMed] [Google Scholar]
  • 142.Puente I, Quebbeman JF, Beer AE. Transfer of milk lymphocytes from mother to neonate by suckling in the rat [Abstract]. Presented at Annual Meeting of Society for Gynecologic Investigation. Society for Gynecologic Investigation; San Francisco: 1984. [Google Scholar]
  • 143.Schnorr KL, Pearson LD. Intestinal absorption of maternal leucocytes by newborn lambs. J Reprod Immunol. 1984;6:329. doi: 10.1016/0165-0378(84)90031-7. [DOI] [PubMed] [Google Scholar]
  • 144.Seelig LL, Billingham RE. Concerning the natural transplantation of maternal lymphocytes via milk. Transplant Proc. 1981;8:1245. [PubMed] [Google Scholar]
  • 145.Kmetz M, Dunne HW, Schultz RD. Leukocytes as carriers in the transmission of bovine leukemia: invasion of the newborn by ingested, cultured leukocytes. Am J Vet Res. 1970;31:637. [PubMed] [Google Scholar]
  • 146.Seelig LL, Head JR. Uptake of lymphocytes fed to suckling rats: an autoradiographic study of the transit of labelled cells through the neonatal gastric mucosa [in press]. J Reprod Immunol [DOI] [PubMed]
  • 147.Biondi A, Rossing TH, Bennett J, Todd RF., III Surface membrane heterogeneity among human mononuclear phagocytes. J Immunol. 1984;132:1237. [PubMed] [Google Scholar]
  • 148.Campbell DA, Jr, Lorber MI, Sweeten JC, Beer AE. Breast feeding and maternal-donor renal allografts: possibly the original donor-specific transfusion. Transplantation. 1984;37:340. doi: 10.1097/00007890-198404000-00004. [DOI] [PubMed] [Google Scholar]
  • 149.Mito K, Chiba Y, Suga K, Nakao T. Cellular immune response to infection with respiratory syncytial virus and influence of breast feeding on the response. J Med Virol. 1984;14:323. doi: 10.1002/jmv.1890140405. [DOI] [PubMed] [Google Scholar]
  • 150.Halsey JF, Benjamin DC. Induction of immunologic tolerance in nursing neonates by absorption of tolerogen from colostrum. J Immunol. 1976;116:1204. [PubMed] [Google Scholar]
  • 151.Conley ME, Brown P, Pickard AR, Buckley RH, Miller DS, Raskind WH, Singer JW, Fialkow PJ. Expression of the gene defect in X-linked agammaglobulinemia. N Engl J Med. 1986;315:564. doi: 10.1056/NEJM198608283150907. [DOI] [PubMed] [Google Scholar]
  • 152.Pittard WB, Bill K. Immunoregulation by breast milk cells. Cell Immunol. 1979;42:437. doi: 10.1016/0008-8749(79)90210-7. [DOI] [PubMed] [Google Scholar]
  • 153.Puskas M, Antoni F, Peterfy F, Meszaros K. Pokeweed mitogen, Bordetella pertussis, and breast milk cell factor induce preferentially the synthesis of different immunoglobulin classes. Boll Ist Sieroter Milan. 1983;62:262. [PubMed] [Google Scholar]
  • 154.Tapper D, Klagsbron M, Neumann J. The identification and clinical implications of human breast milk mitogen. J Pediatr Surg. 1979;14:803. doi: 10.1016/s0022-3468(79)80270-5. [DOI] [PubMed] [Google Scholar]
  • 155.Axelrod DA, Reid RH, Wright JA, McCarthy WT, Ema RY, Kelly EP, Tseng J. Vol. 43. 1984. A T-cell independent B-cell activation factor produced by rabbit milk cells [Abstract] p. 1676. (Fed Proc). [Google Scholar]
  • 156.Pittard WB, Bill K. Differentiation of cord blood lymphocytes into IgA-producing cells in response to breast milk stimulatory factor. Clin Immunol Immunopathol. 1979;13:430. doi: 10.1016/0090-1229(79)90085-0. [DOI] [PubMed] [Google Scholar]
  • 157.Juto P. Human milk stimulates B cell function. Arch Dis Child. 1985;60:610. doi: 10.1136/adc.60.7.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Peri BA, Rothberg RM. Specific suppression of antibody production in young rabbit kits after maternal ingestion of bovine serum albumin. J Immunol. 1981;127:2520. [PubMed] [Google Scholar]
  • 159.Carpenter G. Epidermal growth factor is a major growth-promoting agent in human milk. Science. 1980;210:198. doi: 10.1126/science.6968093. [DOI] [PubMed] [Google Scholar]
  • 160.Stephens S, Brenner MK, Duffy SW, Lakhani PK, Kennedy CR, Farrant J. The effect of breast-feeding on proliferation by infant lymphocytyes in vitro. Pediatr Res. 1986;20:227. doi: 10.1203/00006450-198603000-00006. [DOI] [PubMed] [Google Scholar]
  • 161.Goldblum RM, Schanler RJ, Garza C, Goldman AS. Enhanced urinary lactoferrin excretion in premature infants fed human milk [Abstract] Pediatr Res. 1985;19:342A. [Google Scholar]

Articles from The Journal of Allergy and Clinical Immunology are provided here courtesy of Elsevier

RESOURCES